

Design and Development of a 3D Dynamic Configuration Interface for an

Industry 4.0 Assembly Cell

A Thesis

Submitted to the Faculty of Fachhochschule Aachen and Centro de

Ingeniería y Desarrollo Industrial

BY

José Gerardo Gómez Méndez

In Partial Fulfillment of the requirements

for the degree of Master of Science in Mechatronics

Santiago de Queretaro, Qro., Mexico, February 2018

Declaration

 i

Declaration

I hereby declare that this thesis work has been conducted entirely on my own accord.

The data, the software employed and the information used have all been utilized in complete

agreement to the copyright rules of concerned establishments.

Any reproduction of this report or the data and research results contained in it, either

electronically or in publishing, may only be performed with prior sanction of the University of

Applied Sciences (FH Aachen), Centro de Ingeniería y Desarrollo Industrial (CIDESI) and

myself, the author.

José Gerardo Gómez Méndez

Santiago de Queretaro, Qro., Mexico, February 2018

Acknowledgments

Acknowledgments

Firstly, I would like to express my immense gratitude to Conacyt for the opportunity to have a

scholarship and for supporting the study of my master’s degree in Queretaro, Mexico, and

Aachen, Germany.

I would also like to thank my thesis advisor in Germany, Prof. Dr.-Ing. Jörg Wollert of the FH

Aachen. He steered me in the right direction whenever he considered necessary, and he guided

me during the development of this thesis. Furthermore, my sincerest gratitude to my second

thesis advisor in Germany Prof. Dr. rer. nat. Klaus-Peter Kämper and all the members of the

Embedded Systems Laboratory at FH Aachen for their support on the development of this

project.

I would also like to thank my thesis advisor in Mexico Dr. Antonio Estrada Torres at CIDESI.

I am grateful to him for his remarkably valuable comments and helpful advice on this thesis. In

addition to Dr. Salvador Francisco Acuña Guzmán, Ing. Bertha Elisa Velasco Sánchez, Lic.

Cruz Alicia Márquez Tecua and all the academic and administrative members at CIDESI.

I would also like to express my most profound gratitude to my parents, my grandparents, and

the rest of my beloved family. Their support, knowledge, generosity, encouragement, and

unconditional love during my master’s degree and my life.

Additionally, I would like to express my sincerest appreciation to my friends, colleagues, and

family in Queretaro and Aachen, Jaime Robles, Osvaldo Picazo, Luis Rodríguez, Ricardo Vega,

and Adrián Lizama, without their constant support, advisement, and genuine friendship, the

accomplishment of this degree would not be possible.

Finally, I would like to thank my girlfriend Miriam Knöpfle for her help and encouragement

throughout the writing of this thesis.

Dedication

 iii

This master’s thesis is dedicated

to my beloved mother Ana Laura Méndez Maín,

my cherished father Gerardo Gómez Salas,

and my adored grandparents Daniel Gómez Montano, María Luisa Salas Aguilar, Carlos

Méndez Lara & Concepción Amelia Maín Morales.

Everything I am is thanks to you…

Terminology and Abbreviations

 iv

Terminology and Abbreviations

API Application Programming Interface

GPU Graphic Processing Unit

I4.0 Industry 4.0

IoT Internet of Things

IP Internet Protocol

JS JavaScript

JSON JavaScript Object Notation

LAN Local Area Network

MB Megabyte

RAM Random Access Memory

REST Representational State Transfer

UML Unified Modeling Language

Abstract

 v

Abstract

The purpose of this thesis titled “Design and Development of a 3D Dynamic Configuration

Interface for an Industry 4.0 Assembly Cell” is to present the design and development of a plugin

for an existing e-commerce platform that is running inside an Industry 4.0 system for the

construction of Lego Duplo cars.

The plugin provides the possibility of the adjustment of a product to the user’s specific needs

with the help of a detailed 3D preview of the output. Apart from being just a preview, it

additionally allows a customization by predefined configuration parameters defined by the

administrator. This feature intends to increase the intuitiveness of the application and therefore

the satisfaction of the customer by providing a better experience in the purchasing process.

It also aims to produce high-quality software that is easily maintainable, well documented, bug-

free and scalable to face any other challenges like displaying any type of product that is built

using Lego Duplo bricks.

Resumen

El objetivo de esta tesis titulada “Diseño y desarrollo de una interfaz dinámica de configuración

3D para una celda de manufactura para la Industria 4.0” es presentar el diseño y desarrollo de

un complemento para una plataforma de comercio electrónico que actualmente está en

operación en un sistema de Industria 4.0 para el ensamble de automóviles con piezas de Lego

Duplo.

El “plugin” provee la posibilidad de ajustar un producto a las necesidades específicas del usuario

con la ayuda de una vista previa detallada en 3D. También permite la personalización del

producto, basado en parámetros de configuración predefinidos establecidos por el

administrador. Ésta característica tiende a incrementar la intuición de la aplicación y por lo tanto

la satisfacción del cliente, al proporcionar una mejor experiencia en el proceso de compra.

También tiene como objetivo producir software de alta calidad que sea fácilmente mantenible,

bien documentado, libre de errores y escalable para afrontar los futuros retos como mostrar

cualquier tipo de producto que sea construido usando ladrillos de Lego Duplo.

Abstract

 vi

Kurzfassung

Die Zielsetzung dieser Masterarbeit unter dem Namen „Design und Entwicklung einer

Dynamischen 3D Konfigurationsschnittstelle für eine Industrie 4.0 Montagezelle“ ist es, ein

Plugin für eine bereits bestehende E-Commerce Plattform zu kreieren, die in einer Industrie 4.0

Plattform zur Konstruktion von Lego Duplo Fahrzeugen läuft.

Das Plugin bietet dem Benutzer mithilfe einer detaillierten 3D-Vorschau die Möglichkeit, ein

Produkt nach seinen eigenen Anforderungen anzupassen. Neben der Vorschaufunktion bietet es

außerdem die Möglichkeit der Personalisierung mit vom Administrator vordefinierten

Konfigurationsparametern. Diese Funktion beabsichtigt die Steigerung der Intuitivität der

Applikation und damit der Kundenzufriedenheit, indem ein besseres Kauferlebnis ermöglicht

wird.

Des Weiteren soll eine einfach zu pflegende, fehlerlose Software von hoher Qualität mit guter

Dokumentation und einfach zu realisierenden Skalierungsmöglichkeiten geschaffen werden, um

auch andere Herausforderungen wie das Anzeigen anderer Produkttypen mit Lego Duplo Bricks

meistern zu können.

Contents

 vii

Contents

Introduction	..	1	

Theoretical	Background	..	1	

Industry	4.0	..	1	

Smart	Factory	..	2	

Internet	of	Things	..	2	

Problem	Statement	..	3	

Justification	..	4	

Hypothesis	...	4	

Objective	..	4	

Requirements	...	4	

Methodology	...	6	

Requirements	Specification	..	7	

Hardware	Requirements	...	7	

Software	Requirements	...	7	

Software	Used	...	7	

System	Analysis	..	11	

System	Design	and	Development	...	14	

System	1	-	OpenCart	..	15	

System	2	-	Translator	...	19	

System	3	-	Viewer	..	24	

System	4	-	IoT	Adapter	..	57	

Results	..	65	

Test	Case	1	...	66	

Test	Case	2	...	67	

Test	Case	3	...	69	

Test	Case	4	...	71	

Test	Case	5	...	72	

Test	Case	6	...	73	

Contents

 viii

Conclusions	...	76	

Future	Work	..	78	

References	..	79	

Annexures	...	81	

Annexure	1	...	82	

Annexure	2	...	90	

Annexure	3	...	93	

Annexure	4	...	99	

Annexure	5	...	102	

Annexure	6	...	107	

Annexure	7	...	109	

Annexure	8	...	112	

List of Figures

 ix

List of Figures

Figure 1 Incremental Process Model, calendar time progress (Retrieved from R. Pressman [5] ... 7	
Figure 2 General Use Case for the system based on the Requirements 12	
Figure 3 Common implementation of OpenCart .. 15	
Figure 4 Content of the folder “3DViewer.ocmod” .. 16	
Figure 5 Install "HTML Content" Extension .. 17	
Figure 6 Configuration of HTML Module .. 18	
Figure 7 Configuration of the Layout. .. 18	
Figure 8 Enabling the Plugin to a certain Product .. 19	
Figure 9 Implementation of OpenCart with the Plugin enabled ... 19	
Figure 10 Sequence Diagram System 2 - Translator .. 21	
Figure 11 Products List ... 22	
Figure 12 Response by executing in the REST Server /api/oc_actions/3 22	
Figure 13 Loading Screen ... 23	
Figure 14 Error: Timeout .. 23	
Figure 15 PlayCanvas Development Framework ... 26	
Figure 16 Comments on a function ... 26	
Figure 17 Class Diagram: Entities .. 27	
Figure 18 Class Diagram: Entities-Scripts Relations .. 28	
Figure 19 pc.ModelComponent for the child Model of the entity 2x2x2 29	
Figure 20 Activity Diagram: Subsystem 3.1 ... 31	
Figure 21 Sequence Diagram: Subsystem 3.1 .. 32	
Figure 22 Configuration JSON container for the “Roadster” model .. 33	
Figure 23 Sequence Diagram: Visualize Car .. 36	
Figure 24 Sequence Diagram: Set Chassis Color ... 37	
Figure 25 Sequence Diagram: Add a Brick .. 37	
Figure 26 Sequence Diagram: Set Brick Color ... 38	
Figure 27 Sequence Diagram: Show or Hide Add Button .. 39	
Figure 28 Sequence Diagram: Send JSON ... 40	
Figure 29 Use Case Diagram: User Physical Interaction .. 41	
Figure 30 Viewer screen ... 43	
Figure 31 Viewer screen, optional piece selected ... 43	

List of Figures

 x

Figure 32 Optional Bricks Picker on Screen ... 43	
Figure 33 Element Component on Entity “Bricks” .. 44	
Figure 34 Sequence Diagram: Press a Button .. 45	
Figure 35 Sequence Diagram: Hide All .. 46	
Figure 36 Collision and Model Element to a piece of the type 2x2x2 47	
Figure 37 Color Picker on Screen ... 47	
Figure 38 Sequence Diagram: Disable Selected Parts .. 48	
Figure 39 Sequence Diagram: Press a Piece ... 49	
Figure 40 Stud dimensions ... 51	
Figure 41 Function isOverlapping() part-1 ... 52	
Figure 42 Function isOverlapping() part-2 ... 53	
Figure 43 Sequence for changing the Chassis' Color ... 54	
Figure 44 Sequence Diagram: Press the Optional Bricks Picker .. 55	
Figure 45 Sequence Diagram: Press the Colors Picker .. 56	
Figure 46 Extract of the Entity-Relation Diagram for the database "mes" 57	
Figure 47 Keywords Configuration of a Brick ... 58	
Figure 48 Database example values for the product roadster in the table opencart_actions 59	
Figure 49 Center of a piece ... 59	
Figure 50 Three-dimensional Cartesian coordinate system and orientation of the axes 60	
Figure 51 Example of translation values on the x-axis ... 61	
Figure 52 Example of translation values on the y-axis ... 62	
Figure 53 Example of translation values on the z-axis ... 63	
Figure 54 Example of rotation values on the z-axis ... 64	
Figure 55 Incremental Process Model, calendar time progress [1] .. 87	
Figure 56 Lego Duplo Car example .. 108	
Figure 57 Step 1 .. 110	
Figure 58 Step 2 .. 111	
Figure 59 Step 3 .. 111	

List of Tables

 xi

List of Tables

Table 1 Use Case Description for System 1 ... 13	
Table 2 Use Case Description for System 2 ... 13	
Table 3 Use Case Description for System 3 ... 14	
Table 4 Use Case Description for System 4 ... 14	
Table 5 Description of the Use Case Diagram: User Physical Interaction 42	
Table 1 Test Case 1 ... 67	
Table 2 Test Case 2 ... 69	
Table 3 Test Case 3 ... 71	
Table 4 Test Case 4 ... 72	
Table 5 Test Case 5 ... 73	
Table 1 Available Colors .. 101	
Table 2 Available Bricks .. 106	
Table 3 Lego Duplo Car values for Figure 56 .. 108

	

Introduction

 1

Introduction

Progression and changes in the way products are created have been a part of the evolution of

industry since the creation of the first steam engines in the 18th century. There have been three

major changes in the way of how industry is conceptualized, labeled as Industrial Revolutions.

The last notable change was formalized in the mid-1970s where electronics and IT solutions

began to expand quickly into the industry [1].

The past decade, the involvement of IT systems and electronics in the industrial sector has not

only been widely adopted, but nowadays is an essential element. Processes are becoming more

flexible with the integration of new trends like the Internet of Things (IoT).

This combination with IoT and the notable increase in the flexibility of IT systems resulted in

the German government proposing a strategic initiative called Industry 4.0 that was adopted as

a part of the “High-Tech Strategy 2020 Action Plan” [2][3].

