

Application of MISRA C:2012 in C code programming used in the

Subway Arrival System of Mexico City

A Thesis

Submitted to the Faculty of Fachhochschule Aachen and Centro de Ingeniería

y Desarrollo Industrial

BY

Maximiano Francisco Ruiz Páez

In Partial Fulfillment of the requirements
for the degree of Master of Science in Mechatronics

Santiago de Querétaro, Qro., México, September 2018

I

Abstract

This thesis work presents the application on the MISRA C:2012 Guidelines of the Modbus

source code developed at CIDESI for use in the Mexico City’s subway systems, especially in

the arrival system, in which CIDESI has been working. The purpose of applying MISRA C on

this source code is to increase its safety and to detect and erase any unwanted or unforeseen

behavior in this code.

For the realization of this work, the recommendations within the MISRA guidelines were

followed. As a starting point to this recommendations a C-style standard for written uniformity

of code developed within any defined workgroup is proposed and then applied to the original

Modbus files made at CIDESI.

Among the MISRA requirements developed during this project, “the compliance matrix” and

the “deviation documentation format” were defined. The first helps to ensure and document

how all rules are checked and to document changes done in the code to comply with a rule.

The second document assists when due to the nature of the project requirements, a deviation

from the rules is needed to be allowed.

Afterwards, for the modification of the source code in order to make it MISRA C complaint

the IAR Embedded Workbench compiler version 8.22 and the C-STAT checking tool version

1.5.2 were used as the softwares for compiling the source code and for the MISRA C:2012

automatic static checking.

A record of the results of these analyses are presented, as well as all the modifications done on

the code to make it MISRA C complaint.

Finally in the Appendixes to this work one can find the obtained compliance matrix for the

Modbus code as well all deviations declared for this project.

II

Declaration of Authorship

Hereby, I, Maximiano Francisco Ruiz Páez, declare that this thesis "Application of MISRA

C:2012 in C code programming used in the Subway Arrival System of Mexico City" is the

result of my own work.

Any part of this dissertation has not been previously submitted, in part or whole, to any

university or institution for a degree or other qualification.

I confirm that all consulted work from others is attributed and the source is always given.

Furthermore, the data and the software employed have all been utilized in complete agreement

to the copyright rules of the concerned establishments.

Signed: _______________________________

Santiago de Querétaro, México, September 2018

III

Acknowledgments

I would like to thank everyone who helped me in Mexico and Germany during my studies,

both Professors, administrative staff and friends of both CIDESI and FH Aachen who always

were kind and willing to help.

I would also like to personally give my thanks to:

M. Sc. Sadot Arciniega and M. Sc. Hiram Hernández for their help, advice and

recommendations for the improvement and realization of this thesis work.

Prof. Dr. Kämper and Prof. Dr. Woller for their guidance and help while I was in Germany

Dr. Salvador Acuña for the help granted through my Master’s studies

To my Mother and Father for all their support, unconditional love and for taking care of my

dog and cat while I was abroad.

And finally to CONACYT for the financial support to realize this Master’s studies.

