
1

Implementation of a Modular 3D Rigid Body Motion Simulator

A Thesis

Submitted to the Faculty of Fachhochschule Aachen and Centro de Ingeniería

y Desarrollo Industrial

BY

Ricardo Vega Ayora

In Partial Fulfillment of the requirements for the degree of Master of Science in
Mechatronics

Santiago de Querétaro, Qro, México, February 2018

2

Declaration
I hereby declare that this thesis work has been conducted entirely on my own accord.

The data, the software employed and the information used have all been utilized in complete

agreement to the copyright rules of concerned establishments.

Any reproduction of this report or the data and research results contained in it, either

electronically or in publishing, may only be performed with prior sanction of the University of

applied Sciences, Centro de Ingeniería y Desarrollo Industrial (CIDESI) and myself, the author.

The work developed for this project uses MATLAB version R2017a, which is licensed to the

Fachhochschule Aachen. MATLAB is a trademark of The MathWorks, Inc., 1 Apple Hill Drive,

Natick, Massachusetts, 01760.

Ricardo Vega Ayora

Santiago de Queretaro, Qro., Mexico, February 2018

3

Acknowledgments
I would like to use this section to express my gratitude to the following parties, for without them,

this work would not have been possible.

• My family for all their support, guidance and patience.

• Dr.-Ing. Markus Czupalla for allowing me to start this project under his supervision, for

sharing his ideas and for his suggestions.

• Dr.-Ing. Bernd Dachwald for his support on understanding rotations and for providing

books with helpful information about motion simulation.

• Dr. Salomón Miguel Ángel Jiménez Zapata for his help with linear algebra and for his

great guidance on the writing of this document.

• Consejo Nacional de Ciencia y Tecnología (CONACYT) for the scholarship.

• Centro de Investigación y Desarrollo Industrial (CIDESI) and the FH Aachen for the

opportunity of being part of a double degree programme in an international environment.

• My colleagues Osvaldo, Jaime, Luis, Israel, Gerardo and Adrián for being outstanding

teammates during the master’s programme.

• Chizuru, an admirable and motivating hard-working person who is always looking to the

future.

• Lucía for her help at the beginning of the programme.

4

Table Contents
Declaration ... 2

Acknowledgments .. 3

Table Contents .. 4

List of figures .. 7

List of tables ... 9

Abbreviations, units and sign conventions .. 10

Abstract .. 12

 Introduction .. 13

1.1 Objectives ... 17

1.2 Motivation .. 17

1.3 Architecture .. 23

1.3.1 Mass Distribution Calculator (MDC). .. 24

1.3.2 6-DoF Motion Simulator (SMOD) ... 25

1.3.3 Animation Module (AMOD) ... 25

1.3.4 Utility Functions and Classes .. 25

1.4 Deliverables .. 25

 Motion Simulation Module .. 26

2.1 Overview .. 26

2.1.1 Previous work ... 26

2.1.2 Module’s Design ... 27

2.2 Rigid Body Dynamics .. 28

2.2.1 Translational Motion .. 30

2.2.2 Rotational Motion .. 32

2.2.3 Attitude Simulation .. 33

2.2.4 Coordinate Transformations .. 37

2.2.5 State Vector .. 39

2.3 Software Implementation .. 40

2.3.1 Module Requirements.. 40

2.3.2 Module Workflow .. 40

2.3.3 RbSimulation Class ... 41

2.4 Demonstrations .. 49

2.4.1 Free precession of a symmetrical top .. 49

5

2.4.2 Free rotation of an asymmetrical top .. 56

2.4.3 Freefall .. 61

2.4.4 Parabolic Motion .. 64

2.5 Benchmarking ... 66

 Animation Module ... 69

3.1 Overview .. 69

3.1.1 Graphic tools .. 69

3.1.2 MATLAB®’s Aerospace Toolbox™ ... 70

3.1.3 Timeseries Objects ... 72

3.1.4 Module Design ... 72

3.2 Software Implementation .. 73

3.2.1 Module Requirements.. 73

3.2.2 Module Workflow .. 74

3.2.3 RbAnimationBody Class .. 75

3.2.4 RbAnimation Class .. 79

3.2.5 Utility Functions for the Animation Module .. 82

3.3 Demonstrations .. 84

3.3.1 Free Precession of a Symmetrical Top ... 84

3.3.2 Free Rotation of an Asymmetrical Top .. 87

3.3.3 Linear Displacement ... 89

 Utilities ... 91

4.1 RbTimeVectorSum .. 91

4.1.1 Overview .. 91

4.1.2 Design ... 91

4.1.3 Usage .. 92

Conclusions .. 94

Future work .. 95

References .. 96

 Scripts ... 99

Chapter 2 .. 99

Chapter 3 .. 102

 User’s Guide ... 104

Adding the Toolbox to PATH .. 104

6

Simulating ... 105

Animating ... 107

Adding Vectors versus Time ... 108

Full System Example ... 109

Modifying the System .. 111

7

List of figures
Figure 1-1 Goal of a Risk-Based Process Improvement Plan. Figure taken from [14]. 19
Figure 1-2 Representation of the abstract layers (boxes), automations (arrows) and the computers
(ellipsoids) involved in a computational approach for rigid body motion. .. 21
Figure 1-3 Flow diagram of how the modules interact with each other. The green rectangles are the
core modules, yellow rectangles are the utilities, and the white ellipses represent external entities
that interact with the system. .. 24
Figure 2-1 Collection of 𝑖𝑖 particles with position vectors 𝑟𝑟𝑖𝑖 representing a rigid body with centre of
mass located at 𝑟𝑟𝑟𝑟. .. 29
Figure 2-2 Relation between the IRF and a BRF centred at the body's CoM. .. 30
Figure 2-3 IRF (dotted) and BRF (continuous) aligned. .. 34
Figure 2-4 BRF (continuous lines) rotated by 𝜓𝜓 with respect to the IRF (dotted lines). 35
Figure 2-5 BRF (continuous lines) rotated by 𝜓𝜓 and 𝜃𝜃 with respect to the IRF (dotted lines). x' is a
previous position of the BRF. ... 35
Figure 2-6 BRF (continuous lines) rotated by 𝜓𝜓, 𝜃𝜃, and 𝜙𝜙 with respect to the IRF (dotted lines). [𝑥𝑥′𝑦𝑦′𝑧𝑧′]
are previous positions of the BRF. ... 36
Figure 2-7 Workflow of the SMOD. .. 41
Figure 2-8 Class diagram of the RbSimulation class. .. 43
Figure 2-9 Ellipsoid for which the problem is solved. .. 49
Figure 2-10 Diagrams of the parallel inertial and body reference frames (left), and the Z axis of the IRF
aligned with the angular momentum vector (right). ... 52
Figure 2-11 Free precession of an ellipsoidal disc. Analytical solution. Angular velocity results. 54
Figure 2-12 Body and space cones formed by the angular velocity vector as it rotates. The body cone
(cyan) is seen from the BRF and the space cone (red) is seen from the IRF. The units of the axes are
[rad/s]. .. 54
Figure 2-13 Magnitude of the angular momentum vector H with respect to time. 54
Figure 2-14 Free precession’s simulation. Angular velocity results. The dotted lines are the simulation
results and the continuous lines are the analytical results. ... 55
Figure 2-15 Free precession’s simulation. Angular velocity cones in the refernece frame A and in the
IRF. .. 56
Figure 2-16 3U CubeSat. .. 58
Figure 2-17 Angular momentum and kinetic energy ellipsoids with the added angular velocity. 60
Figure 2-18 Motion of the angular velocity in [rad/s] with respect to the IRF. 61
Figure 2-19 Free Fall. Analytical results. .. 62
Figure 2-20 Free Fall. Simulation results. ... 63
Figure 2-21 Free Fall. Simulation results (circle markers) superimposed over the analytical solution
(continuous lines). .. 63
Figure 2-22 Parabolic motion. Analytical results. .. 65
Figure 2-23 Parabolic motion. Superimposition of the simulation results (circle markers) over the
analytical solution (continuous lines)... 65
Figure 2-24 Parabolic motion. Simulation results. ... 66
Figure 3-1 Aero.Body displayed in a figure window .. 71
Figure 3-2 Aero.Body displayed in an Aero.Animation window .. 72
Figure 3-3 Workflow of the AMOD. ... 74

8

Figure 3-4 Class diagram of RbAnimationBody .. 76
Figure 3-5 Class diagram of RbAnimation .. 80
Figure 3-6 From left to right and top to bottom, the images are frames of the rotating ellipsoid at
times 𝑡𝑡 = 0𝑠𝑠, 𝑡𝑡 = 0.5𝑠𝑠, 𝑡𝑡 = 1𝑠𝑠, 𝑡𝑡 = 1.5𝑠𝑠, 𝑡𝑡 = 2𝑠𝑠, 𝑡𝑡 = 2.5𝑠𝑠. .. 87
Figure 3-7 From left to right and top to bottom, the figures are frames of the tumbling satellite at
times 𝑡𝑡 = 0s, 𝑡𝑡 = 0.02𝑠𝑠, 𝑡𝑡 = 0.04𝑠𝑠, 𝑡𝑡 = 0.06𝑠𝑠, 𝑡𝑡 = 0.08𝑠𝑠, 𝑡𝑡 = 0.1𝑠𝑠 ... 89
Figure 3-8 Translating spheres. .. 90
Figure 4-1 Class diagram of the RbTimeVectorSum class. ... 91
Figure 4-2 Flow of the RbTimeVectorSum class. .. 93

9

List of tables
Table 1 MSE results of the integrators for the Free Precession of a Symmetrical top problem with a
step of 0.001s. .. 67
Table 2 MSE results of the integrators for the Free Fall problem with a step of 0.001s. 67
Table 3 MSE results of the integrators for the Parabolic Motion problem with a step of 0.001s. 67

10

Abbreviations, units and sign conventions
RBT Rigid Body Simulation Toolbox
IRF Inertial Reference Frame
BRF Body Reference Frame
DCM Direct Cosine Matrix
MKS Meter-Kilogram-Second unit system
CPU Central Processing Unit
FPS Frames Per Second
CoM Centre of Mass
DOF Degrees Of Freedom
ML MATLAB®
MW The MathWorks®
OOP Object Oriented Programming
CT Computational Thinking
FEA Finite Element Analysis
API Application Programming Interface
MDC Mass Distribution Calculation Module
SMOD Simulation Module
AMOD Animation Module
ODE Ordinary Differential Equation
[𝑇𝑇𝑎𝑎𝑏𝑏] Transformation from vector space a to vector space b
[𝐴𝐴] Matrix A
[𝜔𝜔𝑏𝑏] Skew matrix of the vector 𝜔𝜔𝑏𝑏
𝑣𝑣𝑎𝑎 Vector in vector space a
𝑣𝑣𝑒𝑒 Vector in the IRF
𝑣𝑣𝑏𝑏 Vector in the BRF
𝐹𝐹 Force vector in newton
𝑀𝑀 Torque vector in newton per meter
𝜔𝜔 Angular velocity vector in radians per second
𝐻𝐻 Angular momentum vector in joules times second
𝐿𝐿 Linear momentum vector in joules times second
𝐸𝐸𝑘𝑘 Kinetic energy in joules
𝑟𝑟 Position vector in meters
𝑣𝑣 Linear velocity vector in meters per second
[𝐼𝐼] Moment of inertia tensor in kilogram times meter squared
𝑚𝑚 Mass in kilograms
𝑿𝑿𝒆𝒆 X axis of the IRF
𝒀𝒀𝒆𝒆 Y axis of the IRF
𝒁𝒁𝒆𝒆 Z axis of the IRF
𝒙𝒙𝒃𝒃 X axis of the BRF
𝒚𝒚𝒃𝒃 Y axis of the BRF
𝒛𝒛𝒃𝒃 Z axis of the BRF
𝜙𝜙 Angle about 𝑥𝑥 in radians
𝜃𝜃 Angle about 𝑦𝑦 in radians
𝜓𝜓 Angle about 𝑧𝑧 in radians
[𝑤𝑤 𝑖𝑖 𝑗𝑗 𝑘𝑘] Quaternion with real part 𝑤𝑤

11

The right-hand rule determines the sign of the rotations. The rotation is positive in the direction in
which the first finger closes about the thumb and negative in the opposite direction.

All units are in the MKS unless otherwise noted.

12

Abstract
This work presents the development of a toolbox for MATLAB® for the simulation of rigid

body dynamics. The toolbox includes a module for the simulation of the motion and a module

for visualisation, the modules can be used together or independently. The motion simulator uses

Newton-Euler mechanics to simulate the 6-DoF motion of a single rigid body as well as Euler

angles and quaternions to simulate the attitude of the rigid body. The visualisation module is

capable of creating animations of translating and rotating geometries in a three dimensional

space.

Resumen

Este trabajo presenta el desarrollo de un sistema de simulación de dinámica de cuerpos rígidos

para MATLAB®. El sistema está compuesto por un módulo para la simulación y otro para

visualización. Los módulos pueden usarse en combinación o de manera independiente. El

simulador de movimiento usa mecánica de Newton-Euler para simular el movimiento de un

cuerpo rígido con 6 grados de libertad, así como la orientación del cuerpo con cuaterniones y

ángulos de Euler. El módulo de visualización permite crear animaciones de geometrías que rotan

y se trasladan en un espacio tridimensional.

Kurzfassung

Diese Masterarbeit befasst sich mit der Entwicklung einer Toolbox für MATLAB® zur

Simulation der Starrkörperdynamik. Die Toolbox enthält ein Modul zur Simulation der

Bewegung und ein Modul zur Visualisierung, die Module können zusammen oder unabhängig

voneinander verwendet werden. Der Bewegungssimulator simuliert mithilfe der Newton-Euler-

Mechanik die 6-DoF-Bewegung eines einzelnen starren Körpers, sowie mithilfe von Euler-

Winkeln und Quaternionen, um die Lage des starren Körpers zu simulieren. Das

Visualisierungsmodul kann Animationen von sich translatorisch bewegenden und rotierenden

Geometrien in einem dreidimensionalen Raum erzeugen.

Keywords: simulation, rigid body dynamics, modular, object oriented programming.

Chapter 1. Introduction

13

 Introduction
Throughout history, understanding rigid body dynamics has enabled human-kind to create tools

that avoid, prevent, or take advantage of events that would otherwise be harmful or represent a

waste of potential resources. The wheel and the emerging reusable rockets are just two examples

of a countless amount of inventions born from the study of dynamics, and which have helped

human-kind with its scientific and technological progress.

In modern science and engineering, phenomena such as those that occur in dynamics are

represented with sets of equations and variables, which together are called mathematical models

and their analysis is a very helpful tool in the process of understanding a phenomenon. For

instance, the combination of Newton’s Three Laws and Euler’s equations of rotational motion

facilitate the development of tools like the robotic arms in a vehicle production line, or the

momentum wheels that satellites use in space to control their orientation.

Recently, scientists and engineers of multiple disciplines have accelerated their understanding

of the laws of physics with the help of electronic computers. Using programming languages,

algorithms for numerical methods can be programmed into computers to numerically evaluate

mathematical models and thus analyse the phenomenon the models describe. This kind of

evaluation is called computer simulation, and it has a wide variety of applications such as

analysis, training, and research [1].

Within the scope of the simulation of rigid body dynamics, there is a diverse range of existing

tools, both open-source and commercial. On the open-source side, for example, standalone tools

such as MBDyn [2] and Robotran [3] provide well-documented platforms to simulate and

visualise multi-body dynamics. MBDyn is a general purpose, command-line driven, multi-body

dynamics analysis software, capable of performing the integrated simulation and analysis of

nonlinear mechanical, aeroelastic, hydraulic, electric and control problems by numerical

integration. MBDyn also has a special input syntax that users need to learn so that they are able

to describe simulation experiments.

Robotran is a platform that approaches multi-body dynamics with computational algebra, that

is, symbolic mathematics. The platform features a graphical interface with which users sketch

multi-body systems and run 3D animations, a symbolic generator that takes the sketched

Chapter 1. Introduction

14

systems and returns corresponding symbolic models, and interfaces to MATLAB® (ML),

Python and C/C++, with which users can later numerically analyse the symbolic models. It is

important to notice that the symbolic generator runs on an external server to which users must

have access credentials.

Among the open-source options, there are also libraries and physics engines that allow

developers to run physics simulations within their own applications. Three important instances

are PyBullet [4], PROJECTCHRONO®, and the Open Dynamics Engine™ (ODE), which as

their standalone counterparts, are well-documented platforms that include visualisation

modules. The first example, PyBullet, is a physics simulation engine developed in Python that

features support for collision detection and simulation of both 6-DoF rigid bodies and

generalised coordinate multibody systems. Additionally, PyBullet integrates interfaces to 3D

modelling and animation tools such as Maya® and Blender™.

Similar to PyBullet, although with some differences in the features and in the programming

language, there is PROJECTCHRONO®, a community project led by the University of

Wisconsin-Madison and the University of Parma-Italy. The project provides a multi-physics

simulation engine developed in C/C++ that features support for multibody dynamics, finite

element analysis (FEA), vehicle dynamics, parallel computing and collision detection, and

integrated interfaces with which PROJECTCHRONO® is capable of sharing or taking over the

simulation of external platforms developed in Python, ML, Simulink® and Solidworks®.

Lastly, ODE is a library originally developed by Russel Smith in C/C++ for the simulation of

rigid body dynamics. ODE features a fast integrator (or solver), collision detection, and rigid

bodies with arbitrary mass distribution and multiple joint types. Due to its popularity, the library

now has bindings for different programming languages such as Python, Java and JavaScript.

Moreover in the open-source software, although special cases, there are QuIRK [5] and the

Spatial Vector and Rigid-Body Dynamics Software (just Spatial from here on) [6]. They are

special cases because, although being open-source, they are toolboxes for ML, which is

proprietary software. QuIRK consists of a set of simulation and visualisation tools for multi-

body dynamics that uses quaternions to represent rotations, and the Udwadia-Kalaba

pseudoinverse method to construct equations of motion of constrained systems. Being

Chapter 1. Introduction

15

developed for ML, QuIRK provides an interactive command line interface for constructing

systems of rigid bodies and joint constraints.

Spatial is a suite of functions that implement the spatial vector arithmetic and dynamics

algorithms found in [7]. The suite includes functions for the calculation of forward, hybrid and

inverse dynamics, and in addition to that, it computes the momentum and both the potential and

kinetic energies of the system. Moreover, it includes a robust visualisation tool that allows users

to view an animation at any speed, from any angle, and at any magnification.

In contrast to the so far mentioned simulation tools, there are also the commercial ones such as

the standalone application Adams™, developed by MSC Software®. The platform’s

functionality allows the study of moving parts and how loads and forces are distributed

throughout mechanical systems. Plugins such as Adams Mechatronics and Adams Control can

be incorporated to allow the use of control systems in the simulation. One last feature, and

probably the most important one, is that Adams™ is free for students.

The rigid body simulation market also includes tools such as COMSOL’s Multibody Dynamics

Module and ANSYS® Rigid Body Dynamics, they are extensions for COMSOL’s Structural

Mechanics Module and for the ANSYS® simulation platform respectively, which means that

users must first acquire the corresponding base system in order to use the rigid body simulation

tools. Both extensions feature a FEA approach to simulate dynamic problems involving mixed,

flexible and/or rigid bodies. ANSYS®, however, has the advantage of holding an ISO 9001

certificate for the quality of its products.

All the simulation platforms mentioned so far give evidence of the fact that the computer

analysis of rigid body dynamics is an important topic in science and engineering, a topic which

is constantly improving and becoming more diverse. As a consequence of the growth in

simulation methods and platforms for rigid body dynamics, fields such as aerospace engineering

take advantage of the benefits of computer analysis and apply them into the development of

specialised technology such as the simulation of a satellite’s attitude in orbit. Aerospace

simulation tools, as any other software category, can be classified in commercial and open-

source/free-to-use. The latter term, free-to-use, means that while a piece of software can be

obtained and used for free, one or more parts of the code are obfuscated, leaving them as black

boxes. Two examples of such software are the Smart Nanosatellite Attitude Propagator (SNAP)

Chapter 1. Introduction

16

[8] and the Satellite Dynamics Toolbox [9]. SNAP is a 6-DoF satellite attitude propagator

implemented in ML and Simulink®. SNAP features the analysis of environmental torques that

affect a satellite with models for gravity gradient torque, magnetic torque due to permanent

magnets, magnetic hysteresis torque and damping. Additionally, SNAP enables users to design

and analyse passive attitude stabilisation techniques with plotting tools for the attitude’s history

and the possibility of exporting a file that the Systems Tool Kit® (STK) can use to create

animations. The second free-to-use example, the Satellite Dynamics Toolbox, is a ML package

that features rigid multi-body dynamics based on the Newton-Euler equations to compute the

linear dynamic model of spacecraft with one or more flexible appendages, by that meaning

antennae, robotic arms, solar panels, etc.

On the side of the open-source software, or completely free to obtain and modify in other terms,

tools such as PROPAT [10] and 42 [11] are also capable of simulating the attitude of spacecraft

in space. PROPAT, for instance, is a toolbox for ML that features a set of functions to solve

Kepler equations as well as functions to simulate and propagate the attitude and orbit of satellites

orbiting around the Earth. The other option, 42, is a standalone, general-purpose multi-body,

multi-spacecraft simulation platform written in C/C++. The features include fast simulations of

experiments that can be placed anywhere in the solar system, and the capability of being

integrated with ML. As MBDyn, 42 has its own input syntax with which users write input text

files that contain the description of the simulation experiment.

In parallel to the free software, there is also the commercial approach with the Spacecraft

Control Toolbox [12] and the Systems Tool Kit® (STK). The former is a toolbox develop by

Princeton Satellite Systems for ML that features tools to design, analyse and simulate spacecraft.

Depending on the acquired licence, the functionality provided by the Spacecraft Control

Toolbox ranges from a reduced feature set for the development of CubeSats, to a complete

system that includes multiple spacecraft subsystems, models for sensors and actuators, and

multiple control algorithms for the attitude dynamics and control simulation.

Finally, and probably the most robust spacecraft simulation platform, there is STK. A platform

developed by AGI® for providing four-dimensional modelling, simulation, and analysis of

objects from land, sea, air, and space. STK also features a complete suite for simulation and

visualisation with an accurate model of the Earth in time and space.

Chapter 1. Introduction

17

In conclusion, the available options make it possible for researchers and developers to study and

work with rigid body dynamics as their needs require, be it on the Earth, in space, or in a

customised coordinate space. However, none of the mentioned tools targets the educational

field, they can clearly be used to teach students how rigid body dynamics work, but before

reaching that point students must first go over the respective learning curves, especially with

software such as MBDyn or 42, which require users to learn the input syntax; or any of the

commercially available options, which require training for the graphical interface. Therefore,

the system presented in this document intends to provide a platform with rigid body simulation

and visualisation tools that members of the education field, both students and educators, can use

to simplify the learning process of rigid body dynamics.

1.1 Objectives

This project presents the Rigid Body Simulation Toolbox (RBT) for ML to simulate and animate

the 6-DoF motion of rigid bodies. The design of the toolbox had to comply with three main

goals:

1. Serve as an educational tool for professors and students to understand how rigid bodies

behave in a 3D space by the effect of disturbances, namely internal and/or external forces

and torques.

2. Be modular. The system’s functionality must be well delimited in independent modules

so that they can be used without the other modules.

3. Easy to use and extend. Requires the system to be written in a programming language

common to most users so that modifications can be done without going over a new

learning curve.

1.2 Motivation

The RBT aims to have economic and academic impacts. Before describing any of them, it is

worth noticing that computational simulations reduce, and sometimes completely eliminate the

need of physical tests. In addition, simulations can run repeatedly, subject to a variety of

conditions without damaging the system of interest.

Chapter 1. Introduction

18

The economic impact is foreseen on, although not limited to, reducing the cost of satellite

development programmes at the FH Aachen. The simulation capabilities for Attitude

Determination and Control Systems (ADCS) will be implemented in future iterations, however,

it is important to start considering the possible economic impacts so that the system is developed

in a way that clearly helps in the cost reduction of satellite design. Two clear examples of how

simulations have reduced the costs associated to a satellite project are [13] and [14], who

describe in similar manners that simulation tools have the potential of reducing costs and risks

of satellite missions. References [13, 14] discuss in similar terms the potential reductions on

satellite costs and mission risks associated with the use of simulation tools. Hu and Li [13]

classify satellites as 4-H products, that is high-tech, high-cost, high-benefit and high-risk.