The aforementioned necessity for the conception of a significant change in the industry is a

result of the constant changes of the customer needs. Producing a high degree of product

individualization, increasing digitalization and system integration and effective and efficient

manufacturing operations are just common requirements nowadays that have in combination the

aim of reaching high quality at low cost as well as the well-being of employees [4].

Theoretical Background

Industry 4.0

Industry 4.0 (I4.0) is not a mere vision on how the final products should be, or how the work

environment should be upgraded. It presents a total integration of the manufacturing process.

This integration does not only involve the players in the industry sector, but the whole supply

chain and external stakeholders. Therefore, it implements three kinds of integration that are

described in the following paragraphs [2].

The first type of integration is a horizontal integration through value networks that enables the

collaboration with suppliers and customers [2].

Introduction

The second type is the vertical integration of hierarchical subsystems inside a factory that

produces flexible and reconfigurable manufacturing systems [2].

The last type of integration represents an “End-To-End Engineering Integration” in the product-

centric value creation process [2]. This integration has a primary intention of creating value for

customers through the involvement in the process from the beginning [7].

Another important aspect that is mentioned by many authors is the involvement of the user with

the industry and there are some standards to achieve this. The ISO 9241-210:2010 in Part 210

for example establishes some paradigms for human-centered design for interactive systems

where the users are involved throughout the design and development phase of a product.

Moreover, the vertical integration aims to support customized consumer demand. In order to do

that it is necessary to produce small-lots and therefore to transfer the traditional factory into a

highly flexible and reconfigurable manufacturing that leads to the implementation of a so-called

smart factory [2].

Smart Factory

Smart Factory is a production solution that intends to meet today’s market needs in a flexibly

and efficiently way by constituting a key feature of Industry 4.0 [7]. Smart factories are capable

of managing complexity, are less prone to disruption and can manufacture goods more

efficiently [3].

A Smart Factory achieves a higher efficiency in the production by the union of technology in

every step of the process starting with the selection of raw materials, passing through the

manufacturing process and even after the delivery to the user. By implementing cyber-physical

production systems the management can be provided with more detailed real time information

which presents one of the fundamental principles of a new era in the sphere of industrial

production [7].

Internet of Things

The IoT provides the mean to achieve extremely flexible, individualized and resource friendly

mass production. The basic concept of IoT is that products within a manufacturing process

should find their way independently throughout the production process in intelligent factories

by making products and devices work cooperatively and interconnected [1].

Introduction

 3

At its essence, involving Industry 4.0 and the Internet of Things is portrayed by the incorporation

of physical and digital components to manufacture new products [8]. Through unique addressing

schemes, essentially on the internet, objects interact and cooperate with each other to reach

common goals [9][10]. These goals can be very diverse and reach from solving daily tedious

tasks, to changing the face of medicine or to helping industrial manufacturing to be more

efficient.

Problem Statement

The Industry 4.0 Lab at the FH Aachen provides the tools and mechanisms to interconnect

different assembly cells, so synergistically, they carry out the assembling process of customized

Lego Duplo cars.

The current area of opportunity in this system is the customization process. In Industry 4.0, it is

essential to support customized demands by the customer; hence the involvement of the final

customer with the assembly process is fundamental. Nonetheless, to let the user customize its

own products so they can be suitable to build, the infrastructure of the system should provide

the necessary means to customize the outcome within the restrictions of the assembling process.

Furthermore, another critical point in the side of Industry 4.0 is the scalability and flexibility

that any system should provide, this delivers a considerable responsibility when developing

software for this purpose. The only method to provide a system with the necessary means to be

scalable resides in a correct use of the Software's Engineering.

This last point always represents a challenge to the designers of the program because not only

the software has to work well; additionally, it has to be completely reliable, bug-free and with

meaningful documentation that makes it possible for future engineers to understand the code

and adapt it to the new functionalities that will attain eventually.

Moreover, the usage of IT tools such as PCs, tablets, and smartphones opens an area of

opportunity for the interaction of the user with the system. Most devices used nowadays possess

enough characteristics to support features like 3D visualization, rendering of complex images,

and high bandwidth connectivity. All these points make the integration of the upcoming

technologies with any process inside Industry 4.0 feasible, but also crucial.

Introduction

Justification

This thesis attempts to integrate the customization process inside major IT devices, specially

oriented to the touch-displays present in tablets and smartphones.

It is projected to use some of the techniques for the good practice of software development. One

of these practices is the delivery of vast documentation, mostly based in UML 2.0 that makes

the system completely clear to understand. The second point is the requirement of reliability,

taking a considerable attention in the testing process, so the system is examined against all

possible failures. This aspect is described in the section Results, so the future administrator of

the system knows contingency methods against some of the crashes that may occur.

The last point resides in the flexibility. This project aims to have a flexible and scalable system;

therefore, it provides the tools to adapt it to distinct requirements, making it possible to adjust it

to the latest technologies and giving the plausibility to use it for any purpose different than Lego

Duplo cars as long as it is build using Lego Duplo bricks.

Hypothesis

It is possible to design and develop a 3D web application for the customization of predefined

Lego Duplo cars. Additionally, it is plausible to implement it inside an already operating

Industry 4.0 system

Objective

To design and develop a 3D web application for the customization of predefined Lego Duplo

cars, and to implement it inside an already operating Industry 4.0 system.

Requirements

1. To explore different platforms for the development of portable, scalable and robust

applications.

2. To create an application that can receive the template of any Lego Duplo car template as an

input parameter and provide the tools for customizing it and transmit the modifications back

to the sender.

Introduction

 5

3. To develop an intermediate program that interprets the data from the database where all the

templates are stored and translate this data into a standard format understandable by the

Viewer (JSON).

4. To adapt both programs inside an OpenCart plugin, so that they can be integrated into the

running Industry 4.0 platform.

5. To provide all the documentation for the installation and maintenance of the system.

Methodology

Methodology

The adopted methodology on the development of the software was the “Incremental Process

Model". The important on choosing a specific process model is because “it provides stability,

control, and organization to an activity that can, if left uncontrolled, become quite chaotic [5]”.

According to R. Pressman [5]:

“…when an incremental model is used, the first increment is often a core product.

That is, basic requirements are addressed, but many supplementary features (some

known, others unknown) remain undelivered. The core product is used by the

customer (or undergoes detailed evaluation). As a result of use and/ or evaluation, a

plan is developed for the next increment. The plan addresses the modification of the

core product to better meet the needs of the customer and the delivery of additional

features and functionality. This process is repeated following the delivery of each

increment, until the complete product is produced… [5]”.

The incremental model applies linear sequences in a staggered fashion as calendar time

progresses. Each linear sequence produces deliverable “increments” of the software [6]. Figure

1 presents an example of this process model in a graph of project calendar time against the

software functionality and features.

The main advantage in this process model is that all the features, functionalities and even the

scope of the system can be refined and adapted to the changes in the other systems. Regarding

the quality of the software, the possibility of testing the software in each iteration of

development reduces the number of bugs considerably and prevents the appearance of

significant errors that can take most of the developing time.

Methodology

 7

Figure 1 Incremental Process Model, calendar time progress (Retrieved from R. Pressman [5]

Requirements Specification

Hardware Requirements

The requirements in terms of hardware to run the 3D Viewer consist in any computer with a

shader-capable GPU. The needed peripherals can be either a multi-touch-screen or a screen with

a mouse for the interaction. The system is also optimized to work on any tablet with at least 512

MB of RAM.

Software Requirements

The Viewer is designed to be used on web browsers. Any web browser capable of running

WebGL 2.0 is able to display the system and basically any operative system can be used as well.

Software Used

OpenCart

"OpenCart is an open source PHP-based online shopping cart system. A robust e-

commerce solution for Internet merchants with the ability to create their own online

business and participate in e-commerce at a minimal cost. OpenCart is designed

feature rich, easy to use, search engine friendly and with a visually appealing

interface [11]".

Methodology

This e-commerce platform provides several capabilities both for the user and for the

administrator and it grants a simple store setup, performance and usability, since it uses AJAX

technology in order to reduce load time. Also, its admin panel is simple to use but also provides

the possibility to use numerous features to increase usability for clients: one-page checkout,

smart site structure that simplifies shop navigation or handy search [12].

Furthermore, it is possible to customize OpenCart through a variety of software, modules, add-

ons and plug-ins available nowadays [13]. One of the main features of these add-ons is that the

e-commerce solution lets any user create personalized plugins, based on the requirements that

the application faces.

This previous feature is done via the OpenCart modification system which allows store owners

to extend and edit the system functionality without directly modifying core files which can be

translated in hard-to-debug errors. The modification system works with XML modification files

formatted in a specific way. These XML modification files give information to the system about

which file should be changed, which code should be changed and what changes are to be

performed on this code [14].

Apart from this XML modification file, it is possible to include an upload folder containing any

amount of data necessary to make the add-on work; it is installed by compressing everything in

a “.zip” folder with a “.ocmod.zip” extension [14].

Finally, the modification can be disabled or deleted from OpenCart in the "Modifications Panel",

reversing all changes and thus the operation can be restored without any consequences.

OpenGL and WebGL

To describe what WebGL is, it is relevant to define another concept first. OpenGL is the premier

environment for developing portable, interactive 2D and 3D graphics applications [15];

according to M. Woo and O. A. R. Board [16], it is essentially a software interface to graphics

software.

“OpenGL fosters innovation and speeds application development by incorporating

a broad set of rendering, texture mapping, special effects, and other powerful

visualization functions. Developers can leverage the power of OpenGL across all

Methodology

 9

popular desktop and workstation platforms, ensuring wide application deployment

[15].”

One of the main advantages of using OpenGL for displaying graphics is that it is designed as a

streamlined, hardware-independent interface to be implemented on many different hardware

platforms [16].

Now, speaking about WebGL, according to its developer group Kronos, is almost the same as

OpenGL, but for the web. The original description given by them is as follows:

“WebGL is a cross-platform, royalty-free web standard for a low-level 3D graphics

API based on OpenGL ES, exposed to ECMAScript via the HTML5 Canvas

element. Developers familiar with OpenGL ES 2.0 will recognize WebGL as a

Shader-based API using GLSL, with constructs that are semantically similar to those

of the underlying OpenGL ES API. It stays very close to the OpenGL ES

specification, with some concessions made for what developers expect out of

memory-managed languages such as JavaScript. WebGL 1.0 exposes the OpenGL

ES 2.0 feature set; WebGL 2.0 exposes the OpenGL ES 3.0 API. WebGL brings

plugin-free 3D to the web, implemented right into the browser. Major browser

vendors Apple (Safari), Google (Chrome), Microsoft (Edge), and Mozilla (Firefox)

are members of the WebGL Working Group [17]”.

How the previous definition can be summarized is that WebGL provides the same features as

OpenGL, such as a cross-platform system that additionally is used in web browsers, which

makes it even more accessible and portable.

Another highlight in using it according to T. Parisi [18], is that the developers can harness the

full power of the computer's graphics rendering hardware using only JavaScript, decreasing the

learning curve for new users with this approach.

Finally, the central aspect that should be highlighted is the way the coordinates are structured.

The drawing takes place in a 3D coordinate system, including the depth [18]; therefore, it

enables the user to locate 3D objects with different perspective views, all inside a canvas

element.

Methodology

PlayCanvas

PlayCanvas is a popular 3D WebGL Game Engine [19] that has the following characteristics

according to Michael Larabel [20]:

“The PlayCanvas Engine is a JavaScript library for building video games and

includes graphics, physics, animation, audio engine, input device support

(gamepads included), and an entity-component system. The WebGL-based graphics

with this engine supports model loading, per-pixel lighting, shadow mapping, and

post effects.”

All the previous features and some others are summarized in the GitHub project [21],

which also includes a full integration with 3D rigid-body physics engine and built-in

components: model, sound, animation, camera, collision, light, rigidbody, script,

particlesystem and different input peripherals like mouse, keyboard, touchpad, gamepad

and virtual reality options are available. [21].

StarUML

StarUML is a sophisticated software modeler, and according to the web page "Methods &

Tools":

"StarUML is an open source software modeling tool that supports UML (Unified

Modeling Language). It is based on UML version 1.4, provides eleven different

types of diagrams, and it accepts UML 2.0 notation. It actively supports the MDA

(Model Driven Architecture) approach by supporting the UML profile concept and

allowing to generate code for multiple languages [22]."

Among the different characteristics it provides, StarUML supports major programming

languages including Java, C#, and C++. You can generate source codes from your models or

build a model from source code by reverse engineering. It also has the option to publish HTML

Docs that can be viewed with most of the web browsers. All this previous information was

retrieved from the official web page [23].

Autodesk FBX® 2013.3 Converter

The type of file that PlayCanvas requires for the CAD models is the “adaptable file format for

3D animation software” Autodesk FBX® which is a “3D asset exchange format that facilitates

Methodology

 11

higher-fidelity data exchange between 3ds Max, Maya, MotionBuilder, Mudbox and other

proprietary and third-party software [24].”