IV

Index of contents

Index of tables ... VII

Index of figures ... IX

Introduction ... 1

1.1 Statement of the problem ... 1

1.2 Justification .. 2

1.3 Objectives .. 2

1.3.1 General objective .. 2

1.3.2 Specific objectives .. 2

1.4 Hypothesis ... 2

1.5 Methodology .. 3

State of the Art .. 4

2.1 Coding Standards ... 4

2.1.1 MISRA C coding standard .. 4

2.1.2 SEI CERT C coding standard ... 5

2.1.3 BARR Group – Embedded C coding standard ... 5

2.1.4 CWE (Common weakness enumeration) .. 6

2.2 C-Style Guides ... 7

2.2.1 C style guide by The Software Engineering Laboratory .. 7

2.2.2 ESA Style Guide for 'C' coding .. 7

2.2.3 Recommended C Style and Coding Standards Guide ... 8

2.3 MISRA Checking Tools .. 8

2.3.1 IAR C-STAT ... 9

Theoretical Framework ... 10

3.1 Appling MISRA C in a project .. 10

3.2 Compliance .. 10

3.2.1 Deviation procedure .. 11

V

3.3 Guidelines classification and categories .. 11

3.3.1 Guideline categories .. 11

3.3.1.1 Mandatory guidelines ... 11

3.3.1.2 Required guidelines .. 11

3.3.1.3 Advisory guidelines.. 12

3.4 Rules decidability .. 12

3.5 Analysis types .. 12

3.6 MISRA guidelines ... 12

3.5.1 Directives .. 12

3.5.2 Rules .. 13

C-style Standard for CIDESI ... 14

4.1 Use of indentation, blank lines and space. ... 14

4.1.1 Blank lines ... 14

4.1.2 Spacing .. 15

4.1.3 Indentation ... 16

4.2 Comments .. 16

4.2.1 Boxed comments ... 17

4.2.2 Block comments .. 17

4.2.3 Short comments ... 17

4.3 Recommendation for the use of names .. 18

4.3.1 Standard names ... 18

4.3.2 Variable names .. 19

4.3.4 Capitalization .. 19

4.4 Data structures ... 19

4.5 Variable initialization .. 19

C-Style standard modifications to the Modbus code ... 20

MISRA Application ... 22

6.1 MISRA C:2012 Compliance Matrix .. 22

VI

6.2 Deviation Documentation Format ... 24

6.3 MISRA C static check tool C-STAT configuration and results 25

Modbus Source Code Modifications ... 30

C-STAT Final Results after MISRA C Modifications to the Source Code 38

Conclusions ... 42

Future work ... 43

References ... 44

Appendix A: MISRA Directives ... 45

Appendix B: MISRA Rules ... 47

Appendix C: Modbus MISRA C compliance matrix .. 60

Appendix D: MISRA C Formal deviation documentation format .. 65

Appendix E: MISRA C:2012 complaint Modbus.c code with C-style format changes 66

VII

Index of tables

.

Table 1. Factory settings C-stat analysis results for the original Modbus files. 27

Table 2. All MISRA checks enabled results for the original Modbus files............................... 28

Table 3. C-STAT results with all MISRA checks enabled ... 38

Table 4. C-STAT results for modified Modbus files .. 40

Table 5. The Implementation .. 45

Table 6. Compilation and build ... 45

Table 7. Requirements traceability .. 45

Table 8. Code design ... 45

Table 9. A standard C environment ... 47

Table 10. Unused code .. 47

Table 11. Comments .. 48

Table 12. Character sets and lexical conventions .. 48

Table 13. Identifiers ... 48

Table 14. Types ... 49

Table 15. Literals and constants .. 49

Table 16. Declarations and definitions .. 49

Table 17. Initialization ... 51

Table 18. The essential type model ... 51

Table 19. Pointer type conversions.. 52

Table 20. Expressions .. 53

Table 21. Side effects .. 53

Table 22. Control statement expressions ... 54

Table 23. Control flow .. 54

Table 24. Switch statements .. 55

VIII

Table 25. Functions ... 55

Table 26. Pointer and arrays .. 56

Table 27. Overlapping storage .. 57

Table 28. Preprocessing directives .. 57

Table 29. Standard libraries .. 58

Table 30. Resources .. 59

IX

Index of figures

Figure 1. MISRA C:2012 compliance matrix (fragment) .. 23

Figure 2. Original Modbus files analysis with factory settings .. 26

Figure 3. Original Modbus files with all MISRA checks enabled ... 26

Figure 4. C-STAT Report result of the original files with factory settings .. 27

Figure 5. C-STAT Report result of the original files with all MISRA checks enabled. 29

Figure 6. C-STAT report graphs for all MISRA checks enabled. .. 39

Figure 7. IAR screen after analysis execution with deviation considered. .. 40

Figure 8. Final C-STAT report graphs with deviations considered. .. 41

X

1

Chapter 1

Introduction

CIDESI is currently working on developing new systems to improve Mexico City’s Subway.