Therefore, they argue that simulation tools allow the reduction of costs and risks because they

are reusable and non-destructive. Sarsfield [14], discusses the “Goal of a Risk-Based Process

Improvement Plan”, shown schematically in Figure 1-1. The plan describes a past, present and

future timeline of changes on satellite costs, reliability and performance directly connected to

risk management philosophies. In the past, risk was avoided by following spacecraft-

classification rules such as spacecraft complexity, launch constraints, etc. These rules set “hard

reliability targets” [14] that implicated high development costs. Currently, funding cuts have led

satellite designers and mission operators to relax reliability targets and hence to consider the

risk a dependent variable rather than a prescribed value. Naturally, this “risk as a resource” [14]

approach took risk assessment deeper into the general project management.

Chapter 1. Introduction

19

Figure 1-1 Goal of a Risk-Based Process Improvement Plan. Figure taken from [14].

Additionally, the author Sarsfield [14], argues that in the future, risks could be reduced and

performance improved at lower costs with the appearance of improved tests processes, new

insights into failures in space systems, the development of high-reliability components and

subsystems, and advances in design processes; one of which is the adoption of computer

simulations during the design stage.

Further on the economic impact, Koenigsmann and Gurevich [15] relates the cost of a satellite

to the risk of a failure caused by a total or partial failure of a subsystem, such as the Attitude

Control System (ACS). The authors gathered information about the costs of the ACS on

different missions and showed that the cost of this subsystem varies between 3-18% of the cost

of the bus. Moreover, the cost of ACS is the third greatest expense after launch and operations

costs. They also report that the ACS is one of the subsystems with more design failures. The

authors of [15] Koenigsmann and Gurevich, introduced the attitude simulation tool AttSim to

provide virtual environments in which a satellite’s motion in orbit can be analysed before

sending the satellite to space. In this manner developers are enabled to identify potential risks

and deliver more reliable systems. Attitude simulation tools are therefore paramount in the

development of control algorithms as well as the hardware used to control a satellite’s attitude.

Chapter 1. Introduction

20

The benefits of simulation tools go beyond the satellite industry, hence the academic impact.

Being pieces of software capable of doing fast computations and that usually include

visualisation modules, they also become computing tools that induce “Computational

Thinking”. CT is a term that refers to a process of abstraction in which a person acquires an

image of the essential details of an object or a situation in a way that an information-processing

agent (a human, a machine, or a combination of both [16]) can automate such details and their

relations. Using CT has proven to accelerate solutions for research and daily life problems. For

instance, Wing [16] presents an example where the time to find LEGO® bricks is reduced by a

factor of 10 when they are organised using a hashing function. Moreover, cases such as the use

of the shotgun sequencing algorithm to accelerate the sequence of the human genome prove that

research benefits from CT as well [17]. With such examples, Wing [17] discusses that CT is

becoming a part of education at graduate and undergraduate levels and thereafter envisions that

CT will also be integrated into childhood education. Furthermore, Wing [18] mentions that “CT

will be a reality when it is so integral to human endeavours it disappears as an explicit

philosophy”. Visions such as the ones exposed in [17, 18] have led people involved in the

education field into the development of strategies to make people develop CT skills and habits.

For example, in [19], a computational thinking framework called “Scratch” is developed to

allow young people to programme stories, games and simulations. Additionally, some examples

in [20] aim to help educators understand the concept of CT so that they can later teach it. One

of the shown example sets is modelling and simulation, and they start by citing: “The underlying

idea in computational thinking is developing models and simulations of problems that one is

trying to study and solve” [21]. In consequence, simulation tools could target a larger audience

if they are programmed to exploit the ideas behind CT and serve as tools that reinforce teaching.

Chapter 1. Introduction

21

Figure 1-2 Representation of the abstract layers (boxes), automations (arrows) and the computers (ellipsoids) involved in a
computational approach for rigid body motion.

In an attempt to illustrate the concepts of CT in terms of the simulation of rigid body dynamics,

Figure 1-2 shows 3 abstraction layers obtained from a generic dynamics problem: initial and

boundary conditions, mathematical model, and visualisation. Additionally, Figure 1-2 shows

how each agent processes the layers using its strengths while the other covers for the

weaknesses. For instance, humans are better at text and image processing, therefore the

identification of initial and boundary conditions from a text or from a free body diagram is faster

on a human brain, whereas machines are better for numerical solutions of mathematical models.

In the same way, a human must first generate a virtual representation of the body, usually with

a point cloud, so that the machine can create an animation with it, thereafter can a human

understand the motion of the body by looking at the animation and relating it to the shape of the

body together with the initial and boundary conditions.

As stated in [17], computing tools should provide a direct way into reinforcing the knowledge

instead of blocking it or slowing it down. Therefore, within the scope of software computing

tools, the complexity of the programming language they are written in is clearly an important

factor. Programming languages that are easy to learn and use enable students to focus on

understanding and carrying out their tasks instead of spending time debugging code. From an

educational perspective, programming languages with simple syntaxes and high levels of

abstraction are appropriate options. With the emergence of math-oriented programming

Chapter 1. Introduction

22

languages such as MATLAB®’s scripting language, programmers can now directly code

mathematical models and plot data without the need of installing additional libraries or

packages, as languages like FORTRAN, C/C++ and Python require. In addition, ML is already

being taught and used for research and education in multiple academic institutions, being the

FH Aachen one of them. Apart from the mathematical syntax, MATLAB®’s scripting language

is an interpreted, operating system-independent language that supports multiple paradigms such

as object-oriented (OOP) and procedural programming, thus allowing programmers to develop

modular and math-based software. A combination of the programming units of both the

procedural and OOP approaches, that is, functions and classes respectively [22], allows projects

to distribute its functionality in independent modules through classes for complex entities, and

functions for utilities that extend or modify the functionality of such entities. Classes allow the

reuse of code through inheritance, and the isolation of information through encapsulation. The

final products of these two pillars of OOP are delimited entities with an intuitive operation: once

a class is defined, the process of instantiation and method calling resembles the way in which

objects or people are placed somewhere and told what to do. Such an operation complies with

the CT goal of making a tool that is easy to use. An important detail concerning the inheritance

in object-oriented development in ML is that the classes are always derivations of either the

“value” or the “handle” classes. The basic difference between the two is that an instance of a

“value” class is an instance to an object, whereas an instance of a “handle” class is a reference

to an object. Hence, copying a “value” creates a clone, while copying a “handle” creates a

reference, thus providing by-value and by-reference functionalities. Additionally, the “handle”

base class provides event-driven functionality, which allows developers to create interactive

programmes to give users real-time feedback about their actions. One last important factor to

consider in the selection of a programming language is the confidence in the language’s

continued development or support. The growth figures reported for ML in [23] show that as of

2004, the number of employee and user counts grew by ratios of 1000 and 2000, respectively,

in 20 years. From those quantities it is possible to assume that ML growth will still be

maintained.

In another subject, reviewing how the simulation tools mentioned in Chapter 1: could meet the

objectives of the project makes it possible to conclude that commercial tools cannot be used

because, in contrast to ML, the FH Aachen does not provide licences for them. Moreover, in the

Chapter 1. Introduction

23

case of ANSYS® and COSMOL®, users also require knowledge of FEA to setup simulations.

On the other hand, being in a situation where a new application must be developed, the use of

simulation libraries and engines in languages that are not math-oriented is inconvenient because,

as explained before, they may complicate the educational approach. Similarly, a direct use of

MBDyn and 42 is not practical because users must learn how to create the input files using the

required syntax in order to run simulations. Even though the syntaxes are not complicated, they

force the users to go over a learning curve they can avoid with a toolbox made for a platform

they already know, in this case, ML. However, by taking advantage of the open-source licences

of MBDyn, 42, and other mentioned tools, some of the algorithms could be ported to ML to

extend the functionality of the application. For instance, when adding an attitude propagation

module to the project, the code from PROPAT can be used and adapted to the project’s needs

to avoid rewriting the code.

For these reasons, and delimiting the RBT to three main modules: one to calculate the mass

distribution properties of a rigid body (centre of mass, total mass and moment of inertia), another

one to simulate the motion of such bodies, and a visualisation tool to animate the results of the

simulation; the development of a new modular simulation platform could provide students,

educators and researchers with tools that not only simulate rigid body dynamics, but also induce

the trending CT, and allow future developers to easily incorporate custom functionality such as

multibody dynamics and motion controllers, which in turn provide a robust platform for the

simulation of a satellite’s attitude.

1.3 Architecture

The RBT has three main modules upon which future development will be made:

1. A mass distribution calculator (MDC).

2. A 6-DoF motion simulator (SMOD).

3. An animation module (AMOD).

Figure 1-3 shows the interaction of the modules with each other and with the utility functions

and classes. The architecture shown in Figure 1-3 allows the modules to be independent from

each other and directly compatible at the same time. The independence means that users are able

Chapter 1. Introduction

24

to run each module individually. The direct compatibility means that experiments can run in a

pipeline of two or more modules, where the results of one module are directly passed to the

next.

Figure 1-3 Flow diagram of how the modules interact with each other. The green rectangles are the core modules, yellow
rectangles are the utilities, and the white ellipses represent external entities that interact with the system.

The following sections briefly describe the purpose of each module and how it interacts with

the rest of the system, given that detailed descriptions are given in the corresponding chapters.

1.3.1 Mass Distribution Calculator (MDC).
A tool that takes a list of vertices, facets and material properties such as thickness and density

to calculate the total mass of the body, as well as the location of the Centre of Mass (CoM) and

the moment of inertia.

Chapter 1. Introduction

25

1.3.2 6-DoF Motion Simulator (SMOD)
A module that simulates the motion of a rigid body from a set of initial conditions, disturbances

such as internal and external forces and torques, and the body’s mass and moment of inertia.

1.3.3 Animation Module (AMOD)
A module that takes as input the geometry description of the body (vertices, facets and colour)

and a time-spread vector with the position and orientation values so that it can move geometries

in the scene and create an animation with it.

1.3.4 Utility Functions and Classes
The system includes a set of utility functions and classes to ease the data transfer from external

and future entities to the core modules. The utilities shown in Figure 1-3 are a function to convert

body description data from a specific format to the one that the MDC uses, and a class to add

vectors of different types.

1.3.4.1 Body Description Converter
A function that converts a geometry description of a body from a third party format such as

NASTRAN® to the format the MDC supports.

1.3.4.2 Time Vector Addition
A class that concatenates different vector sources such as constants and time changing functions

and adds their values at a specific moment in time.

1.4 Deliverables

From the core modules the SMOD is delivered because it is the core of the entire system and it

is the main reason for the development of the project. In addition to the SMOD, the AMOD is

delivered because it displays the results of the simulation in a manner that clearly shows the

rigid body motion. The AMOD is of great importance for the academic impact of the project.

From the system’s utilities, the Time Vector Addition class was developed to provide a tool to

concatenate multiple constant and time changing disturbances, thus enabling more advanced

simulations.

The remaining modules and utilities that appear in Figure 1-3 were left for future development.

In that way, feedback for the first iteration can also be applied on further iterations.

Chapter 2. Motion Simulation Module

26

 Motion Simulation Module

2.1 Overview

The SMOD is a tool capable of simulating the 6-DoF motion of a rigid body, it is the core of

the system and it is the main reason for the development of this project. The reason for the

SMOD to be considered the core of the system is that it is what computes the motion of a rigid

body.

2.1.1 Previous work
There are several ways to simulate the motion of rigid bodies in ML, examples of that are the

use of existing simulators such as the ones discussed in Chapter 1:, writing the code for the

required mathematical models with the standard ML language, or the use of Simulink®. The

latter has a graphical interface in which users connect blocks to create models of dynamic

systems. Simulink®’s standard blocks are enough to assemble the model for the motion of a

rigid body. However, The MathWorks™ developed the Aerospace Blockset™ for Simulink®,

which adds blocks that encapsulate operations such as the computation of the 6-DoF motion of

a rigid body, coordinate transformations, and 3D visualisation. On a different approach, where

ML’s programming language is used by either writing a script or by using the ML console, the

equations of motion for a moving rigid body can be solved with numerical methods or with

symbolic mathematics. Gace [24, 25] constructed functions that simulate the 6-DoF motion of

a single rigid body with fixed or variable mass by using ML’s explicit Runge-Kutta (4,5)

integrator (ODE45) to solve the Newton-Euler equations. The functions take as input a set of

initial conditions for the position, orientation, linear and angular velocities, and in the case of

the function that simulates the motion of bodies with variable mass, an initial condition for the

mass is also required. It is important to notice that, although the functions consider the initial

orientation of the body, they do not compute the change of orientation with respect to time.

Another example that utilises numerical methods is the report by Ganapathi [26], who focuses

on the study of the conservation of angular momentum of a symmetrical top and an

asymmetrical top under torque and torque-free conditions. The code in the report implements a

fourth order Runge-Kutta integrator to solve the Euler equations of rotational motion to find the

Chapter 2. Motion Simulation Module

27

angular velocity, and the quaternion’s kinematic equation (see Eq. 1.18) to find the body’s

orientation.

In contrast to the numerical methods approach, there is also the use of symbolic mathematics.

The book by Harper [27], for instance, has many examples of how to use ML’s Symbolic

Toolbox™ to obtain symbolic solutions to mechanics problems such as translation, rotation,

impulse and momentum, work and energy, and vibrations. In addition to the examples, the book

has an introduction to ML so that students can get familiar with the programming language, the

console, the scripts, the graphics, and naturally, with ML’s approach to symbolic mathematics.

Lastly, and as mentioned in Chapter 1:, there are also third-party toolboxes for ML that support

the simulation of the motion of multibody systems. Examples of such toolboxes are the “Satellite

Dynamics Toolbox” [9, 28], “QuIRK” [5], and the “Spatial Vector and Rigid-Body Dynamics

Software” [6]. The Satellite Dynamics Toolbox (SDT) uses the Newton-Euler equations for the

simulation of multi-body dynamics in space applications. In addition, the SDT is capable of

simulating the motion of any multi-body system assembled as an open chain by a base, joints

and appendages. QuIRK, is a toolbox for ML programmed in an object oriented fashion to

improve modularity. QuIRK stands for Quaternion-state Interface for Rigid-body Kinetics, and

as the name suggests, it uses quaternions to represent the attitude of the bodies. QuIRK uses the

Udwadia-Kalaba pseudoinverse method, augmented for singular mass matrices [29], to

calculate the motion of constrained multi-body systems. Additionally, QuIRK includes a

visualisation tool to display the results of the simulations. The third and last example, Spatial

[6], is a set of functions built to compute vector arithmetic and multi-body dynamics in ML. The

algorithms implemented in the functions support both constrained and unconstrained motion.

In conclusion, the development of a motion simulator has multiple possible combinations when

considering the number of bodies to simulate (single-body or multi-body), the solutions through

symbolic mathematics or numerical methods, the chosen mechanics (Newtonian or a

generalised-coordinates method such as the Udwadia-Kalaba), and the attitude simulation

method (Euler angles or quaternions).

2.1.2 Module’s Design
Mechanics. To decide which mechanics approach to use, the source code and documentation

of [5], [6], [9] and [24] was inspected. Thereafter, it was concluded that using Newton-Euler

Chapter 2. Motion Simulation Module

28

mechanics is simpler in comparison to a generalised-coordinates method. Hence, and based on

the statement of Zipfel [30] that says: “For any new dynamic theory to be acceptable, it must

contain Newtonian dynamics as a limiting case”, the SMOD is limited to the use of Newton-

Euler mechanics for the simulation, leaving the implementation of a generalised coordinates

method for a future implementation.

Attitude. The SMOD is capable of simulating the attitude of a rigid body with Euler angles and

quaternions. Both methods were chosen so that users have multiple options. From an academic

point of view, being able to observe the differences between the two methods enables users to

understand particular events such as how rigid bodies behave when a singularity occurs in the

Euler angles simulation and how quaternions are used to avoid it.

Single body simulation. For the purposes of this thesis, the SMOD is limited to the simulation

of a single rigid body. Support for multibody dynamics will be incorporated in future

development, as well as attitude propagation and attitude control modules for satellites.

Numerical solvers. The SMOD is limited to the use of numeric solvers because the platform

should be as generic as possible regarding the motion of a rigid body, and according to Harper

[27], students should use numerical solutions only when the symbolic approach fails, meaning

that the numerical solutions have a higher success rate.

Coordinate system. A three-dimensional Euclidean space is used to represent the position of

points in the physical world, where the 𝑍𝑍 axis points to the zenith.

Units system. All the units in the module follow the MKS unit system.

2.2 Rigid Body Dynamics

This section gives a brief theoretical basis of the mathematical models used in the

implementation of the SMOD. As mentioned in section 2.1.2, the module runs simulations using

Newton-Euler mechanics, therefore, the rigid body dynamics described in this section are based

on Newton’s Three Laws of motion and Euler’s equations for rotational motion.

Using the concepts of particle, rigid body and centre of mass from [31], a particle is a

hypothetical object that has mass but no extension, a rigid body is a collection of such objects,

and the centre of mass (CoM) is the point with the position vector defined by:

Chapter 2. Motion Simulation Module

29

 𝑟𝑟𝑐𝑐𝑒𝑒 =
∑ 𝑚𝑚𝑖𝑖𝑟𝑟𝑖𝑖𝑒𝑒𝑖𝑖

𝑚𝑚
 Eq. 1.1

Where 𝑟𝑟𝑐𝑐𝑒𝑒 is the position vector for the body’s CoM with respect to the inertial frame 𝑒𝑒, 𝑚𝑚𝑖𝑖

is the mass of the 𝑖𝑖𝑡𝑡ℎ particle, 𝑟𝑟𝑖𝑖𝑒𝑒 is position vector referred to the inertial frame 𝑒𝑒 of the 𝑖𝑖𝑡𝑡ℎ

particle, and 𝑚𝑚 = ∑ 𝑚𝑚𝑖𝑖𝑖𝑖 . Figure 2-1 illustrates a rigid body as a collection of particles and the

particles’ position vectors with respect to the IRF.

Moreover, “a collection of particles is called rigid body if there exists a reference frame in which

each particle’s position remains the same over time” [31]. Such a reference frame is called body-

fixed reference frame (BRF). Figure 2-2 shows a rigid body with a BRF fixed to its CoM.

Figure 2-1 Collection of 𝑖𝑖 particles with position vectors 𝑟𝑟𝑖𝑖 representing a rigid body with centre of mass located at 𝑟𝑟𝑐𝑐.

Chapter 2. Motion Simulation Module

30

Figure 2-2 Relation between the IRF and a BRF centred at the body's CoM.

2.2.1 Translational Motion
The translational dynamics of a particle in Newtonian mechanics are represented by Newton’s

second law, which states that the rate of change of linear momentum of a particle is equal in

magnitude and direction to the force applied to the particle [30]. Which for any particle 𝑖𝑖 is

represented by:

 �̇�𝐿𝑖𝑖𝑏𝑏 = 𝑓𝑓𝑖𝑖𝑏𝑏 Eq. 1.2

Where �̇�𝐿𝑖𝑖𝑏𝑏 is the rate of change of linear momentum of the particle 𝑖𝑖 with respect to time and

with respect to the inertial frame 𝑏𝑏, and 𝑓𝑓𝑖𝑖𝑏𝑏 is the force applied to the particle with respect to

the reference frame 𝑏𝑏. Then, since the linear momentum is the product of the particle’s mass

and velocity, Eq. 1.2 can be rewritten as:

 𝑚𝑚𝑖𝑖�̇�𝑣𝑖𝑖𝑏𝑏 = 𝑓𝑓𝑖𝑖𝑏𝑏 Eq. 1.3

Where �̇�𝑣𝑖𝑖𝑏𝑏 is the rate of change with respect to time of linear velocity of the particle with respect

to the reference frame 𝑏𝑏.

In general terms, the internal forces acting on the particle should also be considered. The internal

forces are those that particles apply on each other. Then, the total force acting on the 𝑖𝑖𝑡𝑡ℎ particle

is given by:

Chapter 2. Motion Simulation Module

31

�𝑓𝑓𝑖𝑖𝑖𝑖𝑥𝑥

𝑖𝑖

+ �𝑓𝑓𝑖𝑖𝑖𝑖𝑑𝑑

𝑖𝑖

= 𝑚𝑚𝑖𝑖�̇�𝑣𝑖𝑖𝑏𝑏 Eq. 1.4

Where 𝑓𝑓𝑖𝑖𝑖𝑖𝑥𝑥 is the 𝑗𝑗𝑡𝑡ℎ external force applied to the 𝑖𝑖𝑡𝑡ℎ particle and 𝑓𝑓𝑖𝑖𝑖𝑖𝑑𝑑 is the 𝑗𝑗𝑡𝑡ℎ internal

force applied to the 𝑖𝑖𝑡𝑡ℎ particle. However, when considering that in rigid bodies the particles

keep their positions with respect to the BRF at any point in time, the internal forces cancel each

other out by Newton’s Third Law: “To every action there is always an opposed and equal

reaction” [30]. So the equation for the total force applied to the body results:

 𝐹𝐹𝑏𝑏 = 𝐿𝐿𝑏𝑏 = �𝑚𝑚𝑖𝑖�̇�𝑣𝑖𝑖𝑏𝑏

𝑖𝑖

 Eq. 1.5

Where 𝐹𝐹𝑏𝑏 is the total force applied to the collection of particles. Next, considering that the

CoM of a rigid body is a particle with mass 𝑚𝑚 = ∑ 𝑚𝑚𝑖𝑖𝑖𝑖 and a position vector defined by Eq.

1.1, the rate of change of position with respect to time of the CoM with respect to the reference

frame 𝑏𝑏 is defined by:

 𝑣𝑣𝑐𝑐𝑏𝑏 = �̇�𝑟𝑐𝑐𝑏𝑏 =
∑ 𝑚𝑚𝑖𝑖�̇�𝑟𝑖𝑖𝑏𝑏𝑖𝑖

𝑚𝑚
 Eq. 1.6

Then, the following demonstration proves that analysing the motion of a body’s CoM is

equivalent to analysing the motion of the entire body:

 𝐹𝐹𝑐𝑐𝑏𝑏 = 𝑚𝑚�̇�𝑣𝑐𝑐𝑏𝑏 = 𝑚𝑚�̈�𝑟𝑐𝑐𝑏𝑏 = 𝑚𝑚
∑ 𝑚𝑚𝑖𝑖�̈�𝑟𝑖𝑖𝑏𝑏𝑖𝑖

𝑚𝑚
= �𝑚𝑚𝑖𝑖�̈�𝑟𝑖𝑖𝑏𝑏

𝑖𝑖

= �𝑚𝑚𝑖𝑖�̇�𝑣𝑖𝑖𝑏𝑏

𝑖𝑖

= 𝐹𝐹𝑏𝑏 Eq. 1.7

Where 𝐹𝐹𝑐𝑐𝑏𝑏 is the force applied to the CoM with respect to the reference frame 𝑏𝑏. With the

demonstration, it is possible to reformulate Eq. 1.5 so that it applies the total force to the CoM

and thus to entire rigid body:

 𝑚𝑚�̇�𝑣𝑏𝑏 = 𝐹𝐹𝑏𝑏 Eq. 1.8

From this point on, consider the reference frame 𝑏𝑏 the BRF and the inertial frame 𝑒𝑒 the IRF.