However, most CAD software like SolidWorks do not provide an export tool for this format;

therefore, it was needed a software that converts a CAD file to this format. This software is

Autodesk FBX® 2013.3 Converter that according to Autodesk:

“Transfer files from one file format to another quickly and easily with the FBX

Converter. This utility enables you to convert OBJ, DXF™, DAE, and 3DS files to

or from multiple versions of the FBX format. New tools are now available with the

FBX Converter 2012.1. You can view FBX animation files in real time with the

FBX Viewer, explore and compare FBX file contents with the FBX Explorer, and

manage animation takes with the FBX Take Manager [25].”

System Analysis

The implementation of the 3D Viewer as an OpenCart plugin divides itself into 4 systems, each

one in charge of a specific task. The use case model presented in Figure 2 shows the functionality

of the whole application and how the interaction among the subsystems works. System 1

corresponds to the implementation that was already running with the e-commerce platform

OpenCart for the customization of the cars; in this case, this modification to the previous

implementation intends to solve the requirement 4 in Section Requirements, and the description

of the cases for this system is shown in Table 1.

The system 2 refers to the requirement 3 in Section Requirements, and is the primary

communication among all the systems; just as before, the description of the cases is detailed in

Table 2.

Subsequent, system 3 corresponds to the Requirement 2 in Section Requirements. This system

is the one in charge of the primary functionality of this thesis; it provides the ability to modify

a Lego Duplo car in a 3D environment. The description of the cases of this system is located in

Table 3.

Finally, system 4 is just a vague representation of the “IoT Adapter” that was already operating.

The only use case shown here is the one that was taken into functionality for the operation.

However, this system provides much more functionalities, and here it is important to establish

Methodology

shared communication protocols and common rules for the notation of the items. The

description of this particular case is in Table 4.

Figure 2 General Use Case for the system based on the Requirements

Methodology

 13

Use Case Description

View Products View all the products (Lego Duplo car templates).

Select a Car Choose one of the previous products and open it for customization

before the purchasing process.

Customize Car The process of selecting the desired elements on the car, e.g. part

colors or additional equipment. This process is done by the activation

of radio buttons.

Place Order Once a product is configured, the system creates an order with the

specifications.

Login The user can login to add the order to his record. This process is

optional.

Update Radio

Button Values

When the changes are made on the 3D Viewer, the system

communicates with OpenCart and update the values of the radio

buttons (they are hidden), so it is possible to place an order.

Table 1 Use Case Description for System 1

Use Case Description

Translate Radio

Button Values

The system gets the values of the active bricks and assigns them as

the radio button value in OpenCart.

Receives Product in

Use

When a car product is selected, it gets the information of the ID of the

product, so that the template can be generated.

Generates

Configuration

JSON

Using the ID of the product, the system looks into the

open_cart_actions table of the database and generates a JSON that

serves as an input for the Viewer to display the product in use.

Table 2 Use Case Description for System 2

Methodology

Use Case Description

Receives JSON

Template

The system receives the configuration template from System 2 and

uses it to display the car.

Show Lego Duplo

Car

Shows the basic template of the car in use, so that the user can

customize it.

Interact with 3D

Viewer

This case refers to the physical interaction of the user with the 3D

Viewer. It can visualize an object and change the configuration of the

car, using either a touchscreen or a mouse.

Table 3 Use Case Description for System 3

Use Case Description

Create

opencart_actions

When a new template is created, the administrator creates the

building instructions for the specific template. In System 2 this is

used to generate the configuration JSON.

Table 4 Use Case Description for System 4

System Design and Development

As described in the previous section, the whole customization program divides itself into four

systems. In this segment, there is a description of the development and operation of each of

them.

For future reference in this subsection, when some text is contained inside quotation marks it

means is either a path, an extension, a module name, the text inside a button, or the name of a

file (e.g., “/3DViewe.ocmod.zip”) and if the text is formatted with italics is referring either an

extract of the code (e.g., function()) or the name of a variable.

Methodology

 15

System 1 - OpenCart

As mentioned in Chapter 2, the e-commerce platform OpenCart is used to handle the orders

from the users. Despite the features of this program, the standard customization for a product is

based on a static image of the product plus some radio buttons to add or take away components,

in this case for a Lego Duplo car as seen in Figure 3. This kind of customization presents several

limitations, primarily because the customer is not able to perceive the final product.

Additionally, to get a basic idea on the different perspectives of the product, it is necessary to

add many images to present views from every angle, making it tedious to the administrator each

time a new stock is added.

Figure 3 Common implementation of OpenCart

To enhance the action of selecting the desired elements on the order, a modification running as

a plugin is created to alter the interaction with the user.

One of the main advantages in OpenCart is that instead of letting the user alter the source code

of the program, it allows creating a .xml file with all the changes to be made. This point presents

many features especially in the development process, but mainly when the administrator

requires disabling a specific plugin.

Methodology

To install the created modification on the admin panel of OpenCart, there is a section “Extension

Installer”, where the “3DViewer.ocmod.zip” is uploaded. This “.zip” file contains the

configuration files to add the 3D Viewer as a modification, as described in Figure 4.

Figure 4 Content of the folder “3DViewer.ocmod”

The only relevant file for "System 1 - OpenCart" is "install.xml". Inside, there are all the

modifications to execute to the source code of OpenCart. To do that it describes first the path of

a specific file, for example:

<file path="catalog/view/theme/default/template/product/product.tpl">

Then, it defines an operation to do to the file, for example:

<search> <![CDATA[<?php echo $content_top; ?>]]></search>

With the preceding operation it is looking inside the code for the line or lines that contains

<?php echo $content_top; ?>. After it finds the parameters, it describes a detailed action to do,

in this case:

<add position="replace"><![CDATA[

<?php

if (strpos($content_top, '<h2>3DViewer</h2>'))

$hide_pc=FALSE;

else

echo $content_top;

?>

]]></add>

Methodology

 17

With the previous lines it replaces all the information contained on the <search> tag to the lines

on the <add> tag. In this case it will look for the variable $content_top and if its value contains

the text '<h2>3DViewer</h2>' it will make the variable $hide_pc=FALSE. By means of this,

it displays the 3D Plugin when the value of $hide_pc is not true. There are some further lines of

code to complete the operation of modifying the basic layout of a product. Everything is done

in the file install.xml in the root folder of the plugin.

Once all the alterations to the code are detailed and the modification is installed, there are a

couple more of steps in order to have the Viewer in operation as a plugin for OpenCart; since,

as mentioned before, the 3D Viewer is only displayed when the legend 3DViewer is printed on

top of the screen. First in the admin panel in OpenCart, in the path

“Extensions/Home/Extensions”, in the dropdown menu “Choose the extension type”, there is

the option “Modules” where is possible to install the Module “HTML Content” by clicking on

install. See Figure 5.

Figure 5 Install "HTML Content" Extension

Then, when clicked in “Edit”, it is possible to write the text ‘3D Viewer’ in the “Module Name”

and “Heading Title” for every language, like in Figure 6. This text is in charge of letting the

OpenCart modification know which product has enabled the 3D View.

Methodology

Figure 6 Configuration of HTML Module

After the module is configured, it is possible to create a new layout that further is associated to

the 3D Viewer. To do this, in the section “Layouts”, by pressing in “Add New” on the top right

side of the screen, the “Layout Name” “3DViewer” is typed and configured for every content

(left, top, right and bottom) in the dropdown menu the option “3DViewer”, similar to Figure 7.

Figure 7 Configuration of the Layout.

Straightaway, the plugin is correctly configured and the layout is prepared to be related to any

product. The next step is to override this layout to any Lego Duplo car to enable the 3D

Visualization. In the “Product Configuration”, on the tab “Design”, there is the option “Layout

Override”, where by selecting the option “3DViewer” the 3D visualization is activated as shown

in Figure 8. This layout ensures that now the customization of a product looks similar to Figure

9.

Methodology

 19

Figure 8 Enabling the Plugin to a certain Product

Figure 9 Implementation of OpenCart with the Plugin enabled

Now, the user is able to rotate, zoom in, zoom out, add or delete components as well as change

the color of any piece by merely clicking on it and selecting from one of the available colors,

getting an immediate perspective of the Lego Duplo car.

Subsequently, when the user makes all the configurations and is satisfied with the product, it is

only necessary to press the "Add to Cart" button and the system will process the order and add

it to the “Shopping Cart”.

System 2 - Translator

With the previous configurations, OpenCart shows any product to the Viewer where the Layout

“3DViewer” is enabled; however, it is necessary to send the template definition of the Product

in use to the Viewer. This system is the one in charge of translating from “System 4 - IoT

Adapter” where the administrator properly defines each template in the database under the table

opencart_actions, to “System 3 - Viewer”, where it generates the input JSON that is described

in Section System 3 - Viewer.

The “IoT Adapter” provides a REST Server with some queries for specific purposes. In this

case, by making a request to “/api/oc_actions/<product_id>”, it is possible to get a JSON

Methodology

container with all the parameters for the template of a car. The translator reads this JSON

container and transforms it into another JSON container that is more standard for the viewer,

bringing only the necessary information to display something built with Lego Duplo bricks. The

actions to achieve this translation and to provide interaction among the Viewer, the IoT Adapter,

and OpenCart are described in the Sequence Diagram on Figure 10 Sequence Diagram System

2 - Translator. It is important to clarify that all the functions mentioned in this diagram are

contained in the Script “translator.js”, previously mentioned in Figure 4 Content of the folder

“3DViewer.ocmod”. The last point to clarify is that it is expected, that both the OpenCart

installation and the REST Server are on the same server, consequently sharing the same IP

Address. When this is not the case, it is essential to change the variable api from its default value

‘/api/oc_actions/’ to a value that includes the IP Address and does not refer only to the root

directory of the server.

Methodology

 21

Figure 10 Sequence Diagram System 2 - Translator

The previous sequence diagram on Figure 10 presents the normal flow of information in this

translator, nevertheless it is crucial to clear some things out to make it more comprehensible.

First, the user from OpenCart, selects a product on the screen that looks like Figure 11. This

opens the path “/product/product”, and in consequence, the “Even Listener” that is initialized in

the “translator.js” triggers (sequence 1), showing the iframe (sequence 2), corroborating whether

the visualizer was enabled or not.

Methodology

The function translate() (sequence 3) is the one in charge of making the request to the REST

Server (Sequences 4-8). In Sequence 9, receives an answer with a JSON container including the

template definition, similar to the one in Figure 12. This JSON container is an example of the

response for the product “roadster” with the id = 3.

By executing some algorithms, it transforms the information into another JSON container that

is more understandable for the Viewer. An example of this JSON container is shown in Figure

22.

Figure 11 Products List

Figure 12 Response by executing in the REST Server /api/oc_actions/3

Methodology

 23

Once the new JSON is generated, the script sends an asynchronous message to the Viewer

(sequence 10) using the function:

iframe.contentWindow.postMessage(send_json, url);

Because the type of communication for this case is asynchronous, it is not possible to get a direct

handshake of the systems; therefore, the way to bear out that the message was received by the

Viewer, is by sending another asynchronous message (sequence 11) with the value true that

eventually is received by the script and stored under the variable data_received.

To solve this problem of working asynchronously while the loading screen is displayed, just as

depicted in Figure 13, the script is sending a message containing the JSON (sequence 10) every

5 seconds until the variable data_received changes its value to true or it reaches the timeout that

is 30 seconds. After that period, most likely there is an error with the communication, and in

consequence, the system displays an error message like in Figure 14. Another reason for this to

happen is when there is not a definition of the template in the database, or as mentioned before,

the REST API Server IP is in a different server as OpenCart.

Figure 13 Loading Screen

Figure 14 Error: Timeout

Methodology

If the message is never shown and the Loading Screen gets to 100% and then is disabled, it

means that the communication among all systems was established correctly and is possible to

start with the customization. Each time the user makes a modification to the car, e.g. he modifies

the color of a piece, it deletes a brick or any other alteration, the Viewer sends a JSON container

with the values of the radio buttons that should be activated to the translator, similar to:

{active_bricks: [{value: 14}, {value: 43}, {value: 12}]}

The previous JSON container, includes some random values to exemplify. With this

information, the script looks into the values of every radio button and if it matches the criteria

it turns the checked property to true. This process is similar as if the user would manually click

on the radio buttons and makes possible to update the changes when the “Add to Cart” button

is pressed.

System 3 - Viewer

This system is the one in charge of displaying a Lego Duplo car, or actually anything that is

built using Lego Duplo bricks. The entire Viewer was programmed using the 3D game-engine

PlayCanvas; hence, the programming language is JavaScript (JS). Since JS is an object-oriented

language, it is always crucial to illustrate the behavior of the classes to have a better perception

of how a system works. PlayCanvas provides some extra classes that makes it more manageable

for the developer to use a 3D environment; however, to understand better the purpose,

distribution, and hierarchy of the classes it is relevant to explain some basic concepts about this

development platform.