Among these systems is the subway arrival system, which will inform subway users of the

time left for the next subway train to arrive. In order to develop this systems multiple sensors

had to be placed along the subway line. For the communication of this sensors a Modbus

protocol of master/slave is used. The correct coding of this Modbus communication protocol is

vital to the correct operation of the system. In order to increase the safety and robustness of the

source code used in this system the use of the MISRA C guidelines was decided.

1.1 Statement of the problem

Developing code is a complex matter in which causing unforeseen, unwanted behaviors is

relatively easy. In embedded systems, especially in the ones where human life is involved,

ensuring that no such behaviors can occur is critical to safety. To this effect multiple coding

standards have been created but their implementation and application can be difficult and time

consuming.

CIDESI’s work at Mexico City’s subway system relies heavily in the use of embedded

systems programed in C language. Since these systems must be error free for the sake of

safety and reliability the adaptation of C standards is useful to increase the robustness of the

source code created.

Also, since many different programmers work in the development of the code for Mexico

City’s subway arrival systems and since most C coding standards, like MISRA, recommend a

C style format guide is also needed to make the code made by different programmers more

consistent in its written style making it easier and faster to understand between programmers.

2

1.2 Justification

MISRA C is the most widely used coding standard for coding in critical systems. Developing

a methodology for its easy application can help improve the quality of the code developed at

CIDESI for the new arrival systems of Mexico City’s subway.

Using MISRA C and adapting a C style coding standard will help to make any code created

more robust, unlikely to have errors or bugs and make it easier to maintain in cases where the

code needs to be modified by a group of programmers other than the original creators.

1.3 Objectives

1.3.1 General objective

 Application of the MISRA C Guidelines in the Modbus communication C source code

used in the new embedded systems developed by CIDESI for the Mexico City’s

subway.

1.3.2 Specific objectives

 Development of a methodology for applying MISRA C to a source code following the

recommendations MISRA C itself proposes.

 Development of documentation formats to record deviations and compliance with

MISRA rules.

 Development of a C style guide for making the source code written format standard at

CIDESI.

 Revision and modifications to the Modbus source code used in the subway system to

make it MISRA compliant.

 Elaboration and defense of a Master’s Thesis.

1.4 Hypothesis

A method can be developed to apply MISRA C guidelines in efficient ways in the C code

written at CIDESI. Specifically, in the Modbus source code developed for use in the new

3

embedded systems programed in C language developed by CIDESI for Mexico City’s subway

arrival system.

1.5 Methodology

While the MISRA C guidelines document doesn’t enforce or specifies an obligatory way to

apply its guidelines to a project or to any C source code. It gives a series of recommendations

on its use.

It recommends to stablish a C-style guide with the purpose of making the C code more “alike”

inside an organization or work group. This C-style guide should specify the text and

formatting rules when writing C code, as well as standards for documenting and commenting

in the code, such as readme files.

The MISRA guidelines also state that some formal documentation method should be

stablished by any organization to document and authorize any deviations from the guidelines.

MISRA also recommends to use a “Compliance matrix” which should list all the guidelines

and document in which ways was each guideline verified.

A formal deviation document and compliance matrix were developed for this project based on

the recommendations and example presented in the MISRA C guidelines.

4

Chapter 2

State of the Art

2.1 Coding standards

According to IEEE, C languages occupies the number one rank in the Top Ten Programming

Languages for 2016 [1]. Together with C++, they are also the only high-level programming

languages useful for low level and embedded programming.

The following is a brief review of the most commonly used C coding standards used actually

to reduce vulnerabilities, errors, bugs and other common problems when programming in C

language at the early stages of the software development process

2.1.1 MISRA C coding standard

MISRA, The Motor Industry Software Reliability Association is a collaboration between

manufacturers, component suppliers and engineering consultancies which seeks to promote

best practice in the development of safety-related embedded electronic systems. To this end

MISRA publishes documents that provide accessible information for engineers and

management, and holds events to permit the exchange of experiences between practitioners.

[2]

MISRA C 2012 is the third revision of the MISRA C guidelines. The new guidelines

document roughly double the size of the previous revision (MISRA 2004) although the

number of guidelines was increased by around 10% only.