So, to observe the motion with respect to the IRF, a transformation [𝑇𝑇𝑏𝑏𝑒𝑒] is applied to 𝑣𝑣𝑏𝑏:

 𝑣𝑣𝑒𝑒 = [𝑇𝑇𝑏𝑏𝑒𝑒]𝑣𝑣𝑏𝑏 Eq. 1.9

Chapter 2. Motion Simulation Module

32

Then the force becomes:

 𝐹𝐹𝑒𝑒 = 𝑚𝑚�̇�𝑣𝑒𝑒 = 𝑚𝑚�
𝑑𝑑([𝑇𝑇𝑏𝑏𝑒𝑒]𝑣𝑣𝑏𝑏)

𝑑𝑑𝑡𝑡
� = 𝑚𝑚�[𝑇𝑇𝑏𝑏𝑒𝑒]̇ 𝑣𝑣𝑏𝑏 + [𝑇𝑇𝑏𝑏𝑒𝑒]�̇�𝑣𝑏𝑏� Eq. 1.10

As stated in [32], ��̇�𝑇𝑏𝑏𝑒𝑒� = [𝑇𝑇𝑏𝑏𝑒𝑒][Ω𝑏𝑏], where [Ω𝑏𝑏] is the skew antisymmetric matrix of 𝜔𝜔𝑏𝑏. Then:

 𝐹𝐹𝑒𝑒 = 𝑚𝑚([𝑇𝑇𝑏𝑏𝑒𝑒][Ω𝑏𝑏]𝑣𝑣𝑏𝑏 + [𝑇𝑇𝑏𝑏𝑒𝑒]�̇�𝑣𝑏𝑏) = 𝑚𝑚[𝑇𝑇𝑏𝑏𝑒𝑒](�̇�𝑣𝑏𝑏 + 𝜔𝜔𝑏𝑏 × 𝑣𝑣𝑏𝑏) Eq. 1.11

Thereafter, applying the inverse transformation [𝑇𝑇𝑒𝑒𝑏𝑏] to both sides of Eq. 1.11 and rearranging

to leave �̇�𝑣𝑏𝑏 on the left side of the equation:

 �̇�𝑣𝑏𝑏 =
𝐹𝐹𝑏𝑏

𝑚𝑚
− 𝜔𝜔𝑏𝑏 × 𝑣𝑣𝑏𝑏 Eq. 1.12

2.2.2 Rotational Motion
Before starting the analysis of the rotational motion, the concept of moment of inertia needs to

be introduced. The moment of inertia represents the mass distribution of a rigid body with

respect to a certain inertial frame [32]. In a three-dimensional space, the moment of inertia 𝐼𝐼𝑏𝑏

with respect to the reference frame 𝑏𝑏 is defined by:

 𝐼𝐼𝑏𝑏 = �
𝐼𝐼𝑥𝑥𝑥𝑥 −𝐼𝐼𝑥𝑥𝑥𝑥 −𝐼𝐼𝑥𝑥𝑥𝑥
−𝐼𝐼𝑥𝑥𝑥𝑥 𝐼𝐼𝑥𝑥𝑥𝑥 −𝐼𝐼𝑥𝑥𝑥𝑥
−𝐼𝐼𝑥𝑥𝑥𝑥 −𝐼𝐼𝑥𝑥𝑥𝑥 𝐼𝐼𝑥𝑥𝑥𝑥

� Eq. 1.13

Where the elements in the diagonal are called principal moments of inertia and rest of the terms

are called products of inertia. The principal moments of inertia are the product of the mass of a

particle 𝑖𝑖 and the square of the shortest distance to one of the coordinate axes of the reference

frame 𝑏𝑏. [32]

𝐼𝐼𝑥𝑥𝑥𝑥 = �𝑚𝑚𝑖𝑖(𝑦𝑦𝑖𝑖2 + 𝑧𝑧𝑖𝑖2)
𝑖𝑖

𝐼𝐼𝑥𝑥𝑥𝑥 = �𝑚𝑚𝑖𝑖(𝑥𝑥𝑖𝑖2 + 𝑧𝑧𝑖𝑖2)
𝑖𝑖

𝐼𝐼𝑥𝑥𝑥𝑥 = �𝑚𝑚𝑖𝑖(𝑥𝑥𝑖𝑖2 + 𝑦𝑦𝑖𝑖2)
𝑖𝑖

 Eq. 1.14

Chapter 2. Motion Simulation Module

33

Similarly, the product of inertia of a particle 𝑖𝑖 with respect to a set of two orthogonal planes is

the product of the mass of the particle and the shortest distances from the planes to the particle:

𝐼𝐼𝑥𝑥𝑥𝑥 = �𝑚𝑚𝑖𝑖𝑥𝑥𝑖𝑖𝑦𝑦𝑖𝑖
𝑖𝑖

𝐼𝐼𝑥𝑥𝑥𝑥 = �𝑚𝑚𝑖𝑖𝑦𝑦𝑖𝑖𝑧𝑧𝑖𝑖
𝑖𝑖

𝐼𝐼𝑥𝑥𝑥𝑥 = �𝑚𝑚𝑖𝑖𝑥𝑥𝑖𝑖𝑧𝑧𝑖𝑖
𝑖𝑖

 Eq. 1.15

Since the moment of inertia is calculated with the distances to the axes of the reference frame,

there is a different moment of inertia matrix for each different reference frame. Therefore,

bringing back the concept of a BRF where all the particles of a rigid body keep their original

position over time, it is possible to conclude that a moment of inertia with respect to the BRF

will remain constant. Therefore, the following analysis considers a BRF 𝑏𝑏 fixed to the body’s

CoM as in Figure 2-2. And now, the angular momentum is defined by:

 𝐻𝐻𝑏𝑏 = 𝐼𝐼𝑏𝑏𝜔𝜔𝑏𝑏 Eq. 1.16

Where 𝐻𝐻𝑏𝑏 is the angular momentum of the rigid body with respect to the BRF. Then, to observe

the motion with respect to the IRF, a process similar to the one for Eq. 1.12 with a transformation

[𝑇𝑇𝑏𝑏𝑒𝑒] is carried out and results in:

 �̇�𝜔𝑏𝑏 = [I−1]𝑏𝑏�𝑀𝑀𝑏𝑏 − 𝜔𝜔𝑏𝑏 × (𝐼𝐼𝑏𝑏𝜔𝜔𝑏𝑏)� Eq. 1.17

Where 𝑀𝑀𝑏𝑏 is the applied torque about the CoM.

2.2.3 Attitude Simulation

2.2.3.1 Quaternions
For the following equations, consider an arbitrary unit quaternion 𝑞𝑞 with magnitudes

[𝑞𝑞0 𝑞𝑞1 𝑞𝑞2 𝑞𝑞3]𝑇𝑇 on a base [𝑤𝑤 𝑖𝑖 𝑗𝑗 𝑘𝑘], where 𝑤𝑤 is the real component and [𝑖𝑖 𝑗𝑗 𝑘𝑘]

are the vector or complex components.

According to Shuster and Dillinger [33], the quaternions are considered the best option for

attitude simulation because its kinematic equation is linear and which satisfies only a single

constraint that is easy to enforce. The constraint is 𝑞𝑞02 + 𝑞𝑞12 + 𝑞𝑞22 + 𝑞𝑞32 = 1.

Chapter 2. Motion Simulation Module

34

The kinematic equation of the quaternion can be written in a matrix representation [34]:

 �

�̇�𝑞0
�̇�𝑞1
�̇�𝑞2
�̇�𝑞3

� =
1
2
⎣
⎢
⎢
⎢
⎡

0 −𝜔𝜔𝑏𝑏𝑥𝑥 −𝜔𝜔𝑏𝑏𝑥𝑥 −𝜔𝜔𝑏𝑏𝑥𝑥
𝜔𝜔𝑏𝑏𝑥𝑥 0 𝜔𝜔𝑏𝑏𝑥𝑥 −𝜔𝜔𝑏𝑏𝑥𝑥
𝜔𝜔𝑏𝑏𝑥𝑥 −𝜔𝜔𝑏𝑏𝑥𝑥 0 𝜔𝜔𝑏𝑏𝑥𝑥
𝜔𝜔𝑏𝑏𝑥𝑥 𝜔𝜔𝑏𝑏𝑥𝑥 −𝜔𝜔𝑏𝑏𝑥𝑥 0 ⎦

⎥
⎥
⎥
⎤
�

𝑞𝑞0
𝑞𝑞1
𝑞𝑞2
𝑞𝑞3

� Eq. 1.18

2.2.3.2 Euler Angles
The reason for the term “6-Degrees of Freedom” to exist is that the position and orientation of

one reference frame with respect to another can be represented by a set of three coordinates

[𝑥𝑥 𝑦𝑦 𝑧𝑧] and a set of three angles [𝜙𝜙 𝜃𝜃 𝜓𝜓]. These angles are called Euler or Eulerian angles

and they are used in a sequence of rotations to represent the orientation of one reference frame

with respect to another. Figure 2-3, Figure 2-4, Figure 2-5 and Figure 2-6 illustrate how the BRF

is rotated by the angles [𝜙𝜙 𝜃𝜃 𝜓𝜓] with respect to the IRF in a Z-Y-X sequence. The principal

axes of the IRF are [𝑋𝑋𝑒𝑒 𝑌𝑌𝑒𝑒 𝑍𝑍𝑒𝑒] while the BRF has [𝑥𝑥𝑏𝑏 𝑦𝑦𝑏𝑏 𝑧𝑧𝑏𝑏]. In all figures, the axes

[𝑥𝑥′ 𝑦𝑦′ 𝑧𝑧′] represent positions for [𝑥𝑥𝑏𝑏 𝑦𝑦𝑏𝑏 𝑧𝑧𝑏𝑏] after each rotation. Finally, [�̇�𝜙 �̇�𝜃 �̇�𝜓] are

the rates of change of the Euler angles with respect to time.

Figure 2-3 IRF (dotted) and BRF (continuous) aligned.

Chapter 2. Motion Simulation Module

35

Figure 2-4 BRF (continuous lines) rotated by 𝜓𝜓 with respect to the IRF (dotted lines).

Figure 2-5 BRF (continuous lines) rotated by 𝜓𝜓 and 𝜃𝜃 with respect to the IRF (dotted lines). x' is a previous position of the BRF.

Chapter 2. Motion Simulation Module

36

Figure 2-6 BRF (continuous lines) rotated by 𝜓𝜓, 𝜃𝜃, and 𝜙𝜙 with respect to the IRF (dotted lines). [𝑥𝑥′ 𝑦𝑦′ 𝑧𝑧′] are previous
positions of the BRF.

The values of the angles can be determined with the help of Euler’s theorem, which states that

any combination of rotations of one reference frame with respect to another can be represented

by one single rotation about some axis. However, before combining rotations, it is necessary to

understand that combining finite rotations has different results as when combining infinitesimal

rotations. While infinitesimal rotations are commutative, finite rotations are not. To demonstrate

such a statement, take the following rotation matrices:

[𝑅𝑅(𝜙𝜙)] = �
1 0 0
0 cos𝜙𝜙 sin𝜙𝜙
0 −sin𝜙𝜙 cos𝜙𝜙

� [𝑅𝑅(𝜃𝜃)] = �
cos 𝜃𝜃 0 −sin𝜃𝜃

0 1 0
sin𝜃𝜃 0 cos 𝜃𝜃

�

When commutative, the following condition should be met:

 [𝑅𝑅(𝜙𝜙)][𝑅𝑅(𝜃𝜃)] = [𝑅𝑅(𝜃𝜃)][𝑅𝑅(𝜙𝜙)] Eq. 1.19
Using finite values for 𝜙𝜙 and 𝜃𝜃 results in a inequality:

�
cos𝜃𝜃 0 − sin𝜃𝜃

sin𝜙𝜙 sin𝜃𝜃 cos𝜙𝜙 sin𝜙𝜙 cos 𝜃𝜃
cos𝜙𝜙 sin𝜃𝜃 −sin𝜙𝜙 cos𝜙𝜙 cos𝜃𝜃

� ≠ �
cos𝜃𝜃 0 sin𝜙𝜙 sin𝜃𝜃 − cos𝜙𝜙 sin𝜃𝜃

0 cos𝜙𝜙 sin𝜙𝜙
sin𝜃𝜃 − cos𝜃𝜃 sin𝜙𝜙 cos𝜙𝜙 cos𝜃𝜃

�

The condition in Eq. 1.19 is not met. Hence, finite rotations are not commutative. However, the

result is different when infinitesimal angles are used. First, the limits when 𝜙𝜙 → 0 and 𝜃𝜃 → 0

are found:

Chapter 2. Motion Simulation Module

37

lim
𝜙𝜙→0; 𝜃𝜃→0

[𝑅𝑅(𝜙𝜙)][𝑅𝑅(𝜃𝜃)] = [𝐼𝐼] lim
𝜙𝜙→0; 𝜃𝜃→0

[𝑅𝑅(𝜃𝜃)][𝑅𝑅(𝜙𝜙)] = [𝐼𝐼]

Where [𝐼𝐼] is a 3x3 identity matrix. Then in Eq. 1.19:

lim
𝜙𝜙→0; 𝜃𝜃→0

[𝑅𝑅(𝜙𝜙)][𝑅𝑅(𝜃𝜃)]− [𝑅𝑅(𝜃𝜃)][𝑅𝑅(𝜙𝜙)] = [𝐼𝐼]− [𝐼𝐼] = 0

That proves that infinitesimal rotations are commutative, which means that they can be used as

vectors, as well as their rates of change with respect to time, or time derivatives in other words.

As demonstrated in [31], the direction and magnitude of the angular velocity of a rigid body

represent the body’s axis and rate of rotation respectively. Then, Euler’s theorem can be applied

to represent the angular velocity of the body (single rotation) with the time-rates of change of

the Euler angles (multiple rotations). It can be seen in Figure 2-6, that the components of the

angular velocity in terms of the rates of change of the Euler angles are:

�
𝜔𝜔𝑥𝑥
𝜔𝜔𝑥𝑥
𝜔𝜔𝑥𝑥
�
𝑏𝑏

= �
�̇�𝜙
0
0
� + �

1 0 0
0 cos𝜙𝜙 sin𝜙𝜙
0 −sin𝜙𝜙 cos𝜙𝜙

� �
0
�̇�𝜃
0
�

+ �
1 0 0
0 cos𝜙𝜙 sin𝜙𝜙
0 −sin𝜙𝜙 cos𝜙𝜙

��
cos 𝜃𝜃 0 −sin𝜃𝜃

0 1 0
sin𝜃𝜃 0 cos 𝜃𝜃

� �
0
0
�̇�𝜓
�

Eq. 1.20

Finally, the matrices in Eq. 1.20 are concatenated and inverted to obtain an ordinary differential

equation (ODE) that will output the instantaneous values of the Euler angles when integrated. It

is important to notice, however, that the Euler angles in Eq. 1.20 represent rotations of the BRF

with respect to the IRF, but in Eq. 1.21, since the matrix is inverted, the Euler angles represent

a rotation of the IRF with respect to the BRF.

 �
�̇�𝜙
�̇�𝜃
�̇�𝜓
� = �

1 sin𝜙𝜙 tan𝜃𝜃 cos𝜙𝜙 tan𝜃𝜃
0 cos𝜙𝜙 − sin𝜙𝜙

0
sin𝜙𝜙
cos 𝜃𝜃

cos𝜙𝜙
cos 𝜃𝜃

� �
𝜔𝜔𝑥𝑥
𝜔𝜔𝑥𝑥
𝜔𝜔𝑥𝑥
�
𝑏𝑏

 Eq. 1.21

2.2.4 Coordinate Transformations
A coordinate transformation is an operation that transforms a vector from one coordinate system

to another. In the general terms of linear algebra, such operations are called linear

Chapter 2. Motion Simulation Module

38

transformations, and they transform vectors from one vector space to another. In geometry,

rotations, reflexions, translations and projections are examples of linear transformations [35].

Within the simulation, quaternions and Euler angles are used to create linear transformations to

rotate one reference frame with respect to another, that is, to rotate the BRF with respect to the

IRF, as seen in Figure 2-6. Similarly, the inverse transformation will rotate the IRF with respect

to the BRF.

The next two subsections describe how the rotations are generated in both the quaternion and

Euler angle approaches and how they are applied.

2.2.4.1 Transforming with quaternions
As mentioned before, and within the scope of this project, transformations also receive the name

of rotations. Hence, the SMOD uses quatrotate from the Aerospace Toolbox™ to create a

rotation matrix from an input quaternion and apply it to rotate vectors. Internally, quatrotate

converts an input quaternion into a DCM [𝑅𝑅𝑎𝑎𝑏𝑏] by calling quat2dcm. Then the function uses the

[𝑅𝑅𝑎𝑎𝑏𝑏] to rotate an input vector 𝑝𝑝𝑎𝑎 into a rotated vector 𝑝𝑝𝑏𝑏 as in Eq. 1.22.

 𝑝𝑝𝑏𝑏 = [𝑅𝑅𝑎𝑎𝑏𝑏]𝑝𝑝𝑎𝑎 Eq. 1.22

Consequently, knowing that the quaternions that result from the simulation rotate vectors of the

IRF with respect to the BRF, it is deduced that using quatrotate on the simulation’s output

generates [𝑅𝑅𝑒𝑒𝑏𝑏], which according to the function’s documentation has the form of:

 [𝑅𝑅]𝑒𝑒𝑏𝑏 = �
(q02 + 𝑞𝑞12 − 𝑞𝑞22 − 𝑞𝑞32) 2(q1𝑞𝑞2 + 𝑞𝑞0𝑞𝑞3) 2(q1𝑞𝑞3 − 𝑞𝑞0𝑞𝑞2)

2(q1𝑞𝑞2 − 𝑞𝑞0𝑞𝑞3) (q02 − 𝑞𝑞12 + 𝑞𝑞22 − 𝑞𝑞32) 2(q2𝑞𝑞3 + 𝑞𝑞0𝑞𝑞1)
2(q1𝑞𝑞3 + 𝑞𝑞0𝑞𝑞2) 2(q2𝑞𝑞3 − 𝑞𝑞0𝑞𝑞1) (q02 − 𝑞𝑞12 − 𝑞𝑞22 + 𝑞𝑞32)

� Eq. 1.23

In the opposite way, inverting the quaternion with a call to quatinv before the call to quatrotate

causes vectors to instead be transformed by [𝑅𝑅𝑏𝑏𝑒𝑒]. The quaternion inverting function quatinv is

also part of the Aerospace Toolbox™.

2.2.4.2 Transforming with Euler Angles
As demonstrated in section 2.2.3.2, the combination of Euler angles is not commutative,

meaning that the same angles will produce different rotations when combined in different

sequences. Recalling the explanations of section 2.2.3.2, the Euler angles in Eq. 1.20 are used

in a Z-Y-X sequence to represent rotations of the BRF with respect to the IRF. On the other

Chapter 2. Motion Simulation Module

39

hand, since Eq. 1.21 is the inverse of Eq. 1.20, its Euler angles are used in a X-Y-Z sequence to

represent rotations of the IRF with respect to the BRF, which can be expressed as:

 [𝑅𝑅𝑒𝑒𝑏𝑏] = �
1 0 0
0 cos𝜙𝜙 sin𝜙𝜙
0 −sin𝜙𝜙 cos𝜙𝜙

��
cos 𝜃𝜃 0 −sin𝜃𝜃

0 1 0
sin𝜃𝜃 0 cos 𝜃𝜃

��
𝑟𝑟𝑐𝑐𝑠𝑠𝜓𝜓 𝑠𝑠𝑖𝑖𝑠𝑠𝜓𝜓 0
−𝑠𝑠𝑖𝑖𝑠𝑠𝜓𝜓 𝑟𝑟𝑐𝑐𝑠𝑠𝜓𝜓 0

0 0 1
� Eq. 1.24

And in consequence, rotations of the BRF with respect to the IRF will be done with:

[𝑅𝑅𝑏𝑏𝑒𝑒] = �
− cos𝜓𝜓 − sin𝜓𝜓 0

sin𝜓𝜓 − cos𝜓𝜓 0
0 0 1

��
−cos𝜃𝜃 0 − sin𝜃𝜃

0 1 0
− sin𝜃𝜃 0 − cos 𝜃𝜃

��
1 0 0
0 − cos𝜙𝜙 − sin𝜙𝜙
0 sin𝜙𝜙 −cos𝜙𝜙

� Eq. 1.25

2.2.5 State Vector
At this point, the equations of motion have been derived and can be concatenated in a single

state vector. The quantities of interest are the position and linear velocity of the body’s CoM

with respect to the IRF, the angular and linear velocities of the body with respect to the BRF,

and the attitude representation. Hence, the state vector is created with a combination of Eq. 1.12,

Eq. 1.17, Eq. 1.18, Eq. 1.21, Eq. 1.25 and the inverse of Eq. 1.23.

 𝑆𝑆 =

⎣
⎢
⎢
⎢
⎡
�̇�𝑟𝑒𝑒
�̇�𝑣𝑒𝑒
�̇�𝑣𝑏𝑏
�̇�𝜔𝑏𝑏

�̇�𝐴 ⎦
⎥
⎥
⎥
⎤

=

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡ [𝑅𝑅𝑏𝑏𝑒𝑒]𝑣𝑣𝑏𝑏

[𝑅𝑅𝑏𝑏𝑒𝑒]
𝐹𝐹𝑏𝑏

𝑚𝑚

𝐹𝐹𝑏𝑏

𝑚𝑚
− 𝜔𝜔𝑏𝑏 × 𝑣𝑣𝑏𝑏

𝐼𝐼𝑏𝑏−1 �𝑀𝑀𝑏𝑏 − 𝜔𝜔𝑏𝑏 × �𝐼𝐼𝑏𝑏𝜔𝜔𝑏𝑏��
𝐴𝐴(𝑡𝑡) ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 Eq. 1.26

Where 𝑟𝑟𝑒𝑒 is the position of the body with respect to the IRF, 𝑣𝑣𝑒𝑒 is the linear velocity with

respect to the IRF and 𝐴𝐴(𝑡𝑡) is the selected attitude simulation function, i.e. either Eq. 1.18 or

Eq. 1.21. In addition, depending on the selected attitude simulation method, [𝑅𝑅𝑏𝑏𝑒𝑒] is generated

with either Eq. 1.25 or the inverse of Eq. 1.23.

The known values in the state vector 𝑆𝑆 are the input force 𝐹𝐹𝑏𝑏, the input torque 𝑀𝑀𝑏𝑏, the moment

of inertia 𝐼𝐼𝑏𝑏, and the mass of the rigid body. Additionally, the initial values for 𝑟𝑟𝑒𝑒, 𝑣𝑣𝑒𝑒, 𝑣𝑣𝑏𝑏, 𝜔𝜔𝑏𝑏

and for whatever the attitude representation is, are also known.

Chapter 2. Motion Simulation Module

40

2.3 Software Implementation

2.3.1 Module Requirements
The simulation module needed to meet the following requirements in order to provide a

convenient rigid body motion simulation platform:

Independence from the other modules. Mass calculations must not be mandatory prior to a

simulation and an animation must not be mandatory to visualise the results.

Simulation of 6 Degrees of Freedom. The module must be able to simulate a rigid body’s

displacement along and rotation about the X, Y and Z components of the Cartesian coordinate

system.

Support for generic rigid bodies. There must be no constraints in the shape or dimensions of

the rigid body being simulated.

Ease of use. Users should not have to deal with the equations of motion themselves.

Simple code. The programme’s code must be written in simple and clear statements that enable

any user, disregarding the amount of programming experience, to fully understand it in case

they wish to modify the module’s functionality.

Different solver options. The module must support more than one ordinary differential solver

option so that users can choose the one of their preference.

Support for different attitude simulation methods. The module should be able to simulate the

attitude of a rigid body with quaternions as well as with Euler angles.

Time-changing disturbances. The module should be able to solve problems with forces and

torques that vary with time.

2.3.2 Module Workflow
The module is implemented in one class: RbSimulation, which corresponds to one rigid body

for every instance of the class. The simulations have two mandatory steps: instantiate an object

of the class and running the simulation. Figure 2-7 shows the flow with which simulations are

run with the module. Steps marked with dotted lines are optional.

Chapter 2. Motion Simulation Module

41

All the initial conditions, mass properties, disturbances and simulation time span have default

values, so it is technically possible to run simulations just after instantiation, although all the

results would be zero. Moreover, the attitude is simulated with quaternions by default, based on

the statement in [33] that says they are the best option for the task.

Figure 2-7 Workflow of the SMOD.

Internally, the class runs the simulation by calling the selected ODE solver to integrate the state

vector 𝑆𝑆, from Eq. 1.26. The results of the simulation are stored in five motion-related vectors:

the position and linear velocity with respect to the IRF (𝑟𝑟𝑒𝑒 and 𝑣𝑣𝑒𝑒), the linear and angular

velocities with respect to the BRF (𝑣𝑣𝑏𝑏 and 𝜔𝜔𝑏𝑏), and an array of either quaternions or Euler

angles depending on the chosen attitude simulation method.

A guide on how to use the module, including samples of code can be found in Appendix B:.

2.3.3 RbSimulation Class
The following sections explain the purpose and functionality of the class’s properties and

methods, as well as how they interact with each other. Figure 2-8 shows a graphic description

of the module’s structure. RbSimulation is a handle class to provide event based behaviour.

2.3.3.1 Properties
The following paragraphs explain the purpose of the class’s properties. The descriptions start

with the name of the property followed by the declaration of data type within square brackets,

e.g. property_name [type]. Unless otherwise noted, all the properties are of public access.