The first concept is how the objects are created. In Figure 15 on the left side of the screen, there

are the so-called “Entities”. These entities refer to the physical objects with whom is possible to

interact. An example of this is the lights, a Lego Duplo brick or a button. These objects have a

set of attributes that can be modified via code, and they are organized using a hierarchy setup,

all of them having a unique parent, but in some cases one or several children. Consequently,

each physical object is represented as an instance of a Class with the same name, in Figure 17

there is the Class Diagram for all the entities of the system. This diagram does not take into

consideration the rest of the Classes that the system has.

To modify the properties of the entities, to change their relationship, to duplicate or delete them

or to execute any other function that involves altering its attributes, each entity can contain any

Methodology

 25

amount of scripts attached to it. This way of assigning scripts is exhibited in Figure 15 on the

right side of the screen, where some of the associated scripts for the entity Root are shown.

Every script is interpreted as a class, and it is instanced only one time when the program is

started or when the entity is cloned.

As it can be observed in Figure 17, most of the classes contain attributes related to other classes,

e.g., The class Root has the attribute configureCar with the data type ConfigureCar. These kinds

of variables have the purpose of simplifying the usage of the objects, keeping the unique instance

of each class stored in them.

Therefore, every script is related to at least one entity, and each of them can interact with any

other. Figure 18, shows a Class Diagram that represents the relations among the scripts and

entities of the system.

To have a better comprehension of the purpose of each script, a particular type of class

documentation was created, similar to the Oracle’s Javadoc1. Every function and variable in the

code has the same structure for the comments, like the ones in Figure 16. This arrangement

facilitates the comprehension of the purpose of each method. This style of comments also helps

in the way the documentation is created, in Annexure 3 there is an example of the report for the

Class ConfigureCar inside the package CarConfiguration. The packages are just a reference or

a way to group some classes that have similar purposes, e.g., providing event listeners to the

screen. This documentation is available for the future developers in an HTML format, so when

they give maintenance or an upgrade to the code, it is entirely clear and accessible to modify.

1 http://www.oracle.com/technetwork/articles/java/index-137868.html

Methodology

Figure 15 PlayCanvas Development Framework

Figure 16 Comments on a function

Entities

Associated Scripts

Methodology

 27

Figure 17 Class Diagram: Entities

Methodology

Figure 18 Class Diagram: Entities-Scripts Relations

Methodology

 29

Something important to clarify in here is how an entity is related to a 3D model. To start with,

every Lego Duplo part is represented as an entity and consequently as an object (e.g., 2x2x2,

2x4x4-petroltank) and every one of them contains a child named Model. This child holds an

element of the type pc.ModelComponent like the one in Figure 19.

To upload a 3D model as an asset, first, a CAD file normally with the ".obj" extension has to be

converted to an ".fbx" file using the Autodesk FBX® Converter software previously described.

Then it can be uploaded to PlayCanvas and is going to be automatically converted to a JSON

file. Finally, this JSON file is the one that can be associated with the pc.ModelComponent of

each piece.

The behavior of all the entities that are children of the Optional Bricks List and Colors List is

similar, but instead of having a pc.ModelComponent related to their child, they have a

pc.ElementComponent associated directly with the entity and this component contains a static

image.

One issue that was faced when developing the software is that the asset model and the asset

image were not possible to change them via code. Therefore, instead of having a general entity

for a brick or a color, the use of an entity per type of piece or per variety of color was necessary.

In the Class Diagram in Figure 18 the child of BricksList is an object named Brick, for

OptionalBricksList is OptionalBrick and for ColorsList is Color, this was done to simplify the

diagram but this manage of entities, in fact, is a representation of all the possible bricks or colors.

These generalizations of the specific bricks and colors objects are represented as an aggregation

relationship in the Class Diagram in Figure 18.

Figure 19 pc.ModelComponent for the child Model of the entity 2x2x2

Methodology

As it can be seen in the previous Class Diagrams in Figure 17 and Figure 18, the system has

around 20 scripts and 105 entities, all associated with other classes. Despite the fact that in the

Class Diagram in Figure 18 the relations are shown, this diagram exhibits only the connections

statically, making difficult to follow the path of the shared information or to know which

methods were used.

To simplify the previous dilemma, the system is split into two subsystems that go along with

the natural process of interaction with the program.

Subsystem 3.1

Figure 2 shows three cases for the Viewer. The Subsystem 3.1 englobes the case “Receives

JSON Template” and “Show Lego Duplo Car”. The reason to combine them is that each time

the Viewer is opened; these both actions are executed only once. Figure 20 presents a vague

representation of the trail of operations.

Every time the Viewer is opened, it waits until a new message is received. When this happens

and if the message is correct, it disables the loading screen, shows the car, habilitates the buttons

and finally sends back a confirmation to the window that opened it.

The flow of activities for this particular interaction is displayed in Figure 20. However, it does

not explain in detail how the system’s code is structured. For this purpose, the Sequence

Diagrams are useful, because they include the exact classes, entities, functions, and parameters

used in the code. Figure 21 corresponds to the same functionality as the Activity Diagram in

Figure 20, but in a Sequence Diagram.

Methodology

 31

Figure 20 Activity Diagram: Subsystem 3.1

Methodology

Figure 21 Sequence Diagram: Subsystem 3.1

Sequence diagrams can be too complex in the design, so that instead of making the system more

comprehensive, they just confuse more. Besides, some of the sub-sequences are repeated many

times, and that is the reason why in UML 2.0 the reference to sub-sequence diagrams is possible.

Figure 21 reduces some procedures into three sub-diagrams instead of a complex and big one.

The functionalities of each sub-sequence is described in this section.

The first two actions in the Activity Diagram in Figure 20 are to listen to incoming messages

until a new message is received.

To activate this listener, the following function is called inside the method

Communication.prototype.postInitialize on the Script Communication.js:

window.addEventListener("message", function (event) {}

Inside this message, the enclosed data is only a JSON container, similar to the one in Figure 22.

To send this message, the type of communication is via the JavaScript function

window.postMessage(). The JSON container shown in the example corresponds to a Lego Duplo

car of the type “Roadster”.

Methodology

 33

Figure 22 Configuration JSON container for the “Roadster” model

The basic structure of the configuration JSON container is an object with two elements. The

first component is the variable json_return_type (line 2 in Figure 22). This variable informs the

Viewer what kind of information it requires to receive as a response each time a change is made

on the Lego Duplo car. The data type is an integer with the possible values:

0. Do not send anything back (Demo mode).

Methodology

1. Minified JSON container: This only returns the values of the radio buttons that are

activated in the configuration (ocvalue), so that they can be activated in the HTML

page; consequently, the configuration can be added to the shopping cart.

2. Detailed configuration JSON container: Returns all the parameters of the configured

bricks.

3. Prints in the console the Minified JSON container.

4. Prints in the console the Detailed configuration JSON container.

The second element is an array called elements (line 3 in Figure 1). Here all the pieces are

separated into four items depending on the possibility to edit, delete or configure them. It is

essential that the JSON always contains the four elements, even if they are empty, to prevent

the system from crashing. These items are:

• chassis (line 4 in Figure 22): This element contains an object array with the definition

of all the possible options for the chassis. Each different chassis should be described as

a single element with all the properties that are going to be detailed later. If this array is

empty, the Viewer won't show a chassis, but the rest of the bricks will be displayed.

• fixed (line 28 in Figure 22): This element contains an object array with the definition of

all the bricks that are “fixed”. This means that the color cannot be changed and the item

cannot be deleted from the Lego Duplo car. When the Viewer is started, all the bricks

defined here will be shown in the car.

• customizable (line 40 in Figure 22): This element contains an object array with all the

bricks that are customizable. That means, that it is possible to change their appearance,

but they cannot be deleted from the car. When the Viewer is started, all the bricks defined

here with a state with a value multiple of 10 will be shown in the car (e.g., 20, 30, 40).

This is used to prevent the same brick to be displayed twice with different colors.

• optional (line 64 in Figure 22): This element contains an object array with all the bricks

that are optional. That means that their appearance can be changed and they also can be

deleted from the car. When the Viewer is started and if this array is not empty, the “Add”

button will be shown on the right side of the screen, and when it is pressed, it let the user

to add any of the bricks defined in this container.

Methodology

 35

Once each element is created, the next step is to fill them with the information of the bricks.

Each brick contains the same properties, like the ones described below.

• color: This property contains a string with the name of the color to be displayed. The

name of the color has to be the same as any color described in Table 1 Available Colors.

If the name of the color is written incorrectly or it does not exist, the system will display

that brick with the default color black.

• brickname: Here it is referred to the type of brick. In Table 2 Available Bricks there is

a full list of the pieces that the system can display. The name must be the same as the

one in the column “Brick Name for Template Definition”.

• state: The state property is a number that associates the different color options for the

same brick. The description of this property is given more in detail in section 0.

• ocvalue: This number is the value that normally OpenCart uses to reference a radio

button for the customization of a product. If the Viewer is used in any different

implementation, this value can be a random quantity, but all the pieces must have a

different value.

• code: Unique identifier for a piece. It can be any string or a null value. The value inside

here does not affect the program; it is just a reference that can be used when the detailed

configuration JSON is used.

• x_coordinate: Translation of the brick in the x-axis. In section 0 there is a detailed

description of the coordinate system for this and the following axes.

• y_coordinate: Translation of the brick in the y-axis.

• z_coordinate: Translation of the brick in the z-axis.

• rotation_z: Rotation of the brick in the z-axis.

As seen in the Activity Diagram in Figure 20, after the message is received, it verifies if it has

the appropriate information; if so, it sends a confirmation message to the sender using the

function:

communicationObject.sender.source.postMessage(true,communicationObject.sender.origin);

This way, when the sender receives the confirmation message, it stops sending the message any

more. This type of acknowledgment is required since the type of communication is

asynchronous.

Methodology

The next step is to disable the loading screen and to visualize the car. This is done in the sub-

sequence: Visualize Car (Figure 23 Sequence Diagram: Visualize Car): Hereabouts, the Lego

Duplo car is displayed based on the input parameters, the program respectively executes two

sub-sequences: Set the chassis color (Figure 24 Sequence Diagram: Set Chassis Color) and

iteratively show and configure every Lego Duplo brick (Figure 25 Sequence Diagram: Add a

Brick). The last Sequence Diagram references Figure 26 Sequence Diagram: Set Brick Color.

Figure 23 Sequence Diagram: Visualize Car

Methodology

 37

Figure 24 Sequence Diagram: Set Chassis Color

Figure 25 Sequence Diagram: Add a Brick

Methodology

Figure 26 Sequence Diagram: Set Brick Color

After displaying the car, the system should show or hide the “Add” button (Figure 27 Sequence

Diagram: Show or Hide Add Button): This process, once it is invoked, checks if it is still

possible to add optional bricks, and when it is possible, it shows a button on the screen that when

pressed, displays the “Optional Bricks Picker” (where the user can select which brick to add).

This method is used many times in the system, therefore the necessity of having it as a sub-

sequence.

Methodology

 39

Figure 27 Sequence Diagram: Show or Hide Add Button

Finally, the system needs to send back confirmation by sending a JSON container (Figure 28

Sequence Diagram: Send JSON): When this sequence is called, depending on a particular

parameter configured in the message, it gives a JSON container with the relevant data of the

Lego Duplo car – such as the active bricks – back to the sender (the program that opened the

viewer).

Methodology

Figure 28 Sequence Diagram: Send JSON

Subsystem 3.2

This subsystem is in charge of the physical interaction with the Viewer; it detects a single touch

of the user (the customer) to any part of the screen. This process can be carried out either via a

mouse or a touch-screen. The methods called by both peripherals are the same. Hence, there is

no distinction in which one is used. The foremost difference between this subsystem and the

Methodology

 41

previous one resides in the fact that in this case there is not a unique flow of activities because

the user can interact with the system in the order he pleases.

This subsystem is represented in the case “Interact with 3D Viewer” in Figure 2;

notwithstanding, the case is too abstract, so it needs a broader description. Figure 29 displays a

sub-case diagram for this particular case, involving all the actions the Actor” (user) can

physically execute on the Viewer. Furthermore, Table 5 gives a more detailed description of

each use case.

Figure 29 Use Case Diagram: User Physical Interaction

Use Case Description

Press a Button Any of the buttons is pressed.

Play Centers the car on the screen, and it starts rotating it automatically.

Stop Stops the automatic rotation.

Check The brick that is selected (transparent) stops being selected, so the

optional colors and the rest of the buttons disappears.

Methodology

Add Shows the “Optional Bricks Picker”.

Delete Erases the selected brick from the car.

Press a Piece The user touches any of the components of the car.

Press a Brick The touched component is a Brick.

Press the Chassis The touched component is the chassis.

Press Optional

Bricks Picker

Adds the optional brick to the car, when the “Optional Bricks Picker”

is enabled.

Press Colors Picker Sets the color of the selected brick when the “Colors Picker” is

enabled.

Table 5 Description of the Use Case Diagram: User Physical Interaction

To have a better comprehension of each use case, a description of each of them is presented.

Press a Button

Buttons provide a straightforward control for specific actions. The system has in total five

buttons described next from top to bottom:

1. Play: Center the car on the screen, and it starts rotating the car automatically for a

better visualization (button always visible). #1 in Figure 30 and Figure 31.

2. Stop: Stop the automatic rotation (button always visible). #2 in Figure 30 and Figure

31.

3. Add: It lets the user add a brick that is optional. The button is hidden when there are

no bricks left to add. Otherwise when it is pressed, it displays the “Optional Bricks

Picker”, where the user can add a piece to the car. #3 in Figure 30, in Figure 31 it is

hidden because the only optional piece for this template was already in the car.

4. Check: This button will appear when any brick or the chassis is selected. When it is

pressed, the brick will stop being selected, so the “Colors Picker” and the “Delete

Button” disappear when it is enabled. #4 in Figure 31.

5. Delete: When a brick that is optional is selected, this button will appear and will let

the user erase the selected brick. #5 in Figure 31.

Methodology

 43

Figure 30 Viewer screen

Figure 31 Viewer screen, optional piece selected

Figure 32 Optional Bricks Picker on Screen

To execute any of the previous processes, thanks to the hierarchy management in PlayCanvas,

instead of providing event listeners and specific scripts for each button, this action is carried out

by the parent. The entity Buttons has assigned an element component, like the one in Figure 33

with the option Use Input enabled plus a script containing the event click listener. Both elements

in coordination perform the sequence that is described in Figure 34. The previous sequence

diagram uses the sub-sequence diagrams “Hide All” (Figure 35), “Send JSON” (Figure 28),

Methodology

“Show or Hide Add Button” (Figure 27), and the sub-sequence diagram “Hide All” uses the

sub-sequence diagram “Disable Selected Parts” (Figure 38) consequently.

The sequence “Hide All” basically hides all the buttons from the screen that cannot be used any

more, for example the one for deleting pieces or to check. Moreover, it hides either the “Color

Picker” or the “Optional Pieces Picker” and lastly, it returns any piece that was left as selected

(that looked transparent) to the original color. This last sequence is carried out by the sub-

sequence “Disable Selected Parts”. The sequences “Send JSON” and “Show or Hide Add

Button” were already described on section 0.

Figure 33 Element Component on Entity “Bricks”

Methodology

 45

Figure 34 Sequence Diagram: Press a Button

Methodology

Figure 35 Sequence Diagram: Hide All

Press a Piece

When the user selects any piece of the Lego Duplo car, the system uses a RayCast to identify

where exactly on the screen the touch was made. It casts a ray, from point origin, in a particular

direction, of a specified length, against all colliders in the scene2. Hence, it is necessary for each

piece to provide a collision element, as shown in Figure 36. The type of collision is Mesh, having

the same CAD element of the model as an asset, insuring that if the touch is in any part of a

piece, it can recognize which was the selected one.

Depending on the type of brick or of the chassis, the system carries out a series of procedures to

show the “Color Picker” on the left side of the screen (like the one in Figure 37). These methods

are described in the Sequence Diagram in Figure 39.

2 https://docs.unity3d.com/ScriptReference/Physics.Raycast.html

Methodology

 47

Figure 36 Collision and Model Element to a piece of the type 2x2x2

Figure 37 Color Picker on Screen

Methodology

Figure 38 Sequence Diagram: Disable Selected Parts

Methodology

 49

Figure 39 Sequence Diagram: Press a Piece

Methodology

Press Optional Bricks Picker

As previously mentioned, after the “Add” button is pressed, the “Optional Bricks Picker” is

displayed on the screen (Figure 32). This picker shows every piece contained in the optional

array of the input JSON container. To display the specific bricks, the system clones each element

from the entity OptionalBricksList to the entity OptionalBricks and this last entity is the one that

can be enabled to appear on the screen.

When a piece has more than two different color possibilities, but the coordinates and brick name

are the same, it is shown only one time in the picker. This new entity includes the script

“optionalBricksClick”, that, when it is instanced, creates an event click listener that

differentiates which new piece was pressed.

One of the features that the system provides is that if the new part is bigger than the previous

one or overlaps with any other(s), it deletes the existing bricks from the car.

This last process is done in Sequence 6 in Figure 44 Sequence Diagram: Press the Optional

Bricks Picker. The approach to finding out this overlapping is by iteratively assigning a volume

to every brick with the position in the space and making comparisons among them. The code

for this function is presented in Figure 41 and Figure 42, and is explained next.

Firstly, by using the brick name, it determines the width, length, and height of both bricks (the

brick to add and the existent brick). The name of every brick starts with the size measured by

the number of studs. It is in the format “widthxlengthxheight”, and it can include at the end the

attribute “-bow” when the brick has a fillet in one of its top edges, “-bows” when the fillet is in

both of them, or the name of a special attribute like in lines 21-26 in Table 2. Nevertheless, the

width and the length is switched when the rotation in the ‘z’ axis changes the orientation, for

example, for a rotation in the ‘z axis’ of an even number, the width, length and height are

exactly like in Figure 40; however, for an odd number the width and length are switched. The

values of these variables are assigned in lines 11-44 in Figure 41.

Methodology

 51

Figure 40 Stud dimensions

Secondly, the function assigns ranges or limits for both pieces in every axis. This assignment

contemplates the coordinates that are described in Sub-Section Coordinates System, meaning

that if one range is inside another, the pieces are overlapping. The procedure of calculating the

ranges can be seen in lines 46-59 in Figure 41.

Lastly, it checks if one range is inside another. To do that is a complex procedure involving

many logical operators. To determine that two pieces are colliding, there has to be an

overlapping in the three axes and then the function returns true. These operations are done in

lines 61-188 in Figure 42.

The procedure described before is done iteratively for every active brick in the car and every

time the function described before isOverlapping() returns true and the type of brick to be

deleted is of the type customizable, the sequences 8 and 9 in Figure 44 are executed to delete

the brick also from the array customizable and adding it to the array optional in the car template.

These two procedures are required in order to let the user add the brick again if it is needed.

Nevertheless, not minding if the brick is customizable or optional, it is deleted from the car so

that the new brick can fit in the position defined on the template.

Methodology

Figure 41 Function isOverlapping() part-1

Methodology

 53

Figure 42 Function isOverlapping() part-2

Press Colors Picker

This process is very similar to the previous one. The distinction is that it clones from the entity

ColorsList to Colors, and this last entity has a script "colorsClick" for the event click listener,

but the basic operation is the same. e.g., in Figure 43 at first, the car is displayed. The user clicks

on the chassis, making it transparent and showing the “Colors Picker”. Finally, the red color

Methodology

inside the “Colors Picker” is selected, changing the color of the chassis to red consequently.

This last process is described in the Sequence Diagram on Figure 45. Using also the following

sub-sequences:

Figure 24 Sequence Diagram: Set Chassis Color, Figure 26 Sequence Diagram: Set Brick Color,

and Figure 28 Sequence Diagram: Send JSON.

Figure 43 Sequence for changing the Chassis' Color

Methodology

 55

Figure 44 Sequence Diagram: Press the Optional Bricks Picker

Methodology

Figure 45 Sequence Diagram: Press the Colors Picker

Methodology

 57

System 4 - IoT Adapter

As mentioned in the previous sections, the administrator of the system is in charge of updating

the definition of both bricks and templates (Lego Duplo car), so that they are comprehensible

for the translator and subsequently for the Viewer. This data is stored in the database mes under

the tables: factory_itemgroup, factory_item and opencart_actions. The relationships of this

tables can be seen in Figure 46.

Figure 46 Extract of the Entity-Relation Diagram for the database "mes"

To edit the information in the database, the IoT Adapter presents a “Django Administration”

tool, that groups the information and allows changes to the data. To give the appropriate

description of a brick, each item must have the appropriate KEYWORDS definition; inside the

keywords field, two variables in a YAML format are contained. These variables are:

• webgl_brickname: This property determines which piece is displayed. There are 26

possibilities for this and is important that the written name coincides with any of the

brick names from the table in Annexure 5 in the column “Brick Name for Template

Definition”.

• webgl_color: Every piece in the catalog can be displayed with any of the 30 possibilities

for the color shown in Annexure 4. In the case of special pieces, like emergency lights,

engine, dumper, etc., the color can be changed as well, although some parts of the piece

have a default color already. The color name has to be the same as any from the column

“Color Name”; nevertheless, the name is not case sensitive.

Methodology

Figure 47 presents an example of the Django administration tool when editing the information

of a brick. In this case the brick is a “2x2x2 Lego Duplo (Row #2 in Table 2 Available Bricks)”

with the color “grey” (Row #15 in Table 1 Available Colors).

Figure 47 Keywords Configuration of a Brick

After every brick is configured with the correct keywords, every product (Lego Duplo car) has

to be added into the table opencart_action. In here, the important values are the state,

oc_product, oc_option and payload. Figure 48 gives an example of the values that the product

“Roadster” has. The values are further explained:

• state: The state property is a number that associates the different brick or color options

for the same position. All the chassis should have a value from 119, the rest of the pieces

have a value of a multiple of 10 starting with 20. There is no limit for the amount of

pieces, but the possibilities for each position is limited to 10 (e.g., 229).

• oc_product: This is the id for each product (Lego Duplo car) inside OpenCart. It is

important that the value in the database is exactly the same as the one in OpenCart since

this is the way the system associates which template to display. This value is commonly

displayed in the url of the product using the GET method, for example, the url for the

product “Roadster” is: http://localhost/OpenCart/index.php?route=product/product&path=2&product_id=3

thus, the id for this product is three.

• oc_option: This number is the value that OpenCart uses to reference a radio button to

every element that can be added or deleted from a car. In Annexure 7 there is a guide on

Methodology

 59

how to obtain this value. As a common rule, every piece always has a different value;

however, this number can be null, meaning that the piece is fixed.

• payload: This string contains the coordinates of a singular piece. The format is:

[{code}x_coordinate,y_coordinate,z_coordinate, rotation_z]

In the next section, an explanation for each coordinate is given.

Figure 48 Database example values for the product roadster in the table opencart_actions

Coordinates System

To simplify the localization of any brick in the space, the Viewer and the table opencart_action

use the same three-dimensional cartesian coordinate system; the origin 0 and the orientation of

the axes are shown in Figure 50. The center of a piece is shown in Figure 49; The value for the

coordinates indicates the number of units translated from this center point to any of the axes.

Figure 49 Center of a piece

Methodology

Figure 50 Three-dimensional Cartesian coordinate system and orientation of the axes

Figure 51 shows an example of how a piece can be located on the x-axis. This axis is the one

that moves along the chassis. Figure 51 a) illustrates the axis orientation for the top view of the

car. In the case of Figure 51 b) , the coordinate in the x-axis is 0 because the piece is located on

the origin of the chassis for this particular axis.

Figure 51 c) indicates a translation in this axis of -1. This case is not physically possible, since

the studs of both the chassis and the brick does not match; therefore, the administrator is the one

responsible for the correct alignment of the blocks; nevertheless, the system allows to virtually

place them in any part of the space. Finally, Figure 51 d) shows a 2x2x2 cube with an coordinate

of -2. As a general reference, to move any piece in the x-axis one stud, the number in the x-

position has to be incremented by 2.

Methodology

 61

Figure 51 Example of translation values on the x-axis

The localization of bricks in the y-axis is similar to the one for the x-axis. Figure 52 shows an

example of how a piece can be positioned on the y-axis. Figure 52 a) illustrates the axes

orientation for the top view of the car. Figure 52 b), describes a value for the y-axis of 0. In this

particular axis, 0 is the only value where a piece stays inside the chassis.

Figure 52 c) indicates a y-translation of -1. This translation is not physically possible since the

stud of both the chassis and the brick does not match and there is a collision between the brick

and the chassis bumper. Finally, Figure 52 d) shows a 2x2x2 cube with a y-coordinate of -2. As

a general reference, to move any piece in the y-axis one stud, just as in the x-axis, the number

in y_position has to be incremented by 2.

Methodology

Figure 52 Example of translation values on the y-axis

Last, the z-axis defines the translation in the vertical position. The value used for the location in

this axis is given by the height of the pieces. The chassis is the only one with a z-position value

of 0. Every brick located on the surface of the chassis has a value of 1, like the one shown in

Figure 53 b). Figure 53 c) has a z-position value of 3 since the brick in Figure 53 b) has a height

of 2. This new piece (the orange one) has an altitude of 1, that is the smallest possible height.

Consequently, for Figure 53 d), the value of the position in z is 4.