Chapter 2. Motion Simulation Module

42

rotateV [function handle]. Depending on the chosen attitude simulation method, this handle

points to either the quatRotateV or the eulerRotateV methods. This property is private to the

RbSimulation class.

omegaEq [function handle]. Depending on the chosen attitude simulation method, this handle

points to either the omegaEqQuator or the omegaEqEuler methods. This property is private to

the RbSimulation class.

iOmega_b [1x3 double]. Initial value in radians per second of the body’s angular velocity

vector as seen from the BRF. The three columns correspond to the vector’s X, Y and Z

components. Defaults to [0 0 0].

iVelocity_b [1x3 double]. Initial value in meters per second of the body’s linear velocity vector

as seen from the BRF. The three columns correspond to the vector’s X, Y and Z components.

Defaults to [0 0 0].

Chapter 2. Motion Simulation Module

43

Figure 2-8 Class diagram of the RbSimulation class.

Chapter 2. Motion Simulation Module

44

iPosition_e [1x3 double]. Initial value in meters of the body’s centre of mass position with

respect to the IRF. The three columns correspond to the vector’s X, Y and Z components.

Defaults to [0 0 0].

iQuaternion [1x4 double]. Quaternion that represents the initial attitude of the body. The four

columns correspond to the quaternion’s [𝑤𝑤 𝑖𝑖 𝑗𝑗 𝑘𝑘] components. Defaults to [1 0 0 0].

This property is ignored when the selected attitude simulation method is Euler angles.

iEuler [1x3 double]. Vector that represents the initial attitude of the body with Euler angles in

radians. The three columns correspond to the [𝜙𝜙 𝜃𝜃 𝜓𝜓] angles. Defaults to [0 0 0]. This

property is ignored when the selected attitude simulation method is quaternions.

mass [double]. Mass of the body in kg. Defaults to 1.

inertia [3x3 double]. Moment of inertia of the body in 𝑘𝑘𝑘𝑘 𝑚𝑚2. Defaults to a 3x3 identity matrix.

solver [char]. Name of the method chosen to that solve the ordinary differential equations. The

available solution methods are those featured in ML. That is: ‘ode45', 'ode23', 'ode113', 'ode15s',

'ode23s', 'ode23t', 'ode23tb' or 'ode15i'. Defaults to 'ode23'.

ode_options [struct]. Options structure for the equation solver. Its value must be generated with

MATLAB®’s odeset function.

tspan [1x2 double]. Time span of the simulation in seconds. The columns correspond to the

initial and final time. Defaults to [0 1].

F_b [3x1 double or function handle]. Force vector in newtons that acts on the body’s centre

of mass. The property can take the shape of a 3x1 constant double or be a function handle that

points to a function that takes one argument (time) and returns a 3x1 double. In both cases, the

vector’s rows represent the X, Y and Z components of the applied force. The property defaults

to the function:

𝐹𝐹𝑏𝑏(𝑡𝑡) = �
0
0
0
�

The possibility of using function handles allows users to use time-changing forces in the

simulation.

Chapter 2. Motion Simulation Module

45

M_b [3x1 double or function handle]. Torque vector in newtons per meter that acts about the

body’s centre of mass. The property can take the shape of a 3x1 constant double or be a function

handle that points to a function that takes one argument (time) and returns a 3x1 double. In both

cases, the vector’s rows represent the X, Y and Z components of the applied torque. The property

defaults to the function:

𝑀𝑀𝑏𝑏(𝑡𝑡) = �
0
0
0
�

The possibility of using function handles allows users to use time-changing torques in the

simulation.

2.3.3.2 Simulation results
This section also describes properties of the class, although in this case the properties are of

private set access, which prevents external entities to set their values. Nevertheless, external

entities can still read their values.

run_once [boolean]. Flag that indicates if the simulation has run at least once.

position [Nx3 double]. Simulated body’s position in meters as seen from the IRF. It is a numeric

array with 3 columns for the X, Y and Z components. Each row corresponds to one time step.

velocity_e [Nx3 double]. Simulated body’s linear velocity in meters per second as seen from

the IRF. It is a numeric array with 3 columns for the X, Y and Z components. Each row

corresponds to one time step.

velocity_b [Nx3 double]. Simulated body’s linear velocity in meters per second as seen from

the BRF. It is a numeric array with 3 columns for the X, Y and Z components. Each row

corresponds to one time step.

omega_b [Nx3 double]. Simulated body’s angular velocity in radians per second as seen from

the BRF. It is a numeric array with 3 columns for the X, Y and Z components. Each row

corresponds to one time step.

quaternions [Nx4 double]. Simulated body’s attitude in unit quaternions. It is a numeric array

with 4 columns for the [𝑤𝑤 𝑖𝑖 𝑗𝑗 𝑘𝑘] components. Each row corresponds to one time step. This

Chapter 2. Motion Simulation Module

46

property is set to [1 0 0 0] when the selected attitude simulation method for the simulation

is Euler angles.

euler [Nx3 double]. Simulated body’s attitude expressed in Euler angles in radians. It is a

numeric array with 3 columns for the [𝜙𝜙 𝜃𝜃 𝜓𝜓] components. Each row corresponds to one

time step. This property is set to [0 0 0] when the selected attitude simulation method for

the simulation is quaternions.

time [Nx1 double]. Time vector of the simulation in seconds. Each row corresponds to one time

step.

2.3.3.3 Methods
The following paragraphs explain the purpose of the class’s methods. The descriptions start with

the method’s name, followed by the argument list and the data type of their return value, if any.

For example methodName(arg1, arg2) [type]. Unless otherwise noted, all the methods are

private to the RbSimulation class.

validateInput(in) [boolean, function handle]. Validates either an input force vector or an input

torque vector, which is passed in the argument. The input vector must either be a 3x1 double or

a handle that points to a function that takes one argument (time) and returns a 3x1 double. If

either of those two conditions are met, the boolean output is true, and false otherwise. When the

argument is a 3x1 double, it is converted to a function handle in the form of:

𝐼𝐼𝑠𝑠(𝑡𝑡) = �
𝑟𝑟𝑥𝑥
𝑟𝑟𝑥𝑥
𝑟𝑟𝑥𝑥
�

and returned in the second output. The component 𝒄𝒄𝒊𝒊 is a double. When the argument is already

a function handle, it is returned as is in the second output. If none of the conditions are met, the

second output returns a function handle in the form of

𝑓𝑓(𝑡𝑡) = �
0
0
0
�

validateSolver(s) [boolean, cell]. Validates the selected solver function. A solver is valid when

the argument is a string equal to one of the following options: 'ode45', 'ode23', 'ode113', 'ode15s',

'ode23s', 'ode23t', or 'ode23tb'.

Chapter 2. Motion Simulation Module

47

The boolean output is true if the string is indeed one of the possible options and false when it is

not. The second output is a cell that contains the names of the possible solvers meant to assist

the user to correct the error.

linearMotion(F, mass, omg_b, vel_b) [3x1 double]. Implementation of Eq. 1.12 in ML. The

arguments are the force applied to the body’s centre of mass in newtons, the mass of the body

in kilograms, the body angular velocity in radians per second, and the linear velocity in meters

per second as seen from the BRF. With the exception of the mass, which must be a double, all

the arguments must be 3x1 doubles where the rows are the X, Y and Z components.

rotationalMotion(M, I, omg_b) [3x1 double]. Implementation of Eq. 1.17 in ML. The

arguments are the torque applied about the body’s centre of mass in newtons per meter, the

moment of inertia of the body in 𝑘𝑘𝑘𝑘 𝑚𝑚2 and the body angular velocity in radians. With the

exception of the moment of inertia, which must be a 3x3 symmetrical numeric matrix as in Eq.

1.13, all the arguments must be 3x1 doubles where the rows are the X, Y and Z components.

quatRotateV(q, v) [3x1 double]. Implementation of the inverse of Eq. 1.23 in ML. More

information can be found in section 2.2.4.1.

The first argument must be a unit quaternion as a column vector and the second argument is the

vector to be transformed, which must be a 3x1 double.

omegaEqQuat(q, omg_b) [4x1 double]. Implementation of Eq. 1.18 in ML.

The first argument must be a unit quaternion as a column vector and the second argument is the

body angular velocity, which must be a 3x1 double.

eulerRotateV(eul, v) [3x1 double]. Implementation of rotations using .Eq. 1.25 in ML.

The first argument is a 3x1 vector with Euler angles where the rows, respectively, are the values

for [𝜙𝜙 𝜃𝜃 𝜓𝜓]. The second argument is the 3x1 vector that will be rotated. More information

about how the rotation works can be found in section 2.2.4.2.

omegaEqEul(eul, omg_b) [3x1 double]. Implementation of Eq. 1.21 in ML.

Chapter 2. Motion Simulation Module

48

The first argument must be a 3x1 vector with Euler angles where the rows, respectively, are the

values for [𝜙𝜙 𝜃𝜃 𝜓𝜓]. The second argument is the body angular velocity, which must be a 3x1

double.

concatEqs(t, Yin) [Mx1 double]. Implementation Eq. 1.26 in ML. Having all the equations of

motion together, this method is the mathematical model of the system being simulated. The

method’s first argument is the moment in time at which the equations will be solved and the

second argument is a vector with all the system’s states.

The simulation is run by passing to the chosen solver a handle to this function, along with the

time span and the initial conditions.

simulate(use_quats) [returns nothing]. Runs the simulation.

When the argument’s value is true, the simulation uses quaternions as the attitude simulation

method. When false, Euler angles are used. Defaults to true.

This method calls the chosen solver and passes as arguments a function handle to the concatEqs

method, the time span vector, and an array with the initial conditions.When the solver returns,

the results are separated and assigned to the simulation-result properties, and after this, the

run_once flag is set to true.

plotResults(window_title) [returns nothing]. Plots the simulation results against time in a

figure where the title is equal to the method’s argument.

This method will only run if the run_once flag is set. Which means that the simulation must run

at least once before plotting.

The results in the plot are position, linear velocity as seen from the IRF, linear velocity as seen

from the BRF and the body angular velocity as seen from the BRF.

throwError(id, msg, e_code, e_cause) [returns nothing]. Throws an instance of the

RbException class.

The exception’s identifier is given by the first argument and it is appended to “Simulation:” to

make simulation related errors easier to identify.

Chapter 2. Motion Simulation Module

49

The error message is given by the fourth argument. The third and fourth arguments respectively

add an error code and a cause to the exception. This method is private to the RbSimulation class.

2.4 Demonstrations

In this section the validity and accuracy of the RbSimulation class to simulate relatively simple

rigid body motion is established. That is, the numerical results of the simulation of simple and

well-known rigid body motions are compared against their analytical counterparts.

2.4.1 Free precession of a symmetrical top
The motion of a symmetrical top is a common problem in mechanics to demonstrate the effect

of symmetry about the axis of rotation of a top. For this problem, a disc-shaped ellipsoid was

chosen as the rotating top, Figure 2-9 shows its geometry and an orthogonal arrow-set to serve

as an IRF. The red, green, and blue arrows are respectively collinear with the X, Y, and Z axes.

Figure 2-9 Ellipsoid for which the problem is solved.

The equations of interest are the Euler’s equation of rotational motion, so in order to simplify

their manual solution, appropriate values for the momens of inertia must be chosen. This

assumption renders the dimensions of the disc as dependant variables. Therefore, and

considering the symmetry, it is possible to choose a value of 𝐼𝐼𝑥𝑥 = 𝐼𝐼𝑥𝑥 = 1𝑘𝑘𝑘𝑘 𝑚𝑚2 and mass of

1kg. Then, choosing a radius four times as large as its height to form a disc, the equations for

the moment of inertia from Weinsstein [36] can be rearranged to solve for the height in meters

Chapter 2. Motion Simulation Module

50

𝐼𝐼𝑥𝑥 = 𝑚𝑚 ∗
(𝑅𝑅2 + ℎ2)

5
= 𝑚𝑚 ∗

((4ℎ)2 + ℎ2)
5

= 𝑚𝑚 ∗
(17ℎ2)

5
→ ℎ = � 5𝐼𝐼𝑥𝑥

17𝑚𝑚
= 0.5423

In a similar way, the value of 𝐼𝐼𝑥𝑥 in 𝑘𝑘𝑘𝑘 𝑚𝑚2 is:

𝐼𝐼𝑥𝑥 = 𝑚𝑚 ∗
(𝑅𝑅2 + 𝑅𝑅2)

5
= 𝑚𝑚 ∗

2 ∗ (4ℎ)2

5
= 1.8822

2.4.1.1 Analytical Solution
This analytical solution follows the steps taken by Landau & Lifshitz [37]. The idealisation of

a symmetrical top’s free precession results in two simplifying conditions: there are no

disturbances (torques or forces) applied to the body, and the equality of the first two components

of the moment of inertia 𝐼𝐼𝑥𝑥 = 𝐼𝐼𝑥𝑥 due to the symmetry. Moreover, the description in [37] shows

that the motion of the angular velocity vector 𝜔𝜔 forms two different conical shapes, one that

is observed with respect to the IRF and the other one with respect to the BRF. Those two cones

are called space cone and body cone respectively, and they served in this problem as a visual

verification of the simulator’s accuracy.

Given these assumptions, and writing Eq. 1.17 in component notation, the equations of

rotational motion are reduced to:

𝐼𝐼𝑥𝑥�̇�𝜔𝑥𝑥 + (𝐼𝐼𝑥𝑥 − 𝐼𝐼𝑥𝑥)𝜔𝜔𝑥𝑥𝜔𝜔𝑥𝑥 = 0
𝐼𝐼𝑥𝑥�̇�𝜔𝑥𝑥 − (𝐼𝐼𝑥𝑥 − 𝐼𝐼𝑥𝑥)𝜔𝜔𝑥𝑥𝜔𝜔𝑥𝑥 = 0

�̇�𝜔𝑥𝑥 = 0
 Eq. 1.27

From Eq. 1.27 it is clearly identified that 𝜔𝜔𝑥𝑥 is constant with respect to time and a new constant

angular velocity 𝜔𝜔𝑘𝑘 can be defined as:

 𝜔𝜔𝑘𝑘 =
𝐼𝐼𝑥𝑥 − 𝐼𝐼𝑥𝑥
𝐼𝐼𝑥𝑥

𝜔𝜔𝑥𝑥 Eq. 1.28

Where a substitution of Eq. 1.28 in Eq. 1.27 results in:

�̇�𝜔𝑥𝑥 = −𝜔𝜔𝑘𝑘𝜔𝜔𝑥𝑥
�̇�𝜔𝑥𝑥 = 𝜔𝜔𝑘𝑘𝜔𝜔𝑥𝑥

 Eq. 1.29

Substitution of the time derivative of the first equation in Eq. 1.29 into the second equation

yields:

 �̈�𝜔𝑥𝑥 = −𝜔𝜔𝑘𝑘
2𝜔𝜔𝑥𝑥 Eq. 1.30

Chapter 2. Motion Simulation Module

51

After solving Eq. 1.30, 𝜔𝜔𝑥𝑥 and 𝜔𝜔𝑥𝑥 are found as:

𝜔𝜔𝑥𝑥(𝑡𝑡) = 𝐴𝐴 ∗ 𝑟𝑟𝑐𝑐𝑠𝑠 �

𝐼𝐼𝑥𝑥 − 𝐼𝐼𝑥𝑥
𝐼𝐼𝑥𝑥

𝜔𝜔𝑥𝑥𝑡𝑡�

𝜔𝜔𝑥𝑥(𝑡𝑡) = 𝐴𝐴 ∗ 𝑠𝑠𝑖𝑖𝑠𝑠 �
𝐼𝐼𝑥𝑥 − 𝐼𝐼𝑥𝑥
𝐼𝐼𝑥𝑥

𝜔𝜔𝑥𝑥𝑡𝑡�
 Eq. 1.31

Eq. 1.31 clearly shows that the periods of both functions are equal, so a single variable can be

used to represent both: 𝜏𝜏 = 𝜏𝜏𝜔𝜔𝑥𝑥 = 𝜏𝜏𝜔𝜔𝑦𝑦 = 𝐼𝐼𝑥𝑥
(𝐼𝐼𝑧𝑧−𝐼𝐼𝑥𝑥)𝜔𝜔𝑧𝑧

. The next step is to assign values so that the

motion can be plotted. Therefore, a value of 𝜏𝜏 = 5𝑠𝑠 is chosen so that the angular velocity vector

𝜔𝜔𝑏𝑏 rotates slow enough to be perceived. The 5 second period makes 𝜔𝜔𝑘𝑘 = 2𝜋𝜋
5𝑠𝑠

. So Eq. 1.28 can

be rearranged to find 𝜔𝜔𝑥𝑥:

𝜔𝜔𝑥𝑥 =
𝐼𝐼𝑥𝑥𝜔𝜔𝑘𝑘

𝐼𝐼𝑥𝑥 − 𝐼𝐼𝑥𝑥
= 1.4243

1
𝑠𝑠

Now, choosing an amplitude of 𝐴𝐴 = 1, also to keep the calculations simple, the solution’s

equations in Eq. 1.31 can be evaluated using the previous results:

𝜔𝜔𝑥𝑥(𝑡𝑡) = 𝑟𝑟𝑐𝑐𝑠𝑠 �
2𝜋𝜋
5𝑠𝑠

𝑡𝑡�

𝜔𝜔𝑥𝑥(𝑡𝑡) = 𝑠𝑠𝑖𝑖𝑠𝑠 �
2𝜋𝜋
5𝑠𝑠

𝑡𝑡�

𝜔𝜔𝑥𝑥 = 1.4243
1
𝑠𝑠

 Eq. 1.32

The next step is to transform the resulting angular velocity from the BRF to the IRF. To do this,

Landau & Lifshitz [37] align the Z axis of the IRF with the angular momentum vector 𝐻𝐻 by

rotating it by an angle 𝜃𝜃 around the Y axis. In this demonstration, the aligned IRF will be called

the A reference frame. As Figure 2-10 shows, with the original configuration where the IRF and

BRF are parallel, the angle 𝜃𝜃 changes depending on the instantaneous value of the angular

velocity vector 𝜔𝜔, but when the Z axis of the IRF is aligned with the angular momentum vector

𝐻𝐻, the Euler angle 𝜃𝜃 becomes constant, which means that �̇�𝜃 = 0. So the transformation’s

differential equation system is simplified, and the remaining two Euler angle rates become:

Chapter 2. Motion Simulation Module

52

�̇�𝜙 =

𝐻𝐻
𝐼𝐼𝑥𝑥

=
‖𝜔𝜔𝑏𝑏 ∗ 𝐼𝐼‖

𝐼𝐼𝑥𝑥
= 2.8615

1
𝑠𝑠𝑒𝑒𝑟𝑟

�̇�𝜓 = −𝜔𝜔𝑘𝑘 = −1.2568
1
𝑠𝑠𝑒𝑒𝑟𝑟

 Eq. 1.33

Figure 2-10 Diagrams of the parallel inertial and body reference frames (left), and the Z axis of the IRF aligned with the
angular momentum vector (right).

The angles can then be obtained by an integration of Eq. 1.33

𝜙𝜙(𝑡𝑡) = ��̇�𝜙 𝑑𝑑𝑡𝑡 = 2.8615

𝑡𝑡
𝑠𝑠𝑒𝑒𝑟𝑟

𝜓𝜓(𝑡𝑡) = ��̇�𝜓 𝑑𝑑𝑡𝑡 = −1.2568
𝑡𝑡
𝑠𝑠𝑒𝑒𝑟𝑟

 Eq. 1.34

The angle 𝜃𝜃 is the angle between the angular momentum vector H and the Z axis of the BRF,

so it can therefore be calculated by rearranging the terms of the dot product equation:

𝐻𝐻𝑏𝑏 ∙ 𝑧𝑧𝑏𝑏 = ‖𝐻𝐻𝑏𝑏‖‖𝑧𝑧𝑏𝑏‖𝑟𝑟𝑐𝑐𝑠𝑠𝜃𝜃 → 𝜃𝜃 = cos−1
𝐻𝐻𝑏𝑏 ∙ 𝑧𝑧𝑏𝑏

‖𝐻𝐻𝑏𝑏‖‖𝑧𝑧𝑏𝑏‖
= cos−1

𝜔𝜔𝑥𝑥𝐼𝐼𝑥𝑥
‖𝜔𝜔𝑏𝑏 ∗ 𝐼𝐼‖

Since the alignment of the IRF with the angular moment vector required a positive 𝜃𝜃 rotation,

a rotation in the opposite direction is required to represent an IRF-to-BRF transformation.

Therefore 𝜃𝜃 becomes:

𝜃𝜃(𝑡𝑡) = − cos−1
𝜔𝜔𝑥𝑥𝐼𝐼𝑥𝑥

‖𝜔𝜔𝑏𝑏 ∗ 𝐼𝐼‖
= −0.3570

Chapter 2. Motion Simulation Module

53

Using the angles as they are at this point would transform the body angular velocity to the A

reference frame, which is different from the IRF used by the simulator. Then, one last rotation

around the Y axis by 𝜃𝜃 is necessary to return to the original IRF.

Considering then a transformation matrix [𝑅𝑅𝑏𝑏𝐴𝐴] as,

[𝑅𝑅𝑏𝑏𝐴𝐴] = �
−𝑟𝑟𝑐𝑐𝑠𝑠𝜓𝜓 −𝑠𝑠𝑖𝑖𝑠𝑠𝜓𝜓 0
𝑠𝑠𝑖𝑖𝑠𝑠𝜓𝜓 −𝑟𝑟𝑐𝑐𝑠𝑠𝜓𝜓 0

0 0 1
��

−cos𝜃𝜃 0 𝑠𝑠𝑖𝑖𝑠𝑠𝜃𝜃
0 1 0

−𝑠𝑠𝑖𝑖𝑠𝑠𝜃𝜃 0 − cos 𝜃𝜃
��

−𝑟𝑟𝑐𝑐𝑠𝑠𝜙𝜙 −𝑠𝑠𝑖𝑖𝑠𝑠𝜙𝜙 0
𝑠𝑠𝑖𝑖𝑠𝑠𝜙𝜙 −𝑟𝑟𝑐𝑐𝑠𝑠𝜙𝜙 0

0 0 1
�

and the transformation matrix [𝑅𝑅𝐴𝐴𝑒𝑒] as

[𝑅𝑅𝐴𝐴𝑒𝑒] = �
cos𝜃𝜃 0 −𝑠𝑠𝑖𝑖𝑠𝑠𝜃𝜃

0 1 0
𝑠𝑠𝑖𝑖𝑠𝑠𝜃𝜃 0 cos 𝜃𝜃

�

where the subscript A identifies the A reference frame, the angular velocity in the original IRF

is given by the equation:

𝜔𝜔𝑒𝑒 = [𝑅𝑅𝑒𝑒𝐴𝐴]�𝑅𝑅𝐴𝐴𝑏𝑏�𝜔𝜔𝑏𝑏

Figure 2-11 shows from left to right the results of the body angular velocity with respect to the

BRF, from the A reference frame, and finally on the right side, with respect to the IRF.

As mentioned before, the motion of the angular velocity vector 𝜔𝜔 forms a space cone when

observed with respect to the IRF, and a body cone when observed with respect to the BRF. The

resulting cones for this problem can be seen in Figure 2-12, which also shows the space cone

formed in the reference frame A. The vectors were plotted with the Arrow3 Version 5 function

by [38].

Finally, the magnitude of the angular momentum vector 𝐻𝐻 was plotted in Figure 2-13 to verify

the conservation of angular momentum, which as shown in the graph, is true.

Chapter 2. Motion Simulation Module

54

Figure 2-11 Free precession of an ellipsoidal disc. Analytical solution. Angular velocity results.

Figure 2-12 Body and space cones formed by the angular velocity vector as it rotates. The body cone (cyan) is seen from the
BRF and the space cone (red) is seen from the IRF. The units of the axes are [rad/s].

Figure 2-13 Magnitude of the angular momentum vector H with respect to time.

Chapter 2. Motion Simulation Module

55

2.4.1.1 Simulation
Two simulations run in Script 2-1, one with quaternions and one with Euler angles. Figure 2-14

shows the results of both superimposed on the analytical solution. The superimposed simulation

solution (circle markers) has the same shape as the analytical solution (continuos line), thus

validating the correct operation of both attitude simulation methods. Additionally, Figure 2-15

shows the cones resulting from the simulation to visualy verify the correct operation of the

simulator.

The reason for both attitude simulation methods to run is the verification of their accurate

simulations. It must be noticed that the difference in attitude simulations will only be visible on

the IRF, because the difference lies in the way the transformation is generated. In other words,

no matter what attitude simulation method was chosen, 𝑣𝑣𝑏𝑏 and 𝜔𝜔𝑏𝑏 will always be the same.