Methodology

 63

Figure 53 Example of translation values on the z-axis

Another property that it is included in the localization of the pieces is a rotation in the z-axis. In

here, the value is an integer from 0 to 4, that represents increments of 90 degrees. When the

rotation value is set to zero, if the part has a fillet in one of its edges, this roundness will be

oriented to the left side of the chassis (where 'x' is positive). The, each value increments the

rotation by 90 degrees going in a counter-clockwise orientation as shown in Figure 54 a). Figure

54 b) is a piece of the type 2x2x2-bow, and as previously mentioned, since the rotation in the z-

axis is 0, the fillet is pointing to the left. Figure 54 c) and Figure 54 d) have a rotation of 2 and

3 respectively.

Methodology

Figure 54 Example of rotation values on the z-axis

After the payload is formed using the three coordinates plus the rotation described before, the

system has enough information for the REST API Server, so when an action is consulted, the

data contained is compatible with the Viewer.

Results

 65

Results

In some projects the desired results are different to the actual results. In the previous section it

was described how is the system implemented and how it should work on a normal operation.

However, in order to validate that the expected results are correct, the planned testing can come

in handy.

Testing is crucial during the software development cycle because it does not only reduce

possible notorious errors; it also increases the performance of any system, allows lower

maintenance costs and improves the user experience. There are several methods to do testing.

One important strategy is the white-box, which permits to examine the internal structure of any

program, testing the program's logic [26].

To do the testing, several cases are proposed from the beginning, having the intention of making

a thorough inspection. The authors G. J. Myers, C. Sandler, and T. Badgett [26] present ten

principles for the planning of assessments, all of them of vital significance, e.g., Principle five

stipulates that "Test cases must be written for input conditions that are invalid and unexpected,

as well as for those that are valid and expected".

The previous principle intends finding conditions where the software is more likely to crash

because just as the author summarizes, a good test case is one that has a high probability of

detecting an undiscovered error [26].

This chapter presents six test cases, all of them consider the ten principles specified by G. J.

Myers, C. Sandler, and T. Badgett [26] and are carefully designed to test absolutely every

process of the software, both in communication among systems and just as a Viewer. At first,

they give a summary about the test or explain the intention of the test. Then the date and time

as well as the prerequisites to make the test possible to operate are elaborated.

Moreover, the test procedure defines with high accuracy all the steps to execute. In the section

“Expected Results”, the expected output is given once the steps are performed. Finally, the last

section offers remarks, comments, and pieces of advice for future work, in case some error was

not handled.

Results

Test Case 1

Summary Testing the visualization of every car product.

Date and Time of

the test(s)

First test: January 26th, 2018. 18:54 hrs.

Second test: January 29th, 2018. 14:25 hrs.

Prerequisites 1. The Product (in OpenCart) has a defined action in the database

“mes” in the table opencart_action.

2. The IoT Adapter and the Web Server are running.

3. The OpenCart modification is installed.

4. The 3DViewer layout is properly configured.

5. Every product has the layout “3DViewer”.

Test Procedure

1. Select the language: English.

2. Open OpenCart.

3. Open the “Cars Selector”.

4. Iteratively select every product:

4.1. Roadster.

4.2. Sedan.

4.3. Station Wagon.

4.4. Truck.

5. Verify that the car is appropriately displayed.

6. Change the language to German.

7. Iteratively select every Product:

7.1. Sportwagen.

7.2. Kombi.

7.3. Limousine.

7.4. LKW.

8. Verify that the car is appropriately displayed.

9. Create a product (Car) in OpenCart.

10. Enable the layout 3DViewer for this product.

11. Do not add the template to the table opencart_action.

Results

 67

Test Procedure 12. Wait for the error message.

Expected Results 1. Each product, when English is enabled, is displayed correctly.

2. Each product, when German is enabled, is displayed correctly.

3. For the product that does not have a defined action in the

database, the page does not disable the loading screen and shows

an error message.

Actual Results 1. For English, every product was displayed correctly.

2. For German, every product was displayed correctly.

3. The page disabled the loading screen and never showed the error

message.

4. For the second test, the page kept the loading screen and never

showed the error message.

Remarks and

Future Work

1. When a product does not have an action associated with the

database, it is recommended to use the default layout instead the

3DViewer.

2. This wrong result was corrected and tested again; now when a

product does not have an action associated with the database, it

keeps the loading screen enabled and shows an error message.

Table 1 Test Case 1

Test Case 2

Summary Testing the correct association between each piece and the OC

Value.

Date and

Time of the

test

First test: January 26th, 2018. 17:05 hrs.

Second test: January 28th, 2018. 18:34 hrs.

Third test: January 29th, 2018. 13:52 hrs.

Fourth test: January 29th, 2018. 14:22 hrs.

Results

Prerequisites 1. Every product has a defined action in the database “mes” in the

table opencart_action.

2. The radio button value in OpenCart of every option has the same

value as the one in the column oc_option in the table

opencart_action in the database mes.

3. The IoT Adapter and the Web Server running.

Test

Procedure

1. Customize every product in any language with all the possibilities,

and for every customization possibility, add the car to the

“Shopping Cart”.

2. Verify that the car was successfully added.

3. For every time a product is added to the queue, open the “Shopping

Cart” and verify that the product name, the quantity and the options

are the correct ones.

Expected

Results

1. It is possible to customize every car and add it with the

modifications to the “Shopping Cart”.

2. Every time a modification is made in the Viewer, the changes can

be reflected in OpenCart.

3. When a product is added to the “Shopping Cart”, it displays with

text all the modifications and the extra pieces if they were added.

Actual Results 1. Every modification was added correctly to the “Shopping Cart”.

2. When the “V-Engine” was added to the “Station Wagon”, the

position was incorrect. The coordinates in the payload were

corrected and tested again. The result was still incorrect.

3. A mistake was found inside PlayCanvas, the engine was misaligned

so a correction was made.

4. The test was executed again with a successful output this time.

Results

 69

Remarks and

Future Work

1. It is crucial to do this test every time a product is created in order to

verify the correct association with the radio buttons values and the

proper definition of the coordinates.

2. When an item is removed from the car in the Viewer, it does not

update the changes in OpenCart. The reason is that if a radio button

is activated, it cannot be deactivated again.

3. If there is an option described inside an action, but in OpenCart it is

not activated, the system shows it anyway, like the “Petrol Tank”

for the product “Truck”. The solution is not including pieces in the

response JSON from the API if they are not available for the car.

Table 2 Test Case 2

Test Case 3

Summary Verifying that every brick and every color displays correctly.

Date and Time of

the test(s)

First test: January 27th, 2018. 20:00 hrs.

Second test: January 27th, 2018. 20:33 hrs.

Third test: January 27th, 2018. 20:52 hrs.

Fourth test: January 27th, 2018. 21:27 hrs.

Prerequisites 1. The Viewer is used in exhibition mode (the variable

“EXHIBITION_MODE” in the script “Main.js” is set to “true”.

2. The Viewer is connected neither to OpenCart nor the IoT

Adapter.

Test Procedure

1. Replace the content inside the asset 10790245

(input_json_example) to a new JSON that matches the following

requirements:

1.1. The value of the “json_return_type” is 4.

1.2. The array “chassis” is empty.

1.3. The array “fixed” contains every normal brick (Lines 1 –

20 in Table 2 Available Bricks). Every one of the previous

Results

Test Procedure bricks has a different color, and the value of its attribute

state is a multiple of 10.

1.4. The array “customizable” contains some extra random

pieces that in total have all the available colors in Table 1

Available Colors (every piece has to be added every time

for each color). The value of its attribute state is a multiple

of 10 for every different type of piece.

1.5. Every brick in points 1.2 and 1.3 has different coordinates

in the 3 axes and is not overlapping with any other piece.

1.6. The array “optional” is filled with all the pieces in Table 2

Available Bricks. The coordinates of this parts can overlap

with any other brick(s).

2. Run the application in any web browser with the console open

(Developer Tools).

3. Verify that every brick is displayed in the correct position and

with the right color.

4. Select one of the customizable pieces and change the color to

every possibility. Every time verify that the JSON that is printed

in the console is updating the changes.

5. Add all the optional bricks. Verify that all the pieces with whom

they are overlapping are deleted from the Product and the JSON

in the console.

Expected Results

1. Every piece is displayed correctly in the defined coordinates.

2. All the colors are shown correctly.

3. When a customizable piece is pressed, the “Colors Picker” shows

the correct options, and after selecting one color, the piece

updates its color to the new one.

4. When the button “Add” is pressed, the “Optional Bricks Picker”

is displayed with the correct options. After a piece is selected, it is

added to the product inside the specified coordinates. Then, if the

new piece is overlapping an existing brick, the old brick is erased

Results

 71

Expected Results from the car and from the JSON, because this last one contains

only the active bricks.

Actual Results

1. Every brick was displayed in the correct position except for the

2x3x1. There was a misalignment in PlayCanvas, but the error

was solved before testing again.

2. All the colors were shown correctly.

3. Every element of the color picker was displayed; however, the

“lightbrown” had the incorrect image and the “mediumblue” was

not working. Both errors were corrected and retested.

4. When detecting the overlapping, the system was working

incorrectly when the pieces were rotated, because there was a

mistake getting the range of the bricks. After some modifications,

this error was eliminated and after the last test, no further bugs

where encountered.

Remarks and

Future Work

1. For future work, it is necessary to have better collision

management for irregular bricks. So far it works fine when pieces

are overlapping; nonetheless, the special of pieces (e.g., ladder)

does not detect their surroundings completely, particularly in the

irregular borders.

Table 3 Test Case 3

Test Case 4

Summary Using the OpenCart implementation and the IoT Adapter in

different servers

Date and Time of

the test(s)

First test: January 28th, 2018. 17:35 hrs.

Second test: January 29th, 2018. 14:11 hrs.

Prerequisites

1. The OpenCart implementation is running on the WebServer.

Results

Prerequisites 2. The OpenCart modification is installed and the Layout

“3DViewer” is created and associated with a particular product

(e.g. Roadster)

Test Procedure

1. Change the location of The IoT Adapter (the one containing the

database) to a different server (with a different IP address) inside

the same LAN.

2. The variable “api” in the file “/3DPlugin/translator.js” has the

value “’/api/oc_action/’”. Change this value to

“’/<new_server_ip_address>/api/oc_action/’”.

3. Open any product that has the layout 3DViewer enabled.

4. Verify that the product is displayed.

5. Change the location of the IoT Adapter (the one containing the

database) to a different server (with a different IP address) but

outside the LAN.

6. Repeat steps 2-4.

7. Return the variable to its original value.

Expected Results The product is displayed even if they are in different servers and the

error message is not shown.

Actual Results The communication in both systems in different servers did not work.

Remarks and

Future Work

For both tests (inside and outside the LAN), it only works when the
REST API Server contains the header accepting connections from
other IP addresses, e.g., "Access-Control-Allow-Origin:
<opencart_impementation_ip_address>".

Table 4 Test Case 4

Test Case 5

Summary Interrupting the connection with the database

Date and Time of

the test(s)

Test: January 28th, 2018. 18:14 hrs.

Prerequisites 1. The OpenCart implementation and the IoT Adapter are running in

different servers.

Results

 73

Prerequisites 2. The OpenCart modification is installed and the Layout

“3DViewer” is created and associated to a particular product (e.g.

Roadster).

Test Procedure 1. Open any product that has the layout 3DViewer enabled.

2. Interrupt the connection with the IoT Adapter (database).

Expected Results

1. If there is no connection with the database, the system tries to

connect after 10, 15, 20 and 30 seconds. Each time it is not able to

connect it shows the error message in the console: “[Error] Error

loading after x seconds, the system will try to load again”. After

30 seconds, it shows the error message in the console and on the

screen: “The system could not load the template properly. Please

try again later or contact the administrator.”

2. The loading screen is never disabled.

Actual Results The system worked as expected.

Remarks and

Future Work

When the loading screen is not being disabled, a recommendation is

to open the console in the web browser to look for errors.

Table 5 Test Case 5

Test Case 6

Summary Using inexistent bricks, colors or an incorrect JSON format

Date and Time of

the test(s)

First test: January 28th, 2018. 18:56 hrs.

Second test: January 28th, 2018. 17:14 hrs.

Third test: January 28th, 2018. 19:29 hrs.

Fourth test: January 28th, 2018. 19:41 hrs.

Prerequisites

1. A product (in OpenCart) has a defined action in the database

“mes” in the table opencart_action.

2. The IoT Adapter and the Web Server are running.

3. The OpenCart modification is installed.

Results

 Prerequisites 4. The 3DVIewer layout is properly configured.

5. At least one product has the layout “3DViewer”.

Test Procedure

Test Procedure

1. Edit the “brickname” attribute in keywords in the database for a

particular brick that is contained in a car (e.g., LEGO-2x3x2

Lightblue) and change it to a non-existing piece (e.g., 2x6x2).

2. Open a car that contains that piece (e.g., Roadster).

3. Edit the “brickname” attribute in keywords in the database for a

particular special brick that is contained in a car (e.g., LEGO-

EmergencyLight Blue) and make an intentional typo mistake

(e.g., 2x1x2-emergancylight).

4. Open a car that contains that piece (e.g., Roadster) and press the

Add button.

5. Edit the “color” attribute in keywords in the database for a

particular brick that is contained in a car (e.g., LEGO-2x3x2

Lightblue) and change it to a non-existing color (e.g., silver).

6. Open a car that contains that piece (e.g., Roadster).

7. Edit the “color” attribute in keywords in the database for a

particular brick that is contained in a car (e.g., LEGO-2x3x2

Lightblue) and change it to a non-existing variation of a color

(e.g., dusty red).

8. Open a car that contains that piece (e.g., Roadster).

Expected Results

1. For points 1-2. If the piece does not exist, when the system is

trying to display the car, it shows an error message on the screen

and on the console, specifying which brick does not exist.

2. For points 3-4. If the special piece does not exist, the system

displays the car with no problems, but when the user presses the

Add button, it shows an error message in the screen and on the

console, specifying which brick does not exist.

3. For points 5-6, when a color does not exist, the system shows the

piece in the default color black.

Results

 75

Expected Results 4. For points 7-8, when a variation of color does not exist, it looks

for a color with a similar name (e.g., for “dusty red” it uses the

color “red”).

Actual Results

1. The error message was only printed in the web browser’s console.

2. When pressing the “Add” button, the system was crashing. After

a second modification, now when the color does not exist, it prints

the error: “The color: dusty red is not on the list of possible

colors. Instead, it will be displayed with the color: red. Please see

the documentation for a full list of all the color possibilities”.

3. The system displayed the brick with the default color; however,

there is no error message that informs the reason to the user. After

a modification, now when the color does not exist, it prints the

error: “The color: xxxxx is not on the list of possible colors.

Instead it will be displayed with the color: xxxxx. Please see the

documentation for a full list of all the color possibilities”.

4. The system displayed the brick with the similar color; however,

there is no error message that informs the reason to the user. As

point 3, now it prints an error.

Remarks and

Future Work

1. As a remark, it is important to always open the web browser’s

console when something is not working as expected, because

many errors are reported.

2. As a future work, the loading screen should be disabled only

when all the introduced bricks exist.

Conclusions

Conclusions

One critical part of this project was the testing. As it was mentioned before, one of the goals of

the thesis was to produce software that is not only reliable, but that also holds remarkably high

quality. To be able to ensure the previous statement, the Section 4. Test Cases has to be

reviewed.

After the execution of the six test cases, at least one error in five out of six cases was detected.

Aforementioned does not imply that the software was poorly designed, on the contrary, the

inspections were so meticulous that all errors that could happen for particular circumstances

have been detected. This allows to suppress all of them before the last release.

Moreover, two types of flaws were identified. One type of mistakes was the result of mistakes

in the code. The other type of mistakes was a result of misguides of the user when inputting

data. The first type entailed that some functions were revised and edited to prevent the errors

from happening and were tested repetitively until it was certain that the bug was eradicated.

The second type of bugs cannot be completely eliminated, since it cannot be assured better that

the user or even the administrator will not introduce incorrect data. Nevertheless, thanks to

identifying in which situations this could possibly happen, some algorithms were designed to

give feedback to the user when an error is encountered, always providing sufficient information

to understand the reason and how can it be reversed.

Another key aspect was to provide software that is not only understandable for a machine, but

is also comprehensive for humans; meaning that the functions and code involved is designed in

a certain way that is readable. This point was achieved firstly by the naming the variables and

functions. Instead of using just random characters or short and incomprehensible acronyms, all

the names are extensive and with a full relationship with their respective purpose.

Secondly, the class description is something to take into consideration when establishing that

the software design is comprehensible. Not only there is a full description of the purpose of

them, but there also is enough information of every single function with its respective

Conclusions

 77

parameters and return values, enabling that updates of the code are implemented entirely

intuitional.

Third and last for this point, the so-mentioned functions have another peculiarity. Every single

one of them is involved in at least one Sequence Diagram, so that it is not only possible to

assume what they do, but also how they communicate among each other, which is their

respective sequence and when exactly they are called with which information.

Another critical point that should be considered is the adoption of a methodology. By using the

incremental process model, the system adapted to the constantly changing requirements through

the development process. The first delivery and the last version, despite the fact that they both

were applications for the same purpose, in the end, the interfaces were completely different, and

it is possible to affirm that the last one is more attached to the user needs. Moreover, by testing

the code in each deployment iteration, several bugs were found and solved along the way, this

brought many benefits while executing the tests at the later stages of the project because the

number of bugs was considerably low.

The aspects just mentioned describe the software and its functions from the perspective of the

administrator and future developers. When looking at the software from the point of view of the

final user, the following points are to be mentioned: The Viewer provides an evident

smoothness when a person is using it. Since the first time it was opened by a third-person, the

conception of the behavior was natural and presented no challenges for the operation. Aforesaid

is translated as intuitivity because it is not only easy to use, it also increases the satisfaction of

the customer providing a better experience in the purchasing process.

Future Work

Future Work

The main challenge when further developing the software is to couple it better with mobile

devices. Further development of the software resides in the better coupling with mobile devices.

The software is fully optimized for multi-touch screens and portable devices such as

smartphones and tablets, providing different gestures for zooming and movement of the product;

however, there is the need to export it and adapt it in a native application. It is proven that this

increases the satisfaction of the user and can reduce the loading time.

Furthermore, the inclusion of even more customized products is unavoidable. So far it is based

on predefined templates, but it is undoubtedly scalable to present a complete customization

experience that enables users to create products from scratch by establishing some limitations

at first, but then providing more flexibility.

The last point of improvement comes in the use of specific entities for particular types of bricks.

If the further versions of PlayCanvas let the user to modify the model asset via code, all of the

specific entities can be eliminated and a generic entity can be used. Furthermore, the CAD model

can be received as a parameter inside the JSON container, with this alteration it could be

possible to support not only Lego Duplo bricks, but any CAD model.

References

 79

References

[1] Siemens, “Industrie 4.0 - The Fourth Industrial Revolution,” 2013.

[2] S. Wang, J. Wan, D. Li, and C. Zhang, “Implementing Smart Factory of Industrie 4.0:
An Outlook,” Int. J. Distrib. Sens. Networks, vol. 12, no. 1, p. 3159805, 2016.

[3] H. Kagermann, J. Helbig, A. Hellinger, and W. Wahlster, Recommendations for
Implementing the Strategic Initiative INDUSTRIE 4.0: Securing the Future of German
Manufacturing Industry ; Final Report of the Industrie 4.0 Working Group.
Forschungsunion, 2013.

[4] C. Stary and M. Neubauer, “Industrial Challenges,” in S-BPM in the Production Industry:
A Stakeholder Approach, M. Neubauer and C. Stary, Eds. Cham: Springer International
Publishing, 2017, pp. 7–25.

[5] B. Pressman, Roger; Maxim, Software Engineering. A practitioner’s approach, 8th
editio. New York: McGraw Hill, 2015.

[6] P. Mcdermid, J; Rook, “The Software Engineers Reference Book,” Software
Development Process Models, pp. 15–28, 1993.

[7] E. Hozdić, “Smart factory for industry 4.0: A review,” Int. J. Mod. Manuf. Technol., vol.
2, no. 1, pp. 2067–3604, 2015.

[8] F. Wortmann and K. Flüchter, “Internet of things. Technology and Value Added,” Bus.
Inf. Syst. Eng., vol. 57, no. 3, pp. 221–224, 2015.

[9] L. Atzori, A. Iera, and G. Morabito, “The internet of things: A survey,” Comput.
networks, vol. 54, no. 15, pp. 2787–2805, 2010.

[10] D. Giusto, “A. lera, G. Morabito, l. Atzori (Eds.) The Internet of Things.” Springer, 2010.

[11] “OpenCart - Business Shopping Cart Software.” [Online]. Available:
https://certifiedhosting.com/opencart-hosting/. [Accessed: 29-Jan-2018].

[12] “5 Benefits That Make OpenCart Rock.” [Online]. Available: https://www.shopping-
cart-migration.com/blog/46-opencart/12797-5-benefits-that-make-opencart-rock.
[Accessed: 29-Jan-2018].

[13] “What Is OpenCart? OpenCart Advantages | OpenCart Store Manager, Product Manager
for OpenCart.” [Online]. Available: https://www.opencartmanager.com/useful-
articles/general-information-on-opencart/what-is-opencart-opencart-advantages/.
[Accessed: 29-Jan-2018].

[14] “Modifications - OpenCart Documentation.” [Online]. Available:
http://docs.opencart.com/extension/modifications/. [Accessed: 29-Jan-2018].

[15] Khronos Group, “OpenGL Overview,” Opengl.Org, 2012. [Online]. Available:
https://www.opengl.org/about/. [Accessed: 29-Jan-2018].

References

[16] M. Woo and O. A. R. Board, OpenGL Programming Guide: The Official Guide to
Learning OpenGL, Version 1.2. Addison-Wesley, 1999.

[17] Khronos Group, “WebGL Overview - The Khronos Group Inc.” .

[18] T. Parisi, WebGL: Up and Running: Building 3D Graphics for the Web. O’Reilly Media,
2012.

[19] A. Mazur, C. Mills, and Ladybenko, “Building up a basic demo with PlayCanvas -
Game.” [Online]. Available: https://developer.mozilla.org/en-
US/docs/Games/Techniques/3D_on_the_web/Building_up_a_basic_demo_with_PlayC
anvas. [Accessed: 31-Jan-2018].

[20] Michael Larabel, “PlayCanvas Browser-Based Game Engine Open-Sourced - Phoronix.”
[Online]. Available:
https://www.phoronix.com/scan.php?page=news_item&px=MTcxMDA. [Accessed: 31-
Jan-2018].

[21] PlayCanvas Ltd, “PlayCanvas Engine.” [Online]. Available:
https://github.com/playcanvas/engine. [Accessed: 3Jan-2018].

[22] M. & Tools, “StarUML - Open Source UML Tool.” .
[23] “StarUML.” .

[24] “FBX | Adaptable File Formats for 3D Animation Software | Autodesk.” [Online].
Available: https://www.autodesk.com/products/fbx/overview. [Accessed: 04-Feb-2018].

[25] “Autodesk - Autodesk FBX - FBX® 2013.3 Converter.” [Online]. Available:
http://usa.autodesk.com/adsk/servlet/pc/item?siteID=123112&id=22694909. [Accessed:
04-Feb-2018].

[26] G. J. Myers, C. Sandler, and T. Badgett, The Art of Software Testing. Wiley, 2011.

Annexures

 81

Annexures

In this section there are presented some of important information for the whole comprehension

of this thesis. At the end of the document there is a DVD containing some files such as CAD

models and the code source.

Annexure 1

Thesis Proposal Outline

FH Aachen & Center for Engineering and Industrial Development
Thesis Proposal Outline

Name of Student: Jose Gerardo Gomez Mendez Student Id: 3097036

Areas of interest and Justification of Research/Project

Areas of Interest

• Programming
• IoT
• Industry 4.0

Justification of Research/Project

The Industry 4.0 Lab in the FH Aachen, provides the tools and mechanisms to interconnect

different assembly cells, so synergistically, they carry out the assembling process of

customized Lego Duplo Cars.

The current area of opportunity in this system is the customization process. In Industry 4.0,

it is essential to support customized demands by the customer; hence the involving of the

final customer with the assembly process is fundamental. Nonetheless, to let the user

customize it owns products so they can be suitable to build, the infrastructure of the system

should provide the necessary means to customize the outcome within the restrictions of

the assembling process.

Furthermore, another critical point inside Industry 4.0 is the scalability and flexibility that

any system should provide, this delivers a considerable responsibility when developing

software for this purpose. The only method to provide a system with the necessary means

to be scalable resides in a correct use of the Software's Engineering.

This last point always represents a challenge to the designers of the program because not

only the software has to work well; instead, it has to be completely reliable, bug-free and

with meaningful documentation that makes possible for future engineers to understand the

code and adapt it to the new functionalities that eventually will attain.

Moreover, the usage of IT tools, such as PCs, tablets, and smartphones, opens an area of

opportunity for the interaction of the user with the system. Most devices used nowadays

possess enough characteristics to support features like 3D visualization, rendering of

complex images, and high bandwidth connectivity. All these points make feasible but also

crucial, the integration of the upcoming technologies with any process inside Industry 4.0.

	

Research/Project Goals and Objectives

Research/Project Goals

Objective

To design and develop a 3D web application for the customization of predefined Lego

Duplo Cars, and implementing it inside an already operating Industry 4.0 system.

Specific Objectives

1. To explore the different platforms for the development of portable, scalable and

robust web-applications.

2. To create an application in the chosen platform that can receive the template of any

Lego Duplo Car Template as an initial parameter and provide the tools for

customizing it and transmit the modifications back to the original sender.