Where as 𝑟𝑟𝑒𝑒 and 𝑣𝑣𝑒𝑒 will have different results depending on the chosen attitude simulation

method.

Figure 2-14 Free precession’s simulation. Angular velocity results. The dotted lines are the simulation results and the
continuous lines are the analytical results.

Chapter 2. Motion Simulation Module

56

Figure 2-15 Free precession’s simulation. Angular velocity cones in the refernece frame A and in the IRF.

2.4.2 Free rotation of an asymmetrical top

2.4.2.1 Theoretical basis
The free rotation of a relatively simple asymmetrical top is now considered. In his description

of the problem, Tatum [39] states that the magnitude and direction of the angular velocity vector

are mainly constrained by two conditions. The first one being that the angular momentum is

constant in magnitude, and the second condition that the kinetic energy is conserved. Therefore,

the angular momentum and the kinetic energy are respectively, at all times

𝐼𝐼12𝜔𝜔12 + 𝐼𝐼22𝜔𝜔2
2 + 𝐼𝐼32𝜔𝜔3

2 = 𝐻𝐻2

and,

1
2
𝐼𝐼1𝜔𝜔12 +

1
2
𝐼𝐼2𝜔𝜔2

2 +
1
2
𝐼𝐼3𝜔𝜔3

2 = 𝐸𝐸𝑘𝑘

Both equations can be rearranged to become ellipsoid equations:

𝜔𝜔12

(𝐻𝐻 𝐼𝐼1⁄)2
+

𝜔𝜔2
2

(𝐻𝐻 𝐼𝐼2⁄)2
+

𝜔𝜔3
2

(𝐻𝐻 𝐼𝐼3⁄)2
= 1 Eq. 1.35

and,

𝜔𝜔12

(�2𝐸𝐸𝑘𝑘/𝐼𝐼1)2
+

𝜔𝜔2
2

(�2𝐸𝐸𝑘𝑘/𝐼𝐼2)2
+

𝜔𝜔3
2

(�2𝐸𝐸𝑘𝑘/𝐼𝐼3)2
= 1 Eq. 1.36

Where the semi-axes are, respectively,

𝑎𝑎𝐻𝐻 =
𝐻𝐻
𝐼𝐼1

 𝑏𝑏𝐻𝐻 =
𝐻𝐻
𝐼𝐼2

 𝑟𝑟𝐻𝐻 =
𝐻𝐻
𝐼𝐼3

Chapter 2. Motion Simulation Module

57

And,

𝑎𝑎𝐸𝐸 = �2
𝐸𝐸𝑘𝑘
𝐼𝐼1

 𝑏𝑏𝐸𝐸 = �2
𝐸𝐸𝑘𝑘
𝐼𝐼2

 𝑟𝑟𝐸𝐸 = �2
𝐸𝐸𝑘𝑘
𝐼𝐼3

The H subscript refers to the angular momentum ellipsoid and the E subscript to the kinetic

energy ellipsoid.

The pair of ellipsoid equations constrain the terminus of the angular velocity to always be where

the two ellipsoids intersect, and the intersection is ensured by the inequalities

2𝐸𝐸𝑘𝑘𝐼𝐼1 < 𝐻𝐻2 < 2𝐸𝐸𝑘𝑘𝐼𝐼3

Up to this point, every mentioned vector is in the BRF. Landau & Lifshitz [37] prove analytically

that the angular velocity vector, although periodic in the BRF, never returns to its original

position when seen from the IRF. This demonstration does not show such solution due to its

mathematical complexity. However, it can be found in chapter 37 of [37].

In conclusion, and with the mentioned premises, the correct operation of the simulator can be

confirmed if:

1. The locus of points of the resulting 𝜔𝜔𝑏𝑏 lies on one of the intersection curves,

2. 𝜔𝜔𝑒𝑒 is not a periodic function.

2.4.2.2 Calculating the initial values
To have a demonstration closer to an actual application, a 3-unit CubeSat with deployed solar

panels is used as an asymmetrical top. It is important to notice that the satellite is only an

illustrative representation, its behaviour does not intend to model how a real satellite moves in

orbit. The solar panels are implemented to make the moment of inertia asymmetrical. Without

the panels, two of the principal moments of inertia of the satellite, being a body with square

faces, would be equal and thus symmetrical. Figure 2-16 shows a model of the satellite being

analysed.

Chapter 2. Motion Simulation Module

58

Figure 2-16 3U CubeSat.

The three cubic units are considered as one single rectangular prism with dimensions 10cm x

10cm x 34cm and together, they have an assumed mass of 3kg. These values and the orientation

as shown in Figure 2-16, comply with the CubeSat standard [40].

The solar panels were chosen from the catalogue of DHV Technology™ and its dimensions and

mass are 1.6mm x 82mm x 329mm and 132g respectively.

The calculation of the moment of inertia can be divided in two steps: calculating the principal

moments of inertia of all the bodies individually and then using the parallel axis theorem to add

them together. The formulas to calculate the principal moments of inertia of a rectangular prism

are:

 𝐼𝐼𝑥𝑥 =
𝑀𝑀
12

(𝑏𝑏2 + 𝑟𝑟2) Eq. 1.37

 𝐼𝐼𝑥𝑥 =
𝑀𝑀
12

(𝑎𝑎2 + 𝑟𝑟2) Eq. 1.38

 𝐼𝐼𝑥𝑥 =
𝑀𝑀
12

(𝑎𝑎2 + 𝑏𝑏2) Eq. 1.39

Where 𝑎𝑎, 𝑏𝑏 and 𝑟𝑟 are the dimensions of the prism along 𝑋𝑋, 𝑌𝑌 and 𝑍𝑍 respectively. The equations

are used for both the cubic units and the solar cells.

Since the solar cells are located on the 𝑌𝑌𝑍𝑍 plane and centred on the 𝑌𝑌 axis, their centres of mass,

as well as the satellite’s body, are located on the 𝑌𝑌 axis. So, in conclusion, the CoM of the entire

Chapter 2. Motion Simulation Module

59

system is the CoM of the satellite’s body. Consequently, the parallel axis theorem only needs to

be applied to the moments of inertia of the solar cells and the final moment of inertia will then

be:

𝐼𝐼𝑇𝑇 = 𝐼𝐼𝑐𝑐 + 𝐼𝐼𝑝𝑝 + 2𝑚𝑚𝑝𝑝𝑑𝑑

Where 𝐼𝐼𝑐𝑐 is the moment of inertia of the cubic units, 𝐼𝐼𝑝𝑝 is the moment of inertia of each solar

panel, 𝑚𝑚𝑝𝑝 is the mass of one solar panel and 𝑑𝑑 is the distance from the centre of mass of one

solar panel to the centre of mass of the satellite’s body. After converting all the units to MKS

and using the values in the formulas, the total moment of inertia results in:

𝐼𝐼𝑇𝑇 = �
0.0361 0 0

0 0.0338 0
0 0 0.0073

�

Next, values for the angular momentum and kinetic energy must be chosen. One of the examples

from [39] uses 𝐸𝐸𝑘𝑘 = 20𝐽𝐽 and 𝐻𝐻 = 4𝐽𝐽𝑠𝑠. However, only the value for the kinetic energy was taken

from the example because with the satellite’s moment of inertia, using the value for the angular

momentum from the example would not satisfy the inequality. So the new value for the angular

momentum is found by first assigning values to the inequality. It must first be noted that in this

demonstration the longest dimension of the satellite is aligned to the 𝑍𝑍 axis, so the inequality

must be rearranged into:

2𝐸𝐸𝑘𝑘𝐼𝐼1 > 𝐻𝐻2 > 2𝐸𝐸𝑘𝑘𝐼𝐼3

Which, after replacing the values for the kinetic energy and the moments of inertia results in

1.44𝐽𝐽2𝑠𝑠2 > 𝐻𝐻2 > 0.29𝐽𝐽2𝑠𝑠2

So, to satisfy the inequalities, a value of 𝐻𝐻 = 1𝐽𝐽𝑠𝑠 was chosen.

With the intersection guaranteed, the only thing missing to run the simulation is an initial value

for the angular velocity. As in the examples by Tatum [39], the initial magnitude of the 𝑋𝑋

component of the angular velocity is assumed to be 𝜔𝜔𝑥𝑥0 = 0. Reducing Eq. 1.35 and Eq. 1.36

to a system of two equations with two unknowns whose solution is:

𝜔𝜔0 = [0 24.04 52.81]
𝑟𝑟𝑎𝑎𝑑𝑑
𝑠𝑠

Chapter 2. Motion Simulation Module

60

2.4.2.3 Simulation
The values obtained in the previous section are used in a quaternion simulation for one second

in Script 2-2, which plots the ellipsoids and the angular velocity that results from the simulation.

Figure 2-17 Angular momentum and kinetic energy ellipsoids with the added angular velocity.

As seen in Figure 2-17, the locus of points of the simulated angular velocity lies on one of the

intersection curves, proving the first of the validation premises. Section 3.3.2.2 has a frame strip

that illustrates the rotation of the asymmetrical top in a stop-motion approach. Next, to confirm

that the angular velocity is not periodic in the IRF, the same simulation is run for 1, 10 and 100

seconds. The resulting angular velocities are transformed to the IRF and plotted in Figure 2-18,

which shows that as time advances, the space in which the angular velocity moves becomes

saturated, meaning that it does not close any cycle and proving the second validation premise.

The procedures of this demonstration thus conclude that the simulator works as expected.

Chapter 2. Motion Simulation Module

61

Figure 2-18 Motion of the angular velocity in [rad/s] with respect to the IRF.

2.4.3 Freefall

2.4.3.1 Analytical Solution
The free fall problem is solved with the equations of linear motion found in [32], where 𝑟𝑟 stands

for the position of the body or particle of interest, 𝑣𝑣 for velocity, 𝑎𝑎 for acceleration, and 𝑡𝑡 for

time:

 2𝑎𝑎(𝑟𝑟2 − 𝑟𝑟1) = 𝑣𝑣22 − 𝑣𝑣12 Eq. 1.40

 𝑟𝑟2 − 𝑟𝑟1 = 𝑣𝑣1𝑡𝑡 +
𝑎𝑎
2
𝑡𝑡2 Eq. 1.41

In a situation where a 70kg-skydiver leaves his aeroplane at 4km above the ground, the equations

can be used to get the final velocity and the time the skydiver takes to reach the ground. The

presented solution considers only constant forces and therefore ignores the drag force. The

equation of the position as a function of time is a rearrangement of Eq. 1.41 in the form of:

 𝑟𝑟2 = 𝑟𝑟1 + 𝑣𝑣1𝑡𝑡 +
𝑎𝑎
2
𝑡𝑡2 → 𝑟𝑟2 = 4000𝑚𝑚 −

9.8
2
𝑚𝑚
𝑠𝑠2
𝑡𝑡2 Eq. 1.42

Using then Eq. 1.42 in Eq. 1.40 yields the equation for the final velocity as:

 𝑣𝑣2 = −9.8
𝑚𝑚
𝑠𝑠2
𝑡𝑡 Eq. 1.43

Afterwards, by solving Eq. 1.41 for 𝑡𝑡 when 𝑟𝑟2 = 0, the time at which the skydiver touches the

ground is:

0 − 𝑟𝑟2 = 0𝑡𝑡 −
𝑎𝑎
2
𝑡𝑡2 → 𝑡𝑡 = �2𝑟𝑟2

𝑎𝑎
= 28.55𝑠𝑠

Chapter 2. Motion Simulation Module

62

The resulting time is then used in Eq. 1.42 and Eq. 1.43 to plot the motion of the skydiver, which

is shown in Figure 2-19.

Figure 2-19 Free Fall. Analytical results.

2.4.3.2 Simulation
In Script 2-3, the values from the analytical solution were used in all three dimensions to test

the independence of the vector components within the simulator. Figure 2-20 shows the

simulation results, which as expected, are the same in all three axes because the forces acting

on each axis are not related to one another. Figure 2-20 also shows that the velocity is the same

in both reference frames. This equality is caused by the fact that there is no rotation, i.e. 𝜔𝜔 = 0.

Since the results for all three axes is the same, it is enough to superimpose any one of them over

the analytical solution to visually validate the simulations results. The superimposition is shown

in Figure 2-21, which demonstrates that the behaviour of the position and the velocity is the

same in both solutions, thus proving that the simulator works as expected.

Chapter 2. Motion Simulation Module

63

Figure 2-20 Free Fall. Simulation results.

Figure 2-21 Free Fall. Simulation results (circle markers) superimposed over the analytical solution (continuous lines).

Chapter 2. Motion Simulation Module

64

2.4.4 Parabolic Motion

2.4.4.1 Analytical Solution
This problem considers a football being kicked with an angle with respect to the ground so that

its motion describes a parabola. For the purposes of this thesis, the football is considered a non-

deformable body, and the drag forces acting on the ball are ignored.

In the experiment of Nunome, Takeshi, Yasuo, & Shinji [41], a football player kicks a football

and applies an initial velocity of 𝑣𝑣1 = 28𝑚𝑚
𝑠𝑠

. With these asusmptions, Eq. 1.40 and Eq. 1.41 can

tell how long and how high the ball will travel. Assuming that the football player kicks the ball

at an angle of 45° and that the trajectory stays on the 𝑌𝑌𝑍𝑍 plane, then the 𝑌𝑌 and 𝑍𝑍 components

are the horizontal and vertical axes respectively and the variables of interest are:

𝑟𝑟1 = �
0
0
0
� 𝑟𝑟2 = �

0
𝑦𝑦2
0
� 𝑣𝑣1 = �

0
28 cos(45°)
28 sin(45°)

�
𝑚𝑚
𝑠𝑠

 𝑎𝑎 = �
0
0

−9.8
�
𝑚𝑚
𝑠𝑠2

Replacing the known values in Eq. 1.40 yields the equations that describe the behaviour of the

ball’s final position:

 �
0
𝑦𝑦2
𝑧𝑧2
� = �

0
28 cos(45°)
28 sin(45°)

�
𝑚𝑚
𝑠𝑠
𝑡𝑡 + �

0
0

−
9.8
2

�
𝑚𝑚
𝑠𝑠2
𝑡𝑡2 Eq. 1.44

In the same manner, using the initial values in Eq. 1.41 yields a function of time for the final

velocity as a system of two equations:

 �
0
𝑣𝑣𝑥𝑥2
𝑣𝑣𝑥𝑥2

� = �
0

28 cos(45°)
28 sin(45°)

�
𝑚𝑚
𝑠𝑠

+ �
0
0

−9.8
�
𝑚𝑚
𝑠𝑠2
𝑡𝑡 Eq. 1.45

The equation for the 𝑍𝑍 component in Eq. 1.44 can be rearranged to solve for the time at which

the ball is back on the ground:

𝑡𝑡 �28 sin(45°)
𝑚𝑚
𝑠𝑠
−

9.8
2
𝑚𝑚
𝑠𝑠2
𝑡𝑡� = 0 → 𝑡𝑡 = 2 ∗

28 sin(45°)
9.8

𝑚𝑚
𝑠𝑠

= 4.04𝑠𝑠

The resulting time can then be used in Eq. 1.44 and Eq. 1.45 to plot the motion of the ball, which

is shown in Figure 2-22.

Chapter 2. Motion Simulation Module

65

Figure 2-22 Parabolic motion. Analytical results.

2.4.4.2 Simulation
In Script 2-4, the values from the analytical solution for the parabolic motion problem were used

in a simulation and superimposed over the analytical results to validate the correct operation of

the simulator. The results are shown in Figure 2-23. Next, Figure 2-24 shows only the results of

the simulator, which as in the free fall problem, shows that the linear velocity is the same in

both the IRF and BRF because there is no rotation. It is then possible to conclude that the

behaviour of the position and the velocity is the same, which confirms the correct operation of

the simulator.

Figure 2-23 Parabolic motion. Superimposition of the simulation results (circle markers) over the analytical solution
(continuous lines).

Chapter 2. Motion Simulation Module

66

Figure 2-24 Parabolic motion. Simulation results.

2.5 Benchmarking

The accuracy of the ODE45, ODE23, ODE113, ODE15s, ODE23s, ODE23t, and ODE23tb

integrators was tested to decide for a default solver for the RbSimulation class. All the

integrators were run at 0.001 seconds for the Free Precession of a Symmetrical Top problem

(section 2.4.1), the Free Fall problem (section 2.4.3), and the Parabolic Motion problem (section

2.4.4). The problem of the Free Rotation of an Asymmetrical Top was not included because of

the lack of an analytical solution to compare the simulation against. The time step of 0.001

seconds was chosen due to the relatively long time the integrators take to solve the equations.

Having a long time makes it easy to see which attitude simulation method runs faster. The results

Chapter 2. Motion Simulation Module

67

of the tests can be respectively seen in Table 1, Table 2, and Table 3, which are tables sorted

from the smallest to the largest error.

Solver Quaternions Euler angles
𝝎𝝎𝒃𝒃 𝝎𝝎𝒆𝒆 time 𝝎𝝎𝒃𝒃 𝝎𝝎𝒆𝒆 time

ode45 2.60E-31 1.81E-30 5.40E+00 2.60E-31 1.09E-29 4.68E+00
ode23 3.00E-20 1.56E-20 2.58E+00 3.00E-20 1.14E-19 2.29E+00
ode113 3.65E-20 6.31E-20 1.85E+00 3.65E-20 3.20E-20 1.62E+00
ode23tb 1.79E-14 8.42E-15 1.98E+00 1.79E-14 1.84E-14 1.78E+00
ode23s 1.79E-14 1.99E-14 1.72E+01 1.79E-14 3.04E-14 1.46E+01
ode23t 2.84E-13 3.37E-13 1.16E+00 2.84E-13 3.96E-13 1.04E+00
ode15s 1.38E-12 1.66E-12 1.19E+00 1.38E-12 1.88E-12 1.10E+00

Table 1 MSE results of the integrators for the Free Precession of a Symmetrical top problem with a step of 0.001s.

Solver Quaternions Euler angles
𝒓𝒓𝒆𝒆 𝒗𝒗𝒆𝒆 time 𝒓𝒓𝒆𝒆 𝒗𝒗𝒆𝒆 time

ode45 3.3220E+00 2.7170E-02 3.14E+01 3.3220E+00 2.7170E-02 2.69E+01
ode23tb 3.3221E+00 2.7171E-02 1.12E+01 3.3221E+00 2.7171E-02 1.02E+01
ode23 3.3221E+00 2.7171E-02 1.48E+01 3.3221E+00 2.7171E-02 1.32E+01
ode113 3.3221E+00 2.7171E-02 1.04E+01 3.3221E+00 2.7171E-02 9.42E+00
ode23s 3.3221E+00 2.7171E-02 9.87E+01 3.3221E+00 2.7171E-02 9.82E+01
ode23t 3.3221E+00 2.7171E-02 6.68E+00 3.3221E+00 2.7171E-02 6.16E+00
ode15s 3.5045E+00 2.7171E-02 1.28E+01 3.5045E+00 2.7171E-02 1.16E+01

Table 2 MSE results of the integrators for the Free Fall problem with a step of 0.001s.

Solver Quaternions Euler angles
𝒓𝒓𝒆𝒆 𝒗𝒗𝒆𝒆 time 𝒓𝒓𝒆𝒆 𝒗𝒗𝒆𝒆 time

ode45 4.4403E-04 1.8136E-04 4.27E+00 4.4403E-04 1.8136E-04 3.80E+00
ode23s 4.4416E-04 1.8137E-04 1.39E+01 4.4416E-04 1.8137E-04 1.20E+01
ode23 4.4416E-04 1.8137E-04 2.13E+00 4.4416E-04 1.8137E-04 1.87E+00
ode23tb 4.4416E-04 1.8137E-04 1.58E+00 4.4416E-04 1.8137E-04 1.44E+00
ode23t 4.4424E-04 1.8137E-04 9.41E-01 4.4424E-04 1.8137E-04 8.57E-01
ode15s 4.4436E-04 1.8137E-04 9.69E-01 4.4436E-04 1.8137E-04 8.86E-01
ode113 6.5154E-04 1.3603E-04 1.49E+00 6.5154E-04 1.3603E-04 1.34E+00

Table 3 MSE results of the integrators for the Parabolic Motion problem with a step of 0.001s.

In all the experiments is clearly seen that the ODE45 solver was the most accurate of all, but

also the slowest. In comparison with the ODE23 solver, ODE45 is twice as slow and with the

exception of the Free Precession of a Symmetrical Top problem, where the accuracy increases

by 10 orders of magnitude, ODE45 does not gain a lot of accuracy over ODE23. Therefore, to

combine accuracy and speed in the default configuration of the RbSimulation class, ODE23 was

chosen as default integrator.

Two more details that can be noticed in the tables are the differences in accuracy and speed

between the quaternion and Euler angles atttitude simulation methods. These details are only

visible in vectors that are in the IRF such as 𝜔𝜔𝑒𝑒, 𝑟𝑟𝑒𝑒, and 𝑣𝑣𝑒𝑒, given that it is the quaternions or

the Euler angles what transform the vectors from the BRF to the IRF. Vectors in the BRF such

Chapter 2. Motion Simulation Module

68

as 𝜔𝜔𝑏𝑏 do not undergo any transformation, hence, they are the same in both attitude simulation

methods. In general, the quaternions are more accurate than the Euler angle implementation,

although the opposite happens for the speed. Therefore, users must find an appropriate speed-

accuracy trade-off when choosing their solver and attitude simulation method.

Chapter 3. Animation Module

69

 Animation Module

3.1 Overview

The need for a visualisation tool is justified by the fact that understanding how physical

phenomena occur is not always simple by looking at an analytical description, i.e. equations.

Sometimes it is easier to understand the nature of a physical phenomenon by accompanying the

mathematical model with images, diagrams, graphs and/or animations. As Giaquinto [42] states,

visual thinking is widespread in mathematics. Moreover, according to Mowat [43], images can

be a powerful tool for both teaching and learning. After all, one of the goals of this project is to

work as an education tool. For those reasons, and because static images like graphs are not

enough to fully display the motion of rigid bodies, the animation module was developed.

As seen in Chapter 1:, simulation tools usually include an animation component fitted to its

system’s needs in order to display their results. These animation tools were compared in order

to find a base for this system’s animation module and save time and effort in programming and

testing. The animation classes of the Aerospace Toolbox™ were also included in the comparison

and, being capable of loading geometries from different sources and having an object oriented

approach, it was concluded that they were the best option for this project. Consequently, there

are three main pillars upon which the animation module sits upon, all of them internal tools of

MATLAB®. These pillars are, in order of importance:

1. Graphic tools

2. Aerospace Toolbox™

3. The Timeseries class

The functions and classes that belong to those three topics are briefly described in this document,

detailed information about them can be found MW’s online documentation or in ML’s offline

documentation.

3.1.1 Graphic tools
The graphic tools include classes that provide an easy way to visualise data, for example, figures,

which are windows where graphic elements like plots and 3D objects can be displayed.

Chapter 3. Animation Module

70

ML’s graphic tools are also capable of doing hardware rendering using OpenGL®. Animations

may require many of the system’s resources to transform objects, that is, applying translations

and rotations. Running animations with software may therefore result in slow refresh rates or in

poor quality results. Rendering with hardware allows programmes to have a better performance

when animating because the transformations are done by the system’s graphics hardware,

allowing the CPU to use its resources in other calculations. To render with hardware,

transformation objects are created with the hgtransform function and take 4x4 transformation

matrices which may rotate, translate and/or scale objects. When a transformation matrix is

assigned, it is sent to the graphics hardware to be applied to the rendered objects.