3. To develop an intermediate program that interprets the data from the database,

where all the templates are stored, and translate this data into a standard format

understandable by the Viewer (JSON).

4. To adapt both programs inside an OpenCart Plugin, so that they can be integrated

into the running Industry 4.0 platform.

5. To provide all the documentation for the installation and maintenance of the

system.

FH Aachen & Center for Engineering and Industrial Development
Thesis Proposal Outline

Research/Project Objectives

This Thesis pretends to be an integration of the customization process inside major IT

devices, specially oriented to the touch-displays present in tablets and smartphones.

It is intended to use as well some of the techniques for the good practice of software

development. One of this practices is the delivering of vast documentation, mostly based

in UML 2.0 that makes the system completely clear to understand. The second point comes

in the reliability, taking a considerable attention in the testing process, so the system is

examined against all possible failures, all of this described in the Test Cases so the future

administrator of the system knows contingency methods against some of the crashes that

may occur.

The last point resides on the flexibility. This project aches to have a flexible and scalable

system, therefore providing the tools to adapt it to distinct requirements, making it possible

to adjust it to the late technologies and giving the plausibility to use it for any purpose

different than Lego Duplo Cars, as long as it is build using Lego Duplo Bricks.

Summary of Preliminary Literature Review

	

[1] R. Pressman and B. Maxim, Software Engineering. A practitioner's approach, 8th

edition ed., New York: McGraw Hill, 2015.

[2] J. Mcdermid and P. Rook, "Software Development Process Models," The Software

Engineers Reference Book, pp. 15-28, 1993.

Proposed institution, proposed technical advisor and methodology

Institution FH Aachen

Name of

Technical

Advisor

Prof. Dr.-Ing. Jörg Wollert

Methodology (brief description of how the goals and objectives are going to be achieved)

The adopted methodology on the development of the software was the Incremental Process

Model. The important on choosing a specific process model is that they provide stability,

control, and organization to an activity that can, if left uncontrolled, become quite chaotic

[1].

When an incremental model is used, the first increment is often a core product. That is,

basic requirements are addressed but many supplementary features (some known, others

unknown) remain undelivered. The core product is used by the customer (or undergoes

detailed evaluation). As a result of use and/ or evaluation, a plan is developed for the next

increment. The plan addresses the modification of the core product to better meet the needs

of the customer and the delivery of additional features and functionality. This process is

repeated following the delivery of each increment, until the complete product is produced.

[1].

The incremental model applies linear sequences in a staggered fashion as calendar time

progresses. Each linear sequence produces deliverable “increments” of the software [2].

Figure 1 presents an example of this process model in a graph of project calendar time

against the software functionality and features.

The main advantage in this process model is that all the features, functionalities and even

the scope of the system can be refined and adapted to the changes in the other systems.

Regarding the quality of the software, the possibility of testing the software in each

iteration of development reduces the number of bugs considerably and prevents the

appearance of significant errors that can take most of the developing time.

FH Aachen & Center for Engineering and Industrial Development
Thesis Proposal Outline

Figure 55 Incremental Process Model, calendar time progress [1]

	

	

Anticipated Results

All the Systems that are included in this project are shown in the previous use case diagram.

The Systems 2 and 3 were developed from scratch and are already up and running.

Systems 1 and 4 were already in use in the industry 4.0 Lab but were enhanced for this project

to be compatible with the Viewer.

Right now every system was tested and is compatible with the last version of the I4.0

implementation.

1.

FH Aachen & Center for Engineering and Industrial Development
Thesis Proposal Outline

Timeline

Activity 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

Preliminary
phase

Development
Deployment
Testing
Writing of The
Thesis

Send The
Thesis For a
Review

Present it at
CIDESI

Week 1 starts on: 01/09/2018

	

Possible Academic Advisors

Name of Advisor Institution

Prof. Dr.-Ing. Jörg Wollert FH-Aachen

 CIDESI

Annexure 2

Zulassung zur Master-Abschlussarbeit

Annexure 3

Class “ConfigureCar” Documentation

Class ConfigureCar

Script name: configure_car.js
Asset id: 10213443

var ConfigureCar = pc.createScript('configureCar');

This script contains all the methods to change the configuration of the car. Add, modify or
delete bricks.

Enum Attributes Detail

chassisEntity

Stores an instance of the class entity “Chassis”.

Type: <Chassis>
Visibility: public
Default value: null

bricksEntity

Stores an instance of the class entity “Bricks”.

Type: <Bricks>
Visibility: public
Default value: null

bricksListEntity

Stores an instance of the class entity “BricksList”.

Type: <BricksList>
Visibility: public
Default value: null

availableColors

Stores an instance of the class “AvailableColors”.

Type: <AvailableColors>
Visibility: public
Default value: null

Coordinates

Stores an instance of the class “Coordinates”.

Type: <Coordinates>
Visibility: public
Default value: null

Enum Methods Detail

Initialize

ConfigureCar.prototype.initialize = function()
Initialize code called once per entity,

Update

ConfigureCar.prototype.update= function(dt)
Update code called every frame.

Parameters:

Dt double Variable used as a timer.

newBrick

ConfigureCar.prototype.newBrick =
function(brickname,x,y,z,rotation_z,color,brick_type,ocvalue,code)
Adds a new brick to the car and set its respective parameters.

Parameters:

Brickname double
The name of the brick. e.g. 2x2x2. See the
documentation for a description of all the
possible bricks.

X Int

The x coordinate of the brick in grid
coordinates. See documentation for a
better understanding of the grid
coordinates.

Y Int

The y coordinate of the Brick in grid
coordinates. See documentation for a
better understanding of the grid
coordinates.

Z int

The z coordinate of the brick in grid
coordinates. See documentation for a
better understanding of the grid
coordinates.

rotation_z int

The rotation of the brick in the z-axis,
given in an integer format (3). See
documentation for a better understanding
of the grid coordinates.

Color String
The color of the brick. See the
documentation for a list of all the available
colors with their respective name.

brick_type String
Defines the kind of brick. It can be fixed,
customizable or optional depending on the
possibility to edit it or delete it.

Ocvalue int

The value of the radio button input in
OpenCart. Every brick has a different value.
See the documentation for the instruction
on how to get this value.

Code String
Unique identifier for a piece. It can be any
string or a null value.

setChassisColor

ConfigureCar.prototype.setChassisColor = function(color, ocvalue, code)
Set the color of the chassis and defines its properties.

Parameters:

Color String
The color of the chassis. See the
documentation for a list of all the available
colors with their respective name.

Ocvalue int
The value of the radio button input in
OpenCart. Every chassis has a different

value. See the documentation for the
instruction on how to get this value.

Code String
Unique identifier for a piece. It can be any
string or a null value.

resetChassisColor

ConfigureCar.prototype.resetChassisColor= function()
Changes the color of the chassis to the original color (the one that had before it was shown
as selected)

setBrickColor

ConfigureCar.prototype.setBrickColor= function(brickInstance,color,ocvalue,code)
Sets the color of a brick and update the properties: color and code
@see newBrick()

Parameters:

brickInstance Object The entity containing the brick to be edited.

Color String The color of the brick.

Ocvalue int
The value of the radio button input in
OpenCart. Every brick has a different value.

Code String
Unique identifier for a piece. It can be any
string or a null value.

setBrickSelectedColor

ConfigureCar.prototype.setBrickSelectedColor= function(brickInstance)
Shows the brick in editable mode (the brick looks transparent), but it doesn't affect its
properties.

Parameters:

brickInstance Object
The entity containing the brick to show as
selected.

setBrickPosition

ConfigureCar.prototype.setBrickPosition = function(brickInstance,x,y,z,rotation_z)
Define the position of the brick in terms of grid coordinates (integer number) See the
coordinates documentation for the description of the grid.

Parameters:

Brickname double The entity containing the brick to be edited.

X int
The x coordinate of the brick in grid
coordinates.

Y int
The y coordinate of the brick in grid
Coordinates.

Z int
The z coordinate of the brick in grid
coordinates.

rotation_z int
The rotation of the brick in the z axis, given
in an integer format (3).

Annexure 4
Available Colors

Color Name Image HTML Color Code RGB

1 Black

1B2A34 0 0 0

2 Blue

26469A 38 70 154

3 Brown

7B5D41 123 93 65

4 DarkBlue

19325A 25 50 90

5 DarkGreen

00852B 0 133 43

6 DarkGrey

545955 84 89 85

7 DarkOrange

91501C 145 80 28

8 DarkPink

D3359D 211 53 157

9 DarkPurple

441A91 68 26 145

10 DarkYellow

DD982E 221 152 46

11 Green

58AB41 88 171 65

12 Grey

8A928D 138 146 141

13 Lavender

CDA4DE 205 164 222

14 LightBlue

97CBD9 151 203 217

15 LightBrown

7B5D41 182 147 116

16 LightGreen

A5CA18 165 202 24

17 LightGrey

BCB4A5 188 180 165

18 LightOrange

FCAC00 252 172 0

19 LightPurple

8A12A8 138 18 168

20 LightYellow

FFD67F 255 214 127

21 Magenta

901F76 144 31 118

22 MediumBlue

7396C8 115 150 200

23 Orange

D67923 214 121 35

24 Pink

FF9ECD 255 158 205

25 Purple

671F81 103 31 129

26 Red

B40000 180 0 0

27 Tan

B0A06F 176 160 111

28 Turquoise

069D9F 6 157 159

29 White FFFFFF 255 255 255

30 Yellow

FAC80A 250 200 10

Table 1 Available Colors

Annexure 5
Available Brick Types

Image Brick Name for Template

Definition

Stud Dimensions

Width Length Height

1

2x2x1 2 2 1

2

2x2x2 2 2 2

3

2x2x2-bow 2 2 2

4

2x2x3 2 2 3

5

2x2x3-bow 2 2 3

6

2x2x4 2 2 4

7

2x2x4-bow 2 2 4

8

2x3x1 2 3 1

9

2x3x2 2 3 2

10

2x3x2-bow 2 3 2

11

2x3x3 2 3 3

12

2x3x3-bow 2 3 3

13

2x3x4 2 3 4

14

2x3x4-bow 2 3 4

15

2x4x1 2 4 1

16

2x4x2 2 4 2

17

2x4x2-bows 2 4 2

18

2x4x3 2 4 3

19

2x4x4 2 4 4

20

2x6x1 2 6 1

21

2x2x4-ladder 2 2 4

22

2x4x4-dumper 2 4 4

23

2x1x2-emergencylight 2 1 2

24

2x2x2-engine 2 2 2

25

2x4x4-petroltank 2 4 4

26

2x2x4-towtruck 2 4 4

Table 2 Available Bricks

Annexure 6

Example of the values for a Lego Duplo car

Figure 56 Lego Duplo Car example

Piece Name Color x_position y_position z_position rotation_z

Chassis red 0 0 0 0

2x3x2-bow dark pink 3 0 1 0

2x2x2 dark green -4 0 1 0

2x1x2-emergencylight blue 3 0 3 0

2x4x2 dark blue -4 -2 3 3

2x6x1 turquoise -4 -2 5 0

2x2x2-bow yellow 0 -2 6 1

2x2x1 orange -8 -2 6 0

Table 3 Lego Duplo Car values for Figure 56

Annexure 7
How to get the ocvalue in OpenCart

In order to get the names and values for each piece from OpenCart©, is necessary to use the

“Developer tools” of a web browser. In this case, Google Chrome was used. It is important to

mention that this has to be done either before the plugin was installed or when the modification

is disabled.

The first step is to enable the “Inspect Element mode” as shown in Figure 57.

Figure 57 Step 1

The second step is to click the radio button of the desired element, like in Figure 58. This shows

all the elements of the web page, and it marks the lines of code that references the object as in

Figure 59; accordingly to this example, the obtained value is “13”. This number is related to the

blue chassis in the roadster model. The last step is to go iteratively to each element on the car.

Figure 58 Step 2

Figure 59 Step 3

Annexure 8

Contents of the DVD

In the DVD at the end of this document, the following files are included:

1. A “pdf” version of this thesis.

2. The file “3DViewer.ocmod.zip” that contains:

2.1. The OpenCart modification including the Viewer as a plugin

2.2. The “README.txt” file with the installing instructions.

2.3. The “Configuration Manual for Implementing the 3D Viewer as a Plugin for

OpenCart”.

3. The folder “3DViewer” that includes:

3.1. The full-page version of the Viewer.

3.2. The classes documentation in an HTML format in the folder “ClassesDocumentation”.

3.3. All the diagrams presented in an HTML format inside the folder “Diagrams”.

3.4. The “Configuration Manual for Using the 3D Viewer outside OpenCart”.

4. A virtual machine running the full implementation of the Industry 4.0 system, including the

plugin installed in OpenCart.

5. The folder “CAD bricks” containing all the available bricks 3D models in “obj” and “fbx”

format.