3.1.2 MATLAB®’s Aerospace Toolbox™
The second pillar upon which the animation module sits is ML’s Aerospace Toolbox™, which,

among other features, includes classes that enable users to create animations from flight

simulation data. The classes from the toolbox on which the animation module is based are:

• Aero.Body

• Aero.Animation

Aero.Body is a class that manipulates geometries. It is able to load, render and transform

geometries. The main reason to use Aero.Body in this implementation is because it is able to

load geometries from sources with different formats, for example, variables in the workspace,

MAT files, AC3D™ files or custom geometries. This feature provides the animation module

with a wide range of compatible formats while saving time in development. Another feature that

saves development time is that, internally, Aero.Body uses a transformation object to render its

loaded geometry with hardware, hence the only thing a user needs to do to apply a

transformation is to pass translation and rotation vectors to the class’s move method or to call

the class’s update method to create a time based transformation. Time based transformations

are applied by passing a time value to the update method, which extracts from a selected data

source, the translation and rotation vectors that correspond to the given time. A source for 6-

DoF motion is a numeric array with seven columns, which are one column for time, three for

position and three for rotation using Euler angles. The time based transformation capabilities of

Aero.Body make animations possible. Although to display their contained geometry in an

Chapter 3. Animation Module

71

animation window, an instance of Aero.Animation must be created. The Aero.Animation class

is an interface that groups instances of Aero.Body, displays them in a window and calls their

update method so that they render their transformed geometries as the animation runs. It also

controls the pace and direction of the animation. With the exception of the compatibility with

quaternions, Aero.Animation meets all the requirements of the module. However, it cannot be

directly implemented because the output of the SMOD is not compatible with the inputs of

Aero.Animation. In the case of Aero.Body, which is the one that handles the geometries and the

transformations, the translation data must be in Geographic coordinates, i.e. latitude, longitude

and altitude. Therefore, the Cartesian components of the simulator’s output must be converted

so that they reflect the expected results. Moreover, the move method in Aero.Body internally

applies a -90° rotation around the X axis to its handled geometry, deviating it from the simulators

coordinate system. So, in order to correctly use the rotations from the simulator’s output, a 90°

rotation in the opposite direction must be applied before applying the rotations in the output.

Figure 3-1 and Figure 3-2, show three orthogonal arrows rendered by Aero.Body in two different

windows. In both cases, the camera is set to have its up vector in the positive Z direction, which

means that the Z component should point upwards. In the first case, Figure 3-1, the arrows are

rendered in a figure window where, as expected, the Z vector points upwards. The second

instance is an Aero.Animation window where the Z component points to the right while the Y

component points downwards, demonstrating that the arrows went through a rotation around the

X axis.

Figure 3-1 Aero.Body displayed in a figure window

Chapter 3. Animation Module

72

Figure 3-2 Aero.Body displayed in an Aero.Animation window

3.1.3 Timeseries Objects
Instances of the Timeseries class contain data vectors sampled over time. More importantly, the

class provides methods to do time based manipulation of the data, i.e., interpolation,

synchronization and filtering. Since the motion of rigid bodies is a set of vectors that change

over time, the features of the Timeseries class are a convenient way to store and handle such

data.

3.1.4 Module Design
The RbAnimationBody class was developed to wrap Aero.Body and use it in the desired

coordinate system, which means applying translations in a Cartesian coordinate system and

rotations in the desired direction.

A wrapper class takes advantage of the range of compatible formats and hardware rendering

capabilities of Aero.Body, while customising the way the wrapped class interacts with other

components of the system. An even better approach would be to derive a subclass from

Aero.Body, but it is a sealed class, preventing any further derivation.

The RbAnimation class was developed to replace Aero.Animation due to five main reasons:

1. Since RbAnimationBody encapsulates the functionality of Aero.Body in an internal

object, it is no longer compatible with Aero.Animation.

2. Aero.Animation is also a sealed class, so no subclasses can be derived from it.

3. To solve the compatibility issue, a reverse engineering process would be necessary in

both the Aero.Animation and Aero.Body classes to see how they interact. However, the

Chapter 3. Animation Module

73

code for the classes in the Aerospace Toolbox™ is obfuscated, which makes the reverse

engineering process a longer and more complicated process.

4. MATLAB®’s graphic tools are easy to use and implement.

5. A custom made class will behave exactly as expected.

3.2 Software Implementation

3.2.1 Module Requirements
The animation module needed to meet the following requirements in order to provide a

convenient visualisation platform:

Direct compatibility with the other modules. The inputs of the module must be designed in such

a way that the outputs from the simulator and the mass distribution calculator can be directly

animated, that is, without any conversion or adaptation.

Independence from the other modules. Simulations and mass calculations must not be

mandatory prior to an animation.

Support for multiple bodies. The module must be capable of handling and animating multiple

bodies in the scene.

Support for different rotation methods. Objects in the animation must have the possibility of

rotating with quaternions and Euler angles.

Variable start and stop times. Users must be able to select at which point in the data’s time the

animation starts and stops, which means that the animation must not necessarily start at 𝑡𝑡 = 0

and that animations can also be played backwards.

Real time animations. The animation’s running time should match the time in the input data

with an error of no more than 2%, i.e. if the input data goes from 0 to 10 seconds, the duration

of the animation should be between 9.8 and 10.2 seconds.

Time scaling. Even though the established time unit for the entire system is one second, some

experiments my happen in milliseconds, minutes, or some other time unit; therefore, the

animation module must be able to scale the time in the input data to one second of animation.

Chapter 3. Animation Module

74

Variable frame rate. The frame rate is an important factor in the quality of animations, so the

animation module must provide an interface to control the frame rate of the output.

Exporting functionality. Users must be able to export the animations to videos to avoid having

to run the code each time the animation needs to be seen, and also to allow the animations to be

seen in systems without ML.

3.2.2 Module Workflow
RbAnimation is a container for all the resources related to the visualisation, it contains all the

bodies that will be animated, start and final times for the animation, time scaling, etc. It is also

what tells the bodies to update their location and orientation.

Figure 3-3 Workflow of the AMOD.

As Figure 3-3 shows, there are four mandatory steps to play animations:

1. Instantiating an object of the RbAnimation class.

2. Add some instances of the RbAnimationBody class.

3. Add time series data to the bodies.

4. Call the play function.

Chapter 3. Animation Module

75

Bodies can be added or removed at any time, and the animation can be played backward when

necessary.

3.2.3 RbAnimationBody Class
The purpose of RbAnimationBody is to manipulate the visualisation data of a rigid body, which

means that for every body in the animation, there must be an instance of this class containing

the body’s geometry and transformation data. RbAnimationBody is a handle class to provide

event based behaviour.

3.2.3.1 Properties
The following paragraphs explain the purpose of the class’s properties. The descriptions start

with the name of the property followed by the data type in square brackets. Example:

property_name [type]. Unless otherwise noted, all the properties are of public access.

body [Aero.Body]. The encapsulated instance of the Aero.Body class. This property has private

set access, so it cannot be reassigned. However, it has public get access to allow retrieving values

from the Aero.Body instance.

position [1x3 double]. Location of the body in space in meters. The three columns correspond

to the vector’s X, Y and Z components.

rotation [1xN double]. Body’s orientation in space. Depending on the situation, the orientation

vector can represent a rotation from the BRF to the IRF or vice versa.

Vectors with Euler angles are 1x3 doubles where each column represents a rotation in radians

around one axis. The default shape of the vector is [𝜙𝜙 𝜃𝜃 𝜓𝜓]. Vectors with quaternions are

1x4 doubles where the components are [𝑤𝑤 𝑖𝑖 𝑗𝑗 𝑘𝑘].

Chapter 3. Animation Module

76

Figure 3-4 Class diagram of RbAnimationBody

TimeseriesSource [timeseries]. A timeseries object with the geometry’s position and rotation

data. The property can be set by assigning either a numeric matrix or a timeseries object. The

numeric matrix must either be an Mx7 or an Mx8 double. The components of Mx7 matrices are

interpreted as [𝑡𝑡 𝑋𝑋 𝑌𝑌 𝑍𝑍 𝜙𝜙 𝜃𝜃 𝜓𝜓] whereas components of Mx8 matrices are interpreted

as [𝑡𝑡 𝑋𝑋 𝑌𝑌 𝑍𝑍 𝑤𝑤 𝑖𝑖 𝑗𝑗 𝑘𝑘]. In both cases, the first column is the time vector in seconds,

the next three columns the position in meters and the remaining columns the rotation in either

Euler angles in radians or unit quaternions.

Instances of the timeseries class used to set the property must have their data in Mx6 or Mx7

doubles. The components of Mx6 matrices are interpreted as [𝑋𝑋 𝑌𝑌 𝑍𝑍 𝜙𝜙 𝜃𝜃 𝜓𝜓] whereas

Chapter 3. Animation Module

77

the components of Mx7 matrices are interpreted as [𝑋𝑋 𝑌𝑌 𝑍𝑍 𝑤𝑤 𝑖𝑖 𝑗𝑗 𝑘𝑘]. In both cases,

the first three columns are the position in meters and the remaining columns the rotation in either

Euler angles in radians or unit quaternions. The time vector of the timeseries object must be in

seconds.

Internally, numeric matrices are converted into timeseries objects, so in the end, it is always an

instance of the timeseries class what handles the transformation data.

TimeseriesReadFcn [function handle]. A handler to the function that extracts the data out of

the TimeseriesSource. By default, the function called is rbInterp6DoFArrayWithTime, which is

based on the interpTimeseries function included in the Aerospace Toolbox™ and modified to

support the extraction of quaternions. A detailed explanation of how

rbInterp6DoFArrayWithTime works can be found in section 3.2.5.

Since the property is a function handle, users are able to point it to a custom extracting function,

as long as it returns a 1x3 double with the position and a rotation vector in one of the two

supported methods.

CoordTransformFcn [function handle]. A handler to a function that generates a 4x4

transformation matrix. By default, the function called is rbBRF2IRF, which generates

transformation matrices meant to convert vectors form the BRF to the IRF. In cases where the

conversion must be done in the opposite direction, the users can set the property to point to the

rbIRF2BRF function, which is also included with the system. A detailed explanation of how

rbIRF2BRF and rbBRF2IRF work can be found in section 3.2.5.

Since the property is a function handle, users are able to use customised transformation functions

as long as they return a 4x4 transformation matrix.

3.2.3.2 Methods
The following paragraphs explain the purpose of the class’s methods. The descriptions start with

the method’s name, followed by the argument list and the data type of their return value, if any.

E.g. methodName(arg1, arg2): type. Unless otherwise noted, all the methods are of public

access.

RbAnimationBody(). Constructor of the class. Initialises the encapsulated Aero.Body object.

Chapter 3. Animation Module

78

findstartstoptimes() [double, double]. Finds the start and stop times in the TimeseriesSource.

The first value of the returned vector is the start time and the second value the end time.

load(geometry_src, geometry_type). Wrapper that forwards its arguments to its homonymous

in the encapsulated Aero.Body. By calling this method, the encapsulated Aero.Body loads the

geometry in the geometry_src argument.

The second argument is optional and specifies the format of the loaded geometry. The possible

values for the format are: ‘Auto’ for an automatic identification of the format, ‘Variable’ to load

a struct from the workspace, ‘MatFile’ for stored MAT-files, ‘Ac3d’ for Ac3d files and

‘Custom’ for a custom format. When no second argument is passed, the format is considered

automatic.

generatePatches(ax). Wrapper that passes its argument to its homonymous in the encapsulated

Aero.Body. By calling this methods, the encapsulated Aero.Body generates a patch handle from

the loaded geometry and displays it in the axes object passed in the argument.

update(t). Updates the body’s position and orientation versus time. The method calls the

function pointed by TimeseriesReadFcn to extract the data at the time 𝑡𝑡 and then pass it to the

move method.

move(pos, rot). Translates and rotates the body. The method forwards its arguments to the

function pointed by CoordTransformFcn, which is expected to return a 4x4 transformation

matrix to be passed to the transformation object of the encapsulated Aero.Body.

throwError(id, msg, e_code, e_cause) [returns nothing]. Throws an instance of the

RbException class.

The exception’s identifier is given by the first argument and it is appended to “AnimationBody:”

to make simulation related errors easier to identify.

The error message is given by the fourth argument. The third and fourth arguments respectively

add an error code and a cause to the exception. This method is private to the RbAnimationBody

class.

Chapter 3. Animation Module

79

3.2.4 RbAnimation Class
The purpose of the RbAnimation class is to group multiple instances of the RbAnimationBody,

display them in a figure and call their update methods over time to create an animation. The

properties and methods in RbAnimation are homonymous to some of the properties and methods

in Aero.Animation to allow a transparent transition from one class to the other.

3.2.4.1 Properties
The following paragraphs explain the purpose of the class’s properties. The descriptions start

with the name of the property followed by the data type in square brackets. Example:

property_name [type]. Unless otherwise noted, all the properties are of public access.

shown [boolean]. Flag set when the animation window is shown and cleared when the

animation window is closed. The property is private to RbAnimation.

listener [handle]. Object that works as an event listener. When the animation window is closed,

this object calls the clearShownFlag method. The property is private to RbAnimation.

Figure [figure]. Window where the animation will be. This property has private set access and

cannot be reassigned. However, it has public get access to allow overlapping graphs.

CurrentAxes [axes]. Axes where the objects are rendered. This property has private set access

and cannot be reassigned. However, it has public get access to allow overlapping graphs.

TStart [double]. Time in seconds at which the animation starts. Defaults to 0.

TFinal [double]. Time in seconds at which the animation stops. Defaults to 1.

FramesPerSecond [double]. Frame rate in FPS. Defaults to 20 FPS.

TimeScaling [double]. Determines how much data corresponds to one second of animation.

For example: a value of 0.001 means that 0.001 seconds in a body’s data will be animated in 1

second.

Bodies [cell]. Cell where the bodies being animated are stored.

Name [char]. Name of the animation object. The name appears in the title of the animation

window.

Chapter 3. Animation Module

80

FrameBuffer [struct array]. Buffer with the frames of the last animation. The buffer can be

used in a later step to create movies and videos.

Figure 3-5 Class diagram of RbAnimation

3.2.4.2 Methods
The following paragraphs explain the purpose of the class’s methods. The descriptions start with

the method’s name, followed by the argument list and the data type of their return value, if any.

E.g. methodName(arg1, arg2): type. Unless otherwise noted, all the methods are of public

access.

Chapter 3. Animation Module

81

createBody(geometry_src, geometry_type) [double]. Creates a new instance of

RbAnimationBody and adds it to the animation. The method forwards its arguments to the new

body’s load method. Then, the object’s CurrentAxes property is passed as an argument to the

new body’s generatePatches method, so that the loaded geometry is displayed in the animation

window. Finally, the new body is added to the body list and its index is the method’s return

value.

show(). Displays the animation window.

play(backward) [double]. Plays the animation. The method returns 0 when the animation runs

successfully and 1 when it does not. The error causes are an empty body list or a wrong data

type in at least one of the time related variables (TStart, TFinal, TimeScaling and

FramesPerSecond).

The argument is a boolean that tells the class if the animation should be played backwards. The

default value is false. Apart from the value in the argument, there are two additional ways in

which the animation can be played backwards:

1. Set TStart greater than TFinal.

2. Play the animation forward and then use the movie function to play the saved buffer

backwards.

Two backwards operation will result in a forward playback.

This method is what animates the objects, all the other properties and methods are interfaces

that prepare the environment for this method to run. To create the animation, play goes through

the following steps:

1. Opens the animation window if it not already open.

2. Compare the magnitudes of TStart and TFinal to identify if the animation should be

played forward or backward. If forward, the time step between frames is positive, if

backward, the time step is negative.

3. Once the sign of the time step is known, its magnitude is calculated by dividing

TimeScaling by FramesPerSecond.

Chapter 3. Animation Module

82

4. The total number of frames is equal to the nearest larger integer of the division 𝑁𝑁𝐹𝐹 =

�𝑇𝑇𝐹𝐹𝑖𝑖𝑇𝑇𝑎𝑎𝑇𝑇−𝑇𝑇𝑇𝑇𝑡𝑡𝑎𝑎𝑇𝑇𝑡𝑡
𝑠𝑠𝑡𝑡𝑒𝑒𝑝𝑝

�.

5. The method then enters a loop where in each iteration, the current time step is passed to

the update method of each body so that they extract their corresponding data and

transform their geometries accordingly.

6. After the updates, the screen is refreshed with the pause function. A pause is needed

because otherwise, the animation would be too fast to notice what happens. In an ideal

situation, the duration of the pause would be equal to the inverse of FramesPerSecond,

but since storing the frames in FrameBuffer takes time, a percentage of the inverse is

used. By trial and error in the demonstration in section 3.3.1, the required percentage

was determined to be 75%.

removeBody(index) [double]. Removes a body from the animation.

The argument is the index of the body that will be removed from the body list. If no argument

is passed, the last body is removed. When the index is larger than the number of elements in the

body list, the method throws an error.

throwError(id, msg, e_code, e_cause) [returns nothing]. Throws an instance of the

RbException class.

The exception’s identifier is given by the first argument and it is appended to “Animation:” to

make simulation related errors easier to identify.

The error message is given by the fourth argument. The third and fourth arguments respectively

add an error code and a cause to the exception. This method is private to the RbAnimation class.

3.2.5 Utility Functions for the Animation Module
rbInterp6DoFArrayWithTime(t, body): [1x3 double, 1xN double]. Extracts interpolated

translation and rotation data from the TimeseriesSource property of an instance of

RbAnimationBody.

The first argument is a double that indicates the time of the query data. The second argument

must be an instance of RbAnimationBody.

Chapter 3. Animation Module

83

The function uses ML’s interp1 function to do a 1-dimensional interpolation of columns of the

data source. Interpolation is required because the TimeseriesSource property contains discrete

samples that may not have any information at the indicated time.

The first output is a 1x3 double with the interpolated translation values in the shape [𝑋𝑋 𝑌𝑌 𝑍𝑍].

The second output is either a 1x3 or a 1x4 double with the interpolated rotation values. A 1x3

double contains Euler angles in the shape [𝜙𝜙 𝜃𝜃 𝜓𝜓] and a 1x4 double a unit quaternion in the

shape [𝑤𝑤 𝑖𝑖 𝑗𝑗 𝑘𝑘].

rbIRF2BRF(pos, rot): [4x4 double]. Creates a 4x4 matrix that transforms vectors from the IRF

to the BRF.

The returned transformation matrix is a combination of a translation and a rotation using the

first and second arguments respectively. The translation matrix is generated by the ML’s

makehgtform function from the first argument, which must be a 1x3 double in the shape

[𝑋𝑋 𝑌𝑌 𝑍𝑍]. The matrix has the following shape:

 [𝑃𝑃𝑒𝑒] = �

1 0 0 X
0 1 0 Y
0 0 1 Z
0 0 0 1

� Eq. 3.1

The method for the rotation matrix generation depends on the shape of the second argument. A

1x3 double will be considered an array of Euler angles in the shape [𝜙𝜙 𝜃𝜃 𝜓𝜓] and the

angle2dcm function will be used to generate a DCM as in Eq. 1.24, whereas a 1x4 double will

be considered a quaternion and the quat2dcm function will be used as in Eq. 1.23. In either

rotation case, the final result is a 3x3 matrix [𝑅𝑅′𝑒𝑒
𝑏𝑏], meaning that it needs to be merged with a

4x4 in the following way:

 [𝑅𝑅𝑒𝑒𝑏𝑏] = �

𝑅𝑅11′ 𝑅𝑅12′ 𝑅𝑅13′ 0
𝑅𝑅21′ 𝑅𝑅22′ 𝑅𝑅23′ 0
𝑅𝑅31′ 𝑅𝑅32′ 𝑅𝑅33′ 0

0 0 0 1

� Eq. 3.2

Matrices [𝑃𝑃𝑏𝑏] and [𝑅𝑅𝑒𝑒𝑏𝑏] are then combined in a single transformation matrix [𝑇𝑇𝑒𝑒𝑏𝑏]:

 [𝑇𝑇𝑒𝑒𝑏𝑏] = [𝑃𝑃𝑏𝑏][𝑅𝑅𝑒𝑒𝑏𝑏] Eq. 3.3

Chapter 3. Animation Module

84

rbBRF2IRF(pos, rot): [4x4 double]. Creates a 4x4 matrix that transforms vectors from the BRF

to the IRF.

The arguments are interpreted as in rbIRF2BRF. Although in this case, the translation matrix is

generated using the translation vector in the opposite direction, that is

 [𝑃𝑃𝑒𝑒] = �

1 0 0 −X
0 1 0 −Y
0 0 1 −Z
0 0 0 1

� Eq. 3.4

The rotation matrix is also generated in different ways. An array of Euler angles would use Eq.

1.25 and quaternions will use the inverse of Eq. 1.23.

 [𝑅𝑅𝑒𝑒𝑏𝑏] = [𝑅𝑅𝑏𝑏𝑒𝑒]−1 Eq. 3.5
Matrices [𝑃𝑃𝑒𝑒] and [𝑅𝑅𝑏𝑏𝑒𝑒] are then combined in a single transformation matrix [𝑇𝑇𝑏𝑏𝑒𝑒]:

 [𝑇𝑇𝑏𝑏𝑒𝑒] = [𝑃𝑃𝑒𝑒][𝑅𝑅𝑏𝑏𝑒𝑒] Eq. 3.6

3.3 Demonstrations

3.3.1 Free Precession of a Symmetrical Top
The animation of the free precession runs in Script 3-1, which is based on demonstration made

by Strauch [34]. The script displays a rotating ellipsoid, the space and body cones, the angular

momentum vector. Additionally, the script uses the motion simulation module with quaternions

as the transformation method. The importance of the solution time is close to null because the

actual animation occurs after the simulation. Therefore, in this case, the accuracy of the

quaternions over the Euler angles was the deciding factor.

3.3.1.1 Creating the Geometries
In Script 3-1 the geometries are loaded from MAT-files to reduce the length of this document.

This section will nevertheless explain how the data in those files was generated. The animation

environment includes 5 bodies: the rotating ellipsoid, the body cone, the space cone, an arrow

representing the angular momentum vector in the IRF, and a system of three orthogonal arrows

to represent the IRF.

While the arrows are already in a format that the patch function can use, the geometries for the

ellipsoid and the cones have to be created as surfaces and then converted to patches with the

Chapter 3. Animation Module

85

surf2patch function. To create the rotating body, the ellipsoid function is called with the values

for the position of the centroid along with the height and radius obtained in section 2.4.1. The

values are 𝐶𝐶 = [0 0 0], ℎ = 0.5423𝑚𝑚 and 𝑅𝑅 = 4ℎ respectively.

In section 2.4.1, the cones are automatically formed by plotting all the data points of the angular

velocity. To create cones as meshed surfaces, their height and base radius must be computed

and then passed to the createCone function. The height of each cone is equal to the projection

of the angular velocity on the axis around which it rotates, whereas the base radius is equal to

the shortest distance between the angular velocity vector and the axis of rotation. It is important

to notice that the vector is a point in space and not an arrow or a line from the origin to the point.

Hence the shortest distance is perpendicular to the axis of rotation. Something that simplifies

the calculations is the fact that the cones are symmetrical entities, meaning that the height and

radius can be calculated at any point in time with the same equations as long as the magnitude

of the vector that forms the cone is known at that specific moment.

For the body cone, the height and radius are respectively the 𝑍𝑍 and 𝑋𝑋 components of the angular

velocity in the BRF at 𝑡𝑡 = 0. No calculations are required because in the BRF, the 𝑍𝑍 component

of the angular velocity is collinear with the axis of rotation, which means that the 𝑍𝑍 component

is the projection on the axis of rotation. Next, at 𝑡𝑡 = 0 the 𝑌𝑌 component of the angular velocity

is equal to zero, meaning that at that point in time, the angular velocity vector is equal to the

vector addition of the 𝑋𝑋 and 𝑍𝑍 components, making the 𝑋𝑋 component the shortest distance from

the axis of rotation to the vector and thus the base radius of the cone.

To form the space cone, the angular velocity rotates around the angular momentum vector,

which means that the first step is to compute the angle between them. To achieve this, the

equation for the dot product is rearranged:

𝑑𝑑𝑐𝑐𝑡𝑡(𝜔𝜔𝑒𝑒 ,𝐻𝐻𝑒𝑒) = ‖𝜔𝜔𝑒𝑒‖ ∗ ‖𝐻𝐻𝑒𝑒‖ ∗ cos(𝛼𝛼) → 𝛼𝛼 = cos−1
𝑑𝑑𝑐𝑐𝑡𝑡(𝜔𝜔𝑒𝑒 ,𝐻𝐻𝑒𝑒)
‖𝜔𝜔𝑒𝑒‖ ∗ ‖𝐻𝐻𝑒𝑒‖

The angle allows the cone’s height (projection) and base radius (distance) to be calculated as:

ℎ = ‖𝜔𝜔𝑒𝑒‖ cos(𝛼𝛼) 𝑅𝑅 = ‖𝜔𝜔𝑒𝑒‖ sin(𝛼𝛼)

Because the meshes generated by createCone are aligned to the 𝑍𝑍 axis, a rotation to align the

cone’s axis of rotation with the angular momentum vector is needed. The angle of rotation is

Chapter 3. Animation Module

86

the angle between the angular momentum vector and the 𝑍𝑍 axis and it can be calculated in a

similar way as 𝛼𝛼:

𝛽𝛽 = cos−1
𝑑𝑑𝑐𝑐𝑡𝑡(𝑘𝑘,𝐻𝐻𝑒𝑒)
‖𝐻𝐻𝑒𝑒‖

The angular momentum vector is located in the 𝑋𝑋𝑍𝑍 plane, hence 𝛽𝛽 needs to be applied around

the 𝑌𝑌 axis. For that, a corresponding DCM is generated and used to rotate all the vertices of the

cone by 𝛽𝛽:

[𝑅𝑅] = �
cos𝛽𝛽 0 −sin𝛽𝛽

0 1 0
sin𝛽𝛽 0 cos𝛽𝛽

�

3.3.1.2 Animation
Script 3-1 uses the position and angular velocity results from the simulation in section 2.4.1 to

create two data vectors, one for the rotating bodies and one for the static bodies. Figure 3-6 is a

screenshot of the animation run with Script 3-1. The animation was successful in two ways:

1. The bodies moved as expected.

2. The error in the animation time was less than 1.35%.

The error is produced by the buffering in the play method. However, when the buffer is replayed

with the movie function, the error is lower than 0.75%. The error was measured by averaging

the running time of ten executions of each function.

Chapter 3. Animation Module

87

Figure 3-6 From left to right and top to bottom, the images are frames of the rotating ellipsoid at times 𝑡𝑡 = 0𝑠𝑠, 𝑡𝑡 = 0.5𝑠𝑠, 𝑡𝑡 =
1𝑠𝑠, 𝑡𝑡 = 1.5𝑠𝑠, 𝑡𝑡 = 2𝑠𝑠, 𝑡𝑡 = 2.5𝑠𝑠.

3.3.2 Free Rotation of an Asymmetrical Top
To demonstrate that the asymmetrical top never returns to its original position (see section

2.4.2), two sets of orthogonal arrows oriented in the aircraft’s positive directions were added to

the animation so that one is always attached to the satellite and the other one stays fixed at its

original orientation.

The premises that confirm the correct operation of the animation module in this demonstration

are:

Chapter 3. Animation Module

88

1. One set of arrows must always have the same orientation as the satellite.

2. One of arrows must stay fixed at its original position.

3. With the exception of 𝑡𝑡 = 0, the two sets of arrows must never have the same

orientation.

3.3.2.1 Creating the Geometries
In Script 3-2, where the animation runs, the models for the satellite and the arrow sets are loaded

from MAT files to keep the size of this document as short as possible. However, this section

describes how the geometries in the files were created. The satellite model is created with the

createSatellite function, which creates a 3U CubeSat in a 100:1 scale. The function was written

to produce a scaled satellite because larger numbers are easier to handle in the code and changing

the scale is done by simple scalar multiplications of the vertices. The arrow sets for the aircraft’s

orientation are a rotated version of the arrow set in the section 3.3.1, which are 4m long. For

this reason, the satellite was scaled down to 10:1 so that in the animation it would not cover the

arrow sets or be covered by them.

3.3.2.2 Animation
Script 3-2 uses the position and angular velocity results from the simulation in section 2.4.2 to

generate one data vector for the satellite and its attached arrow set, and another one for the static

arrow set. Both the simulation and the animation in this section have a one second timespan.

Moreover, the time scale was set to 0.05 so that the animation time was extended to 20 seconds

and the motion could be seen. A value of 0.05 means that the animation will last 1 second for

every 0.05 seconds of simulation data. Figure 3-7 shows 6 images in a strip fashion to illustrate

the tumbling motion of the satellite in the animation. The time between frames is 0.02 seconds.

As expected, once the movement started, the arrow set attached to the satellite always

maintained the same orientation as the satellite and it never returned to its original orientation,

proving that the motion seen in the animation is correct. As in section 3.3.1, the error in time of

the play method was measured and compared to the error of the movie function. Again, the

functions were called ten times and their execution times were averaged, resulting in 4.2% of

error for play and 0.26% of error for movie.

Chapter 3. Animation Module

89

In conclusion, the play method can be used to demonstrate how bodies move in a 3D space,

however, for applications that require and accurate animation time, replaying the buffer with the

movie function is a better option.

Figure 3-7 From left to right and top to bottom, the figures are frames of the tumbling satellite at times 𝑡𝑡 = 0𝑠𝑠, 𝑡𝑡 = 0.02𝑠𝑠,
𝑡𝑡 = 0.04𝑠𝑠, 𝑡𝑡 = 0.06𝑠𝑠, 𝑡𝑡 = 0.08𝑠𝑠, 𝑡𝑡 = 0.1𝑠𝑠

3.3.3 Linear Displacement
Script 3-3 creates an animation of three translating spheres. The first sphere translates back and

forth along the X axis, the second sphere along the Y axis, and the third one orbits about the X

axis while rotation about its own Z axis. Additionally, a set of three orthogonal arrows is added

to the scene to demonstrate that the spheres travel along their corresponding axes. The

translation of the first and second spheres is given by the following equation

 𝑟𝑟(𝑡𝑡) = 3 sin �
2𝜋𝜋
5
𝑡𝑡� Eq. 3.7

Which means that the spheres will return to their original position in 5 seconds. In order for the

third sphere to orbit about the X axis, the Y component of its position follows Eq. 3.7 while the

Z component has the behaviour described by the following equation

Chapter 3. Animation Module

90

𝑟𝑟(𝑡𝑡) = 3 cos �
2𝜋𝜋
5
𝑡𝑡�

The combination of sinusoidal and co-sinusoidal displacements along orthogonal axes causes a

circular motion. Lastly, for the third sphere to rotate about its Z axis, the angle 𝜓𝜓 must be a

function of time of the form:

𝜓𝜓(𝑡𝑡) =
𝜋𝜋
5
𝑡𝑡

Which will cause the sphere to complete a cycle about its Z axis in 10 seconds. All the values

used in this demonstration were chosen to simplify calculations and to produce an animation

slow enough to be validated visually. This demonstration thus validates two premises: the

correct translation functionality and the module’s independence. As seen in Script 3-3, no

simulation is run, all the values are manually generated and directly added to the scene. Figure

3-8 shows the last frame of the translating-spheres animation.

Figure 3-8 Translating spheres.

Chapter 4. Utilities

91

 Utilities

4.1 RbTimeVectorSum

4.1.1 Overview
Instances of the RbTimeVectorSum concatenate vectors of the shape Mx3 and computes a sum

of all the values of the vectors at a specific point in time. The purpose of this class is to provide

the simulator with difference sources of disturbances. For example, at an instance 𝑡𝑡 the

RbTimeVectorSum class could add the constant force of gravity plus a time changing thrust force

and pass it to the simulator. Another use case is to store the output of the simulator to enable

simulation in discrete steps, by that meaning that once each simulation step is finished, the

values can be saved into an instance of RbTimeVectorSum and then repeat the process for a next

step of simulation.

4.1.2 Design

Figure 4-1 Class diagram of the RbTimeVectorSum class.

4.1.2.1 Properties
The following paragraphs explain the purpose of the class’s properties. The descriptions start

with the name of the property followed by the data type in square brackets. Example:

Chapter 4. Utilities

92

property_name [type]. Unless otherwise noted, all the properties are private to the

RbTimeVectorSum class.

timeFunction_input [1xN cell]. Container for the time varying functions.

constant_input [3x1 double]. Container for the constants.

timeseries_input [1xN cell]. Container for instances of the class timeseries.

timeseriesReadFcn_input [function handle]. Points to the function that will extract the

addition data at the chosen point in time. This property is of public access.

4.1.2.2 Methods
The following paragraphs explain the purpose of the class’s methods. The descriptions start with

the method’s name, followed by the argument list and the data type of their return value, if any.

E.g. methodName(arg1, arg2): type. Unless otherwise noted, all the methods are of public

access.

addVector(v). Adds the vector in the argument to the corresponding container.

sumAtTime(double). Compute the sum of all the contained vectors at the time specified by the

argument.

throwError(id, msg, e_code, e_cause) [returns nothing]. Throws an instance of the

RbException class.

The exception’s identifier is given by the first argument and it is appended to “Simulation:” to

make simulation related errors easier to identify.

The error message is given by the fourth argument. The third and fourth arguments respectively

add an error code and a cause to the exception. This method is private to the RbTimeVectorSum

class.

4.1.3 Usage
Figure 4-2 shows the steps needed to use RbTimeVectorSum to concatenate vectors. The user

must first instantiate an object of the class, then add the vectors of interest and then pass to the

sumAtTime function the time at which the total value is needed.

Chapter 4. Utilities

93

Figure 4-2 Flow of the RbTimeVectorSum class.

94

Conclusions
Three conclusions are made from the work developed for this project:

1. MATLAB®’s math-oriented scripting language, its included functions and its support

for object oriented programming form a robust and flexible tool that will allow future

modules to be added without much programming effort. Which means that the goal of

making an easy-to-extend tool is met.

2. After going through the development of two modules from areas that could seem apart

from each other (dynamics and animation), it is concluded on the academic side, that

visualising a 3D animation of a moving rigid body is much more intuitive than looking

at position or velocity plots, for which the goal of using the tool for educational purposes

is met.

3. Finally, after looking at all the available open source tools, their flaws and features and

how the community helps in the thrive of such tools, it is concluded that releasing the

RBT to the public would draw people into further development and further extensions.

95

Future work
The first two modules leave space for many possible extensions. Starting with the MDC and its

utilities to enable users to import geometries from 3rd party CAD software.

On the side of the SMOD, a generalised-coordinate simulation method should be added and

compared with the current one to see what works better for multibody systems. Such an

extension will enable users to use the simulation tool in robotics projects. Moreover, an attitude

propagation module will enable users to plan future missions for satellites or find satellites that

are already in space.

Finally, the SMOD can also be extended so that external entities can directly alter the state

vector that goes into the simulation. A modification like that will enable controllers to take states

inside a simulation step and apply control forces or torques.

On the AMOD side, future work can add dynamic control over the camera so that it tracks a

moving object or to follow a user-defined behaviour.

96

References

[1] D. Goldsman, R. E. Nance and J. R. Wilson, “A Brief History of Simulation Revisited,” in 2010
Winter Simulation Conference, 2010.

[2] P. Masarati, M. Morandini and P. Mantegazza, “An Efficient Formulation for General-Purpose
Multibody/Multiphysics Analysis,” Journal of Computational and Nonlinear Dynamics, 2013.

[3] N. Docquier, A. Poncelet and P. Fisette, “ROBOTRAN: a powerful symbolic generator of
multibody models,” Mechanical Sciences, pp. 199-219, 2013.

[4] E. Coumans and Y. Bai, “PyBullet, a Python module for physics simulation for games, robotics
and machine learning,” 2016-2018. [Online]. Available: http://pybullet.org/.

[5] J. Shoer, “QuIRK: Multibody Dynamics for MATLAB 2009+,” 2010. [Online]. Available:
http://spacecraftresearch.com/flux/quirk/index.html.

[6] R. Featherstone, “Spatial Vectors and Rigid-Body Dynamics Software,” February 2015. [Online].
Available: http://royfeatherstone.org/spatial/v2/index.html.

[7] R. Featherstone, Rigid Body Dynamics Algorithms, Springer US, 2008.

[8] S. A. Rawashdeh, “Passive Attitude Stabilization for Small Satellites. Master's Thesis,” Lexington,
Kentucky, USA, 2010.

[9] D. Alazard, C. Cumer and K. Tantawi, “Linear dynamic modeling of spacecraft with various
flexible appendages and on-board angular momentums,” in 7th International ESA Conference on
Guidance, Navigation & Control Systems, Tralee, Ireland, 2008.

[10] V. Carrara, “An Open Source Satellite Attitude and Orbit Simulator Toolbox for Matlab,” in XVII
International Symposium on Dynamic Problems of Mechanics, Natal, Rio Grande Do Norte,
Brazil, 2015.

[11] E. Stoneking, “42: A Comprehensive General-Purpose Simulation of Attitude and Trajectory
Dynamics and Control of Multiple Spacecraft Composed of Multiple Rigid or Flexible Bodies,”
NASA, 21 January 2018. [Online]. Available: https://software.nasa.gov/software/GSC-16720-1.
[Accessed 6 February 2018].

[12] Princeton Satellite Systems, “Spacecraft Control Toolbox,” Princeton Satellite Systems, [Online].
Available: http://www.psatellite.com/products/sct/. [Accessed 6 February 2018].

[13] X. Hu and X. Li, “Research on modeling and simulation of satellite attitude control system,” in
11th IEEE International Conference on Control & Automation (ICCA), Taichung, Taiwan, 2014.

97

[14] L. Sarsfield, The cosmos on a shoestring : small spacecraft for space and earth science, Santa
Monica, CA, USA: RAND, 1998.

[15] H. J. Koenigsmann and G. Gurevich, “AttSim, Attitude Simulation with Control Software in the
Loop,” in Proceedings of the AIAA/USU Conference on Small Satellites, Technical Session IIA:
Management, Manufacturing, And Risk Mitigation, Logan, UT, USA, 1991.

[16] J. M. Wing, “Computational Thinking: What and Why?,” The Link. The magazine of Carnegie
Mellon University's School of Computer Science., pp. 20-23, 2010.

[17] J. M. Wing, “Computational thinking and thinking about computing,” Phil. Trans. R. Soc. A, vol.
366, no. 1881, p. 3717–3725, 2008.

[18] J. Wing, “Computational Thinking,” Commun. ACM, pp. 33-35, 2006.

[19] K. Brennan and M. Resnick, “New frameworks for studying and assessing the development of
computational thinking,” in Proceedings of the 2012 annual meeting of the American
Educational Research Association, Vancouver, Canada, 2012.

[20] I. Lee, F. Martin, J. Denner, B. Coulter, W. Allan, J. Erickson, J. Malyn-Smith and L. Werner,
“Computational thinking for youth in practice,” ACM Inroads. Volume 2 Issue 1., pp. 32-37,
March 2011.

[21] D. Moursund and D. Ricketts, “Computational Thinking,” 24 September 2016. [Online].
Available: http://iae-pedia.org/Computational_Thinking.

[22] H. M. Deitel and P. J. Deitel, C++ How to Program, Fifth Edition, Prentice Hall, 2005.

[23] C. Moler, “Technical Articles and Newsletters,” January 2006. [Online]. Available:
https://de.mathworks.com/company/newsletters/articles/the-growth-of-matlab-and-the-
mathworks-over-two-decades.html.

[24] S. Gace, “MATLAB simulation of fixed-mass rigid-body 6DOF,” 1 September 2016. [Online].
Available: https://de.mathworks.com/matlabcentral/fileexchange/3367-matlab-simulation-of-
fixed-mass-rigid-body-6dof.

[25] S. Gace, “MATLAB Simulation of variable-mass rigid-body 6DOF,” 1 September 2016. [Online].
Available: https://la.mathworks.com/matlabcentral/fileexchange/3368-matlab-simulation-of-
variable-mass-rigid-body-6dof.

[26] V. Ganapathi, “Simulation of Rigid Body Dynamics in Matlab,” 2005.

[27] B. D. Harper, Solving Dynamics Problems in MATLAB, John Wiley & Sons, Inc., 2007.

[28] D. Alazard, “Satellite Dynamics Toolbox,” 18 August 2014. [Online]. Available:
https://personnel.isae-supaero.fr/daniel-alazard/matlab-packages/satellite-dynamics-
toolbox.html?lang=fr.

98

[29] F. E. Udwadia and P. Phohomsiri, “Explicit equations of motion for constrained mechanical
systems with singular mass matrices and applications to multi-body dynamics,” Proceedings of
the Royal Society A, pp. 2097-2117, 2006.

[30] P. H. Zipfel, Modeling and Simulation of Aerospace Vehicle Dynamics, Reston, VA, USA:
American Institute of Aeronautics and Astronautics, Inc., 2000.

[31] M. D. Ardema, Newton-Euler Dynamics, New York: Springer, 2005.

[32] R. Hibbeler, Dynamics, New Jersey: Pearson Prentice Hall, 2010.

[33] M. D. Shuster and W. F. Dillinger, “Spacecraft Attitude Determination and Control,” in
Fundamentals of Space Systems Second Edition, New York, New York, Oxford University Press,
Inc, 2005, pp. 236-288.

[34] F. W. Strauch, “Free Precession of a Rotating Rigid Body,” 17 October 2011. [Online]. Available:
http://demonstrations.wolfram.com/FreePrecessionOfARotatingRigidBody/.

[35] S. H. Friedberg, A. J. Insel and L. E. Spence, Algebra Lineal. Primera Edicion, Publicaciones
Cultural, S.A..

[36] E. W. Weisstein, “Moment of Inertia Ellipsoid,” 2007. [Online]. Available:
http://scienceworld.wolfram.com/physics/MomentofInertiaEllipsoid.html.

[37] L. Landau and E. Lifshitz, Mechanics, Bristol: Pergamon Press Ltd., 1969.

[38] T. Davis, “Arrow3 Version 5,” 15 January 2013. [Online]. Available:
https://de.mathworks.com/matlabcentral/fileexchange/14056-arrow3-version-5.

[39] J. B. Tatum, “Physics topics,” 16 November 2017. [Online]. Available:
http://astrowww.phys.uvic.ca/~tatum/classmechs.html.

[40] The CubeSat Program, “CubeSat Design Specification Rev. 13,” 20 2 2014. [Online]. Available:
http://www.cubesat.org.

[41] H. Nunome, A. Takeshi, I. Yasuo and S. Shinji, “Three-dimensional kinetic analysis of side-foot
and instep soccer kicks,” Medicine and Science in Sports and Exercise 34, pp. 2028-36, 2006.

[42] M. Giaquinto, Visual Thinking in Mathematics, Oxford: Oxford University Press, 2007.

[43] E. Mowat, “Teaching and learning with images,” VINE Journal of Information and Knowledge
Management Systems, pp. 5-13, 2002.

[44] H. Schaub, “Attitude Dynamics Fundamentals,” in Encyclopedia of Aerospace Engineering,
Volume 5 Dynamics and Control, Barcelona, Spain, John Wiley & Sons, Ltd., 2010, pp. 3179-
3186.

99

[45] A. W. Burks and A. R. Burks, “The ENIAC: First General-Purpose Electronic Computer,” Annals of
the History of Computing, vol. 3, no. 4, pp. 310-399, 1981.

[46] A. Ross, “A Rudimentary History of Dynamics,” Modeling, Identification and Control, vol. 30, no.
4, p. 223–235, 2009.

 Scripts

Chapter 2

Script 2-1
% Simulation of the free precession of a symmetrical top
simu = RbSimulation;
simu.iOmega_b = [1 0 1.4243];
simu.inertia = diag([1,1,1.8822]);
simu.tspan = [0 5];
simu.simulate(); % Quaternions
omega_bq = simu.omega_b;
omega_eq = quatrotate(quatinv(simu.quaternions),omega_bq);

figure;
subplot(3,2,1); plot(simu.time,omega_bq); title('Quaternions \omega_b [rad/s]');
grid on; xlim([0 5]); xlabel('Time [secs]'); ylabel('Amplitude');
subplot(3,2,2); plot(simu.time,omega_eq); title('Quaternions \omega_e [rad/s]');
grid on; xlim([0 5]); xlabel('Time [secs]'); ylabel('Amplitude');

simu.simulate(0); % Change to Euler angles
omega_be = simu.omega_b;
omega_ee = zeros(size(simu.time,1),3);
for i = 1:size(simu.time,1)
 omega_ee(i,:) = (angle2dcm(simu.euler(i,3),simu.euler(i,2),simu.euler(i,1))\omega_be(i,:)')';
end

subplot(3,2,3); plot(simu.time,simu.omega_b); title('Euler angles \omega_b [rad/s]');
grid on; xlim([0 5]); xlabel('Time [secs]'); ylabel('Amplitude');
subplot(3,2,4); plot(simu.time,omega_ee); title('Euler angles \omega_e [rad/s]');
grid on; xlim([0 5]); xlabel('Time [secs]'); ylabel('Amplitude');

% Cones
subplot(3,2,5); arrow3(zeros(size(omega_eq,1),3),omega_bq,'c');
hold on; arrow3(zeros(size(omega_eq,1),3),omega_eq,'r');
title('Quaternion''s space and body cones'); grid on;
subplot(3,2,6); arrow3(zeros(size(omega_ee,1),3),omega_be,'c');
hold on; arrow3(zeros(size(omega_ee,1),3),omega_ee,'r');
title('Euler angles space and body cones'); grid on;

Script 2-2
% Simulation of the rotation of an asymmetrical top
Ic = @(M,a,b) M*(a*a + b*b)/12; % Moment of inertia component

% Sat's moment of inertia
a_sat = 0.1; b_sat = 0.1; c_sat = 0.34; M_sat = 3;

Ix_sat = Ic(M_sat,b_sat,c_sat);
Iy_sat = Ic(M_sat,a_sat,c_sat);
Iz_sat = Ic(M_sat,a_sat,b_sat);

100

I_sat = diag([Ix_sat, Iy_sat, Iz_sat]);

% Panels' moment of inertia
a_pan = 0.0016; b_pan = 0.0825; c_pan = 0.329; M_pan = 0.132;

Ix_pan = Ic(M_pan,b_pan,c_pan);
Iy_pan = Ic(M_pan,a_pan,c_pan);
Iz_pan = Ic(M_pan,a_pan,b_pan);
I_pan = diag([Ix_pan, Iy_pan, Iz_pan]);

% Total moment of inertia
rx = 0; ry = 0.091; rz = 0;

Ig_pan = parallelTheorem(I_pan, M_pan, rx, ry, rz);
I = I_sat + 2*Ig_pan;

% Angular momentum and kinetic energy
H = 1; E = 20;

% Anguar momentum semi-axes
ah = H/I(1,1); bh = H/I(2,2); ch = H/I(3,3);

% Kinetic energy semi-axes
ae = sqrt(2*E/I(1,1)); be = sqrt(2*E/I(2,2)); ce = sqrt(2*E/I(3,3));

% Compute the angular velocity when for the current H, E and omg_x = 0
A = [1/bh^2, 1/ch^2; 1/be^2, 1/ce^2];
B = [1;1];
omg = sqrt(linsolve(A,B));

% Plot
fig1 = figure('Name','Ellipsoids');
ax = axes('Parent',fig1);
view(3); axis vis3d;
xlabel('X'); ylabel('Y'); zlabel('Z')

[Xh,Yh,Zh] = ellipsoid(0,0,0, ah, bh, ch);
[Xe,Ye,Ze] = ellipsoid(0,0,0, ae, be, ce);

fvc = surf2patch(Xh,Yh,Zh);
fvc.FaceColor = [1 0 0];
fvc.FaceAlpha = 0.5;
fvc.EdgeColor = 'none';
p = patch(ax,fvc);

fvc2 = surf2patch(Xe,Ye,Ze);
fvc2.FaceColor = [0.5 0.5 1];
fvc2.EdgeColor = 'none';
p2 = patch(ax,fvc2);

% Add grid and a light source for depth perception
camlight; grid on;

%% Simulation
simu = RbSimulation;
simu.iOmega_b = [0 omg(1) omg(2)];
simu.inertia = I;
simu.ode_options = odeset('InitialStep',0.01,'MaxStep',0.01);
simu.simulate();

legend('H','E_k'); hold on;
plot3(simu.omega_b(:,1),simu.omega_b(:,2),simu.omega_b(:,3),...
 'g','LineWidth',1.5,'DisplayName','\omega')
title('Ellipsoids with the overposed angular velocity');

Script 2-3
% Free fall test
simu = RbSimulation;

101

simu.iPosition_e = [4000 4000 4000];
simu.mass = 70;
simu.F_b = -9.81*70*[1;1;1];
simu.tspan = [0 28.55];
simu.simulate;

t = linspace(0,28.55,length(simu.time));
pos = 4000-(9.8/2)*t.^2;
v = -9.8*t;

subplot(1,2,1); plot(t, pos, 'r')
grid
title('Final position against time. $$ x_2=4000-\frac{9.8}{2}t^2 $$', 'Interpreter','latex')
ylabel('Final position [m]');
xlabel('time [s]'); xlim([0 28.6]);

hold on
plot(simu.time, simu.position(:,1),'o')

legend('Analytical','Simulation');

subplot(1,2,2); plot(t, v, 'r')
grid
title('Final velocity against time. $$ v = -9.8t $$', 'Interpreter','latex')
ylabel('Final velocity [m/s]');
xlabel('time [s]'); xlim([0 28.6]);

hold on
plot(simu.time, simu.velocity_e(:,1),'o')

legend('Analytical','Simulation');

Script 2-4
%% Parabolic motion simulation
simu = RbSimulation;
simu.iVelocity_b = [0 28*cos(deg2rad(45)) 28*sin(deg2rad(45))];
simu.F_b = [0;0;-9.81];
simu.tspan = [0 4.04];
simu.simulate;

l = length(simu.time);
t = linspace(0,4.04,l);
v_y = 28*cos(deg2rad(45))*ones(1,l);
v_z = 28*sin(deg2rad(45)) - 9.8*t;
pos_y = v_y.*t;
pos_z = 28*sin(deg2rad(45))*t - 9.8/2*(t.^2);

subplot(1,3,1); plot(t, pos_y, 'r')
grid
title('Final Y position. $$ y_2=28cos(45)t $$', 'Interpreter', 'latex')
ylabel('Final position [m]');
xlabel('time [s]'); xlim([0 4]);

hold on
plot(simu.time, simu.position(:,2),'o')

legend('Analytical','Simulation');

subplot(1,3,2); plot(t, pos_z, 'r')
grid
title('Final Z position. $$ z_2=28sin(45)t-\frac{9.8}{2}t^2 $$', 'Interpreter', 'latex')
ylabel('Final position [m]');
xlabel('time [s]'); xlim([0 4]);

hold on
plot(simu.time, simu.position(:,3),'o')

legend('Analytical','Simulation');

102

subplot(1,3,3); plot(t, v_z, 'r')
grid
title('Final Z velocity. $$ v_2=28sin(45)-{9.8}t $$', 'Interpreter', 'latex')
ylabel('Final velocity [m/s]');
xlabel('time [s]'); xlim([0 4]);

hold on
plot(simu.time, simu.velocity_e(:,3),'o')

legend('Analytical','Simulation');

Chapter 3

Script 3-1
%% Free Precession of a symmetrical Top.
%% Simulation
simu = RbSimulation;
simu.iOmega_b = [1 0 1.4243];
simu.inertia = diag([1,1,1.8822]);
simu.tspan = [0 5];
simu.simulate();

%% Animation
% Creates an instance of the RbAnimation class, adds the bodies, concatenates the results of the
% simulation into the required format and animates.
h = RbAnimation;
h.createBody('freePrecession_ellipsoid.mat');
h.createBody('freePrecession_body_cone.mat');
h.createBody('freePrecession_space_cone.mat');
h.createBody('ortho_arrows_irf.mat');
h.createBody('freePrecession_ang_mom.mat');

% The animation class requires a Mx8 matrix where the data is arranged as:
% [T X Y Z w i j k].
t_series1 = [simu.time, simu.position, simu.quaternions];

% The static bodies also need data to appear in the animation, so an empty
% dataset is set as their TimeseriesSource. In this case, the Euler angle
% shape is used an Mx6 double: [T X Y Z phi theta psi].
t_series2 = [simu.time, zeros(length(simu.time),6)];

% Animation as seen from the inertial reference frame. Comment out this
% section and uncomment the section below to see an animation of the motion
% as seen from the body reference frame.
h.Bodies{1}.TimeseriesSource = t_series1;
h.Bodies{1}.CoordTransformFcn = @rbBRF2IRF;
h.Bodies{2}.TimeseriesSource = t_series1;
h.Bodies{2}.CoordTransformFcn = @rbBRF2IRF;
h.Bodies{3}.TimeseriesSource = t_series2;
h.Bodies{4}.TimeseriesSource = t_series2;
h.Bodies{5}.TimeseriesSource = t_series2;

% Display the figure, set the end time, reorient the camera for a better
% view and play the animation.
h.Name = 'Free Precession Demonstration';
h.show();
h.TFinal = 5;
h.CurrentAxes.CameraTarget = [0 0 1];
h.play;

Script 3-2
% Animation of the free rotation of an asymmetrical top
%% Simulation
simu = RbSimulation;
simu.iOmega_b = [0 28.123 42.55];
simu.inertia = diag([0.0361, 0.0337, 0.00733]);

103

simu.ode_options = odeset('InitialStep',0.001,'MaxStep',0.001);
simu.simulate();

%% Animation
h = RbAnimation;
h.TimeScaling = 0.05; % 0.05 seconds in the simulation are 1 second of animation

h.createBody('cubesat3u.mat');
h.createBody('aircraft_brf.mat');
h.createBody('aircraft_brf.mat');

h.Bodies{1}.TimeseriesSource = [simu.time, simu.position, simu.quaternions];
h.Bodies{2}.TimeseriesSource = [simu.time, simu.position, simu. quaternions];
h.Bodies{3}.TimeseriesSource = [simu.time, zeros(length(simu.time),6)];

h.show();
h.CurrentAxes.CameraPosition = [30 30 30];
h.play;

Script 3-3
% Translation validation
len = 100;
t = 2*pi/5*linspace(0,10,len);
n = zeros(1, len); % empty vector to fill spaces

% 1 sphere along X, 1 sphere along Y, 1 sphere about X.
x = 3*sin(t); y = x; z = 3*cos(t);
psi = t/2; % Local rotation about Z for sphere 3

% Concatenate
data1 = [t; x; zeros(5,len)]';
data2 = [t; n; y; zeros(4,len)]';
data3 = [t; n; y; z; n ; n; psi]';
static = [t; zeros(6,len)]';

% Geometries
h = RbAnimation;
[sx, sy, sz] = sphere(20);
sph = surf2patch(sx, sy, sz);

sph.cdata = [1 0 0];
h.createBody(sph, 'Variable');
h.Bodies{1}.TimeseriesSource = data1;

sph.cdata = [0 1 0];
h.createBody(sph, 'Variable');
h.Bodies{2}.TimeseriesSource = data2;

sph.cdata = [0 0 1];
h.createBody(sph, 'Variable');
h.Bodies{3}.TimeseriesSource = data3;

h.createBody('ortho_arrows_irf.mat');
h.Bodies{4}.TimeseriesSource = static;

% Animate
h.TFinal = 3;
h.play();

104

 User’s Guide
Things to be familiar with to correctly use the system:

MATLAB®’s scripting language. All the information regarding MATLAB® functions, data

types and coding syntax can be found in MathWorks™’s online documentation as well as in

MATLAB®’s offline documentation.

Rigid body dynamics. Although it is not mandatory to have a deep understanding of how rigid

bodies move, it is desirable to at least understand the basics in order to set up the simulation

properly and reduce errors as much as possible.

The theory of rigid body dynamics of this project is mainly based on the books by [37] and [44].

Complementary information can be found in [31] and [32]. A really good source of simple

explanations with images of some of the problems seen in this document and more can be found

in the published classes by [39].

Adding the Toolbox to PATH
Before using the modules, the Toolbox’s directory needs to be in MATLAB®’s path so that the

classes and functions can be found by MATLAB®. To achieve this, navigate within

MATLAB® to the folder that contains the toolbox, right click on the toolbox’s folder, hover to

“add to path” and finally click on “selected folder and subfolders”. Another option is to add the

Toolbox’s directory to the path with from the command line:

addpath(genpath('C:\pathToToolbox\ToolboxDir\'))

105

Simulating
Express example:

simu = RbSimulation;
simu.iPosition_e = [0, 0, 4e3];
simu.mass = 70;
simu.F_b = [0; 0; -9.8*70];
simu.tspan = [0 40];
simu.simulate;
simu.plotResults('My First Simulation');

Walkthrough:

The dotted lines in the diagram represent

an optional step, which means that there

are many ways in which simulations can

be run. Although most of the time there are

only three steps involved:

1. Instantiate the class

2. Set the initial conditions, simulation time and/or disturbances

3. Simulate

These steps come after thinking about the scenario to simulate. That is, thinking about the mass

properties of the body (mass and moment of inertia), initial position, orientation and velocities

(linear and angular) and the time the simulation will last.

With that said, let’s picture the problem from section 2.4.3: A 70kg skydiver in free fall. So first

things first, the instantiation:

simu = RbSimulation;

From the problem’s description, we know that the initial position is 4km above the ground, and

considering the Z axis the one pointing to the sky:

simu.iPosition_e = [0, 0, 4e3];

The gravity is the only force acting on the skydiver, and since the simulator takes forces as

inputs, the gravity acceleration must be multiplied by the skydiver’s mass:

simu.mass = 70;
simu.F_b = [0; 0; -9.8*70];

106

In section 2.4.3, the time in which the skydiver fall is calculated manually, but there’s always

the graphical method when the analytical solution is not feasible. Hence we try with 40 seconds.

simu.tspan = [0 40];

And finally, run the simulation and plot the results. Plotting is optional.

simu.simulate;
simu.plotResults('My First Simulation');

From the graph we find that the skydiver takes approximately 28 seconds to reach the ground.

From this point onwards, the initial conditions, disturbances and simulation time can be changed

without having to reinstantiate the object. Just change the values and call simu.simulate() and

simu.plotResults() again.

107

Animating
Express example:

t = linspace(0, 10, 100);
x = 3*sin(2*pi/5*t);

ani = RbAnimation;
ani.createBody('cubesat3u.mat');
ani.Bodies{1}.TimeseriesSource = [t;x;zeros(5,100)]';
ani.TFinal = 5;
ani.play;

Walkthrough:

As seen in the diagram, three conditions must be met

before playing the animation:

• An instance of RbAnimation

• At least one created body

• A time series source

So first step, the instantiation:

ani = RbAnimation;

To satisfy the second and third conditions, we load one of the included models and set its time

series source with some time and position vectors.

When preparing input data, it is important to consider that the animation module takes Mx6 or

Mx7 matrices (see section 3.2.3.1).To illustrate the solution to cases of motion with less than 6-

DoF, this example will only have translation along the X axis, filling the rest of the columns

zeros. For the position data, a sine function will cause a back and forth movement that will keep

the body within the fame limits. TIP: Zeros in all motion columns means that the rigid body is

static.

t = linspace(0, 10, 100)';
x = 3*sin(2*pi/5*t)';

ani.createBody('cubesat3u.mat');
ani.Bodies{1}.TimeseriesSource = [t;x;zeros(5,100)]';

Once the conditions are satisfied, the animation can be played.

ani.TFinal = 5;
ani.play;

108

Adding Vectors versus Time
Although not mandatory for simulations, the RbTimeVectorSum class may be convenient to

concatenate inputs and outputs.

On the input side, for example, the motion of a body may have

disturbances of different types, e.g. constants and time varying forces.

In that case, RbTimeVectorSum can contain both and provide the

simulator, or any other object, with the total value of the disturbances

at specific moments in time.

cat = RbTimeVectorSum;
gravity = [0, 0, -9.81*1.5];
thruster = @(t) [0; 0; 100/t];

cat.addVector(gravity);
cat.addVector(thruster);

v = cat.sumAtTime(60); % Get the total force at t=60.

On the output side, an experiment may require running simulations in multiple iterations. Every

time an instance of RbSimulation runs the simulation, the previous results are overwritten, so in

an iterative scenario, each new step would replace the previous one and in the end, only the

results of the last step would remain. However, saving the outputs of each iteration as vectors

in an instance of RbTimeVectorSum results in a time series of all the simulated data.

cat = RbTimeVectorSum;

simu = RbSimulation;
simu.ode_options = odeset('InitialStep', 0.01, 'MaxStep', 0.01);
simu.iVelocity_b = [100, 0, 0];

tfinal = 10;
t1 = 0;
for i = 0.2:0.2:tfinal % Total of 20 seconds of simulation
 simu.tspan = [t1 i]; % simulate from the previous step to the current one
 simu.simulate; % run the simulation

 if i < tfinal
 cat.addVector([simu.time(1:end-1,:), simu.position(1:end-1,:)]);
 else
 cat.addVector([simu.time, simu.position]);
 end

 if (simu.position(end,1) > 300) % add a disturbance after 300 meters
 simu.F_b = [-50;0;0];
 end

 % initial conditions for the next iteration are the results of the current iteration
 simu.iPosition_e = simu.position(end, :);
 simu.iVelocity_b = simu.velocity_b(end, :);

109

 % initial time for next iteration
 t1 = i;
end
plot([0:0.01:tfinal],cat.sumAtTime([0:0.01:tfinal]))

Full System Example
In this example is based on the Free Precession demonstration from sections 2.4.1 and 3.3.1.

The animation for this example will use Euler angles instead of quaternions and the motion will

be seen from the body’s perspective, that is, the surroundings will appear to be moving around

the body.

Simulation.

As before, first instantiation and then setting the initial conditions.

simu = RbSimulation;
simu.iOmega_b = [1, 0, 1.4243];
simu.inertia = diag([1, 1, 1.8822]);
simu.tspan = [0 5];

To simulate with Euler angles, the simulation method needs a logical false value. The most

common way to use represent a false logical value is a zero, but in MATLAB® you can also

use false.

simu.simulate(0); % <-- Use Euler angles!

Next, the resulting data needs to be packed so that bodies can use it in the animation.

motion_data = [simu.time, simu.position, simu.euler];

All the bodies need data to be in the animation, even if they’re static bodies.

static_data = [simu.time, zeros(length(simu.time), 6];

That last line of code creates an array with as many rows as simulation’s time steps and six

columns full of zeros. The zeros will make sure that the bodies stay at the origin. Depending on

the experiment, bodies can be fixed in other points.

Animation.

The geometries for this example are included with the system, so there is no need to do more

math calculations to determine sizes and orientations. So directly to the instantiation and the

loading of the bodies:

h = RbAnimation;
h.createBody('freePrecession_ellipsoid.mat');

110

h.createBody('freePrecession_body_cone.mat');
h.createBody('freePrecession_space_cone.mat');
h.createBody('ortho_arrows_irf.mat');
h.createBody('freePrecession_ang_mom.mat');

Additionally, the motion data is already prepared in the previous section, now we only need to

determine which bodies we want to move. Since the goal is to observe the motion from the

body’s perspective, we know that the body should remain fixed, moreover, the body cone is not

really a body itself, it is the concatenation of all the positions of the angular velocity vector as

it rotates within the body’s perspective, which means, that the cone also stays static in this

example.

The are no more bodies in the BRF, so the remaining bodies must be the ones moving. The

bodies are the orthogonal arrows that represent the IRF, the angular momentum vector and the

space cone.

h.Bodies{1}.TimeseriesSource = static_data;
h.Bodies{2}.TimeseriesSource = static_data;

h.Bodies{3}.TimeseriesSource = motion_data;
h.Bodies{4}.TimeseriesSource = motion_data;
h.Bodies{5}.TimeseriesSource = motion_data;

By default, the animation module transforms vectors from the BRF to the IRF so that the body

appears to be moving in space. Then, in order to see the space moving around the body, we need

to apply an inverse transformation to the bodies that we want to move. The system includes

rbBRF2IRF (default) and rbIRF2BRF, the second one is what we need. Should you need to

develop your own transformation method, write a function and use the CoordTransformFcn

property to point a function handle to it.

h.Bodies{3}.CoordTransformFcn = @rbIRF2BRF;
h.Bodies{4}.CoordTransformFcn = @rbIRF2BRF;
h.Bodies{5}.CoordTransformFcn = @rbIRF2BRF;

One last step before playing the animation is the time and camera adjustments. Since we

simulated five seconds of motion, we’ll also animate for five seconds. Then, to configure the

camera we need to first open the animation window. More information about the camera tools

can be found in https://de.mathworks.com/help/matlab/views.html

h.Name = 'Free Precession Demonstration'; % Window name
h.TFinal = 5;
h.show();
h.CurrentAxes.CameraTarget = [0 0 1];

And finally, play:

https://de.mathworks.com/help/matlab/views.html

111

h.play;

Here is the script without interruptions:

% Simulation
simu = RbSimulation;
simu.iOmega_b = [1, 0, 1.4243];
simu.inertia = diag([1, 1, 1.8822]);
simu.tspan = [0 5];
simu.simulate(0); % <-- Use Euler angles!

% Animation data preparation
motion_data = [simu.time, simu.position, simu.euler];
static_data = [simu.time, zeros(length(simu.time), 6)];

% Animation
h = RbAnimation;
h.createBody('freePrecession_ellipsoid.mat');
h.createBody('freePrecession_body_cone.mat');
h.createBody('freePrecession_space_cone.mat');
h.createBody('ortho_arrows_irf.mat');
h.createBody('freePrecession_ang_mom.mat');

h.Bodies{1}.TimeseriesSource = static_data;
h.Bodies{2}.TimeseriesSource = static_data;

h.Bodies{3}.TimeseriesSource = motion_data;
h.Bodies{4}.TimeseriesSource = motion_data;
h.Bodies{5}.TimeseriesSource = motion_data;

h.Bodies{3}.CoordTransformFcn = @rbIRF2BRF;
h.Bodies{4}.CoordTransformFcn = @rbIRF2BRF;
h.Bodies{5}.CoordTransformFcn = @rbIRF2BRF;

h.Name = 'Free Precession Demonstration'; % Window name
h.TFinal = 5;
h.show();
h.CurrentAxes.CameraTarget = [0 0 1];
h.play;

Modifying the System
There are some subjects you should be familiar with in order to modify the system:

Object Oriented Programming. Each module is a class or a set of classes, nothing too

complicated, but still knowing what classes, encapsulation and inheritance are makes things

much easier. A really good and short explanation about object oriented design can be found, as

of the writing of this document, in the following video by Lucidchart:

https://www.youtube.com/watch?v=UI6lqHOVHic

The video talks about design in the Unified Modelling Language (UML), but the concepts are

the same in any object oriented language.

Object Oriented Programming in MATLAB®. Object oriented programming in MATLAB®

has some differences from the programming languages like C++ or Java in the sense that

https://www.youtube.com/watch?v=UI6lqHOVHic

112

attributes and methods have extended access capabilities, and that objects in MATLAB® are

always a value class or a subclass of the handle classes. More information about OOP in

MATLAB® can be found in: https://de.mathworks.com/help/matlab/object-oriented-

programming.html.

The reason for which the modules are subclasses of the handle class and not value classes, is

that value classes must be reassigned to themselves every time one of their methods modifies

the class’s properties. To illustrate this, the following code creates a value class called

ValueClass:

classdef ValueClass {
 properties
 my_property = 0;

end
methods
 function obj = increase(obj)
 obj.my_property = obj.my_property + 1;
 end
end

end

The class is then instantiated in the console and tested with the following commands:

test = ValueClass; % test.my_property is 0 at this point
test.increase(); % still 0
test = test.increase(); % now it is 1

Even though the increase() method was called twice, the resulting value of the property will be

1 because the first call to the method does not replace the existing object.

Having to reassign an object each time a method is called is something that users may forget

and moreover, reassigning is something that does not really make sense with this particular

class. Additionally, the modules were not left as value classes because handle objects provide

event handling interfaces, which, in the future, can be used to develop a more robust physics

simulation system with collision detection.

Error handling. In order to simplify the isolation and tracking of errors, it is important to be

familiar with the exception classes of MATLAB®. Descriptions of the methods and classes can

be found in https://de.mathworks.com/help/matlab/exception-handling.html

Unit testing. Simplifies the processes of checking whether the code works as expected or not,

benchmarking the execution and debugging. Information about general unit testing can be found

in http://xunitpatterns.com/index.html and information specific to MATLAB®’s Testing

https://de.mathworks.com/help/matlab/object-oriented-programming.html
https://de.mathworks.com/help/matlab/object-oriented-programming.html
https://de.mathworks.com/help/matlab/exception-handling.html
http://xunitpatterns.com/index.html

113

Framework can be found in https://de.mathworks.com/help/matlab/matlab-unit-test-

framework.html.

Naming convention. All the functions and classes developed for this project have a specific

prefix to distinguish them from other toolboxes or native MATLAB® functions. Functions have

the prefix “rb”, while classes have “Rb” as prefix.

The System’s Project Tree. The project’s root directory is divided in four branches for the

modules, utilities, unit tests and examples.

Modules. Contains files for classes and functions the system cannot work without, and they are

mostly what users interact with when running simulations or animations.

Utilities. Contains files for classes and functions that are not mandatory to use, but might extend

the basic functionality.

Utilities/Exceptions. It is meant to contain classes related to error reporting. Having error

reporting classes customised for the system makes the debugging process and the identification

of problem sources faster.

Utilities/3D models. Contains geometries that are used often, so that reusing them saves lines

of code and avoids possible errors.

Utilities/Others. This branch is not a directory. It represents the concept of whatever tools that

may extend the system in a generic way. Like the RbTimeVectorAddition class, which may even

be used outside of the system.

https://de.mathworks.com/help/matlab/matlab-unit-test-framework.html
https://de.mathworks.com/help/matlab/matlab-unit-test-framework.html

114

Unit tests. Contains classes that use MATLAB®’s Testing Framework to simplify tests on the

code.

Examples. Contains scripts that demonstrates the functionality of modules or utilities. The code

in this files should be well documented so that whoever reads it can easily understand what the

script is doing.

With that said, whatever extension you develop, try to use the same structure so that the system

remains consistent.

	Declaration
	Acknowledgments
	Table Contents
	List of figures
	List of tables
	Abbreviations, units and sign conventions
	Abstract
	Chapter 1: Introduction
	1.1 Objectives
	1.2 Motivation
	1.3 Architecture
	1.3.1 Mass Distribution Calculator (MDC).
	1.3.2 6-DoF Motion Simulator (SMOD)
	1.3.3 Animation Module (AMOD)
	1.3.4 Utility Functions and Classes
	1.3.4.1 Body Description Converter
	1.3.4.2 Time Vector Addition

	1.4 Deliverables

	Chapter 2: Motion Simulation Module
	2.1 Overview
	2.1.1 Previous work
	2.1.2 Module’s Design

	2.2 Rigid Body Dynamics
	2.2.1 Translational Motion
	2.2.2 Rotational Motion
	2.2.3 Attitude Simulation
	2.2.3.1 Quaternions
	2.2.3.2 Euler Angles

	2.2.4 Coordinate Transformations
	2.2.4.1 Transforming with quaternions
	2.2.4.2 Transforming with Euler Angles

	2.2.5 State Vector

	2.3 Software Implementation
	2.3.1 Module Requirements
	2.3.2 Module Workflow
	2.3.3 RbSimulation Class
	2.3.3.1 Properties
	2.3.3.2 Simulation results
	2.3.3.3 Methods

	2.4 Demonstrations
	2.4.1 Free precession of a symmetrical top
	2.4.1.1 Analytical Solution
	2.4.1.1 Simulation

	2.4.2 Free rotation of an asymmetrical top
	2.4.2.1 Theoretical basis
	2.4.2.2 Calculating the initial values
	2.4.2.3 Simulation

	2.4.3 Freefall
	2.4.3.1 Analytical Solution
	2.4.3.2 Simulation

	2.4.4 Parabolic Motion
	2.4.4.1 Analytical Solution
	2.4.4.2 Simulation

	2.5 Benchmarking

	Chapter 3: Animation Module
	3.1 Overview
	3.1.1 Graphic tools
	3.1.2 MATLAB®’s Aerospace Toolbox™
	3.1.3 Timeseries Objects
	3.1.4 Module Design

	3.2 Software Implementation
	3.2.1 Module Requirements
	3.2.2 Module Workflow
	3.2.3 RbAnimationBody Class
	3.2.3.1 Properties
	3.2.3.2 Methods

	3.2.4 RbAnimation Class
	3.2.4.1 Properties
	3.2.4.2 Methods

	3.2.5 Utility Functions for the Animation Module

	3.3 Demonstrations
	3.3.1 Free Precession of a Symmetrical Top
	3.3.1.1 Creating the Geometries
	3.3.1.2 Animation

	3.3.2 Free Rotation of an Asymmetrical Top
	3.3.2.1 Creating the Geometries
	3.3.2.2 Animation

	3.3.3 Linear Displacement

	Chapter 4: Utilities
	4.1 RbTimeVectorSum
	4.1.1 Overview
	4.1.2 Design
	4.1.2.1 Properties
	4.1.2.2 Methods

	4.1.3 Usage

	Conclusions
	Future work
	References
	Appendix A: Scripts
	Chapter 2
	Script 2-1
	Script 2-2
	Script 2-3
	Script 2-4

	Chapter 3
	Script 3-1
	Script 3-2
	Script 3-3

	Appendix B: User’s Guide
	Adding the Toolbox to PATH
	Simulating
	Animating
	Adding Vectors versus Time
	Full System Example
	Modifying the System