MISRA C 2012 has the following advantages versus previous version of itself and other C

coding standards: [3]

 Better rationales for guidelines

 More precise descriptions

 More coding examples

5

MISRA C:2012 was published on 18 March 2013. MISRA C:2012 extends support to the C99

version of the language whilst maintaining guidelines for C90. It contains 143 rules and 16

"directives" (that is, rules whose compliance is more open to interpretation, or relates to

process or procedural matters); each of which is classified as mandatory, required, or advisory.

They are separately classified as either Single Translation Unit or System. Additionally, the

rules are classified as Decidable or Undecidable.

2.1.2 SEI CERT C coding standard

SEI CERT describes itself as “Rules for secure coding in the C programming language. The

goal of these rules and recommendations is to develop safe, reliable, and secure systems.

Conformance to the coding rules defined in this standard are necessary (but not sufficient) to

ensure the safety, reliability, and security of software systems developed in the C

programming language.”[4] Each rule consists of a title, a description, and noncompliant code

examples and compliant solutions.

CERT’s coding standards are being widely adopted by industry. Companies such as Cisco

Systems, Inc. and Oracle have adopted this coding standard into their existing secure coding

standards. [4]

The CERT C Secure Coding Standard is primarily intended for developers of C language

programs but may also be used by software acquirers to define the requirements for software.

This standard is of particular interest to developers who are building high-quality systems that

are reliable, robust, and resistant to attack. The CERT C Secure Coding Standard was

developed on the CERT Secure Coding wiki. [4]

2.1.3 BARR Group – Embedded C coding standard

The Barr group C coding standard objective is to reduce the number of software bugs present

in new embedded software and in code added or modified later by maintainers. The guide

6

describes techniques to reduce or eliminate the number of bugs. While also improving the

maintainability and portability of embedded software.

This coding standard details a set of guiding principles as well as specific naming conventions

and other rules for the use of data types, functions, preprocessor macros and variables among

others. Individual rules that have been demonstrated to reduce or eliminate certain types of

bugs are highlighted. In its latest version, BARR-C: 2018, the coding rules have been fully

harmonized with MISRA C: 2012, for helping in embedded system to reduce defects in

firmware written in C and C++. [5]

2.1.4 CWE (Common weakness enumeration)

The CWE is a community-developed formal list of common software weaknesses. It serves as

a common language for describing software security weaknesses, a standard measuring for

software security tools targeting these vulnerabilities, and as a baseline standard for weakness

identification, mitigation, and prevention efforts. If necessary, CWE can also be scoped to

specific languages such as C. [6]

CWE is built from the diverse thinking on this topic from academia, the commercial sector,

and government thanks to its community developed origin. Its objective is to help the code

security assessment industry and also accelerate the use and utility of software assurance

capabilities for organizations in reviewing the software systems they acquire or develop.

First developed by MITRE a not for profit organization which began working on the issue of

categorizing software weaknesses as early 1999 when it launched the CVE List a dictionary of

publicly disclosed cybersecurity vulnerabilities. As part of the development of CVE, MITRE's

CVE Team developed a preliminary classification and categorization of vulnerabilities,

attacks, faults, and other concepts to help define common software weaknesses. [6]

Currently the most recent version is 3.0 which was released in November 2017.

7

This list has over 600 categories, not all of them C language relevant, including classes for

buffer overflows, path/directory tree traversal errors, race conditions, cross-site scripting,

hard-coded passwords, and insecure random numbers.

2.2 C-Style Guides

As said by Steve Oualline “Good programming style begins with the effective organization of

code. By using a clear and consistent organization of the components of your programs, you

make them more efficient, readable, and maintainable”. [7]

Good style in software coding is defined as that which is organized, easy to read, easy to

understand, maintainable and efficient.

2.2.1 C style guide by The Software Engineering Laboratory

The Software Engineering Laboratory (SEL) is an organization sponsored by the National

Aeronautics and Space Administration/Goddard Space Flight Center (NASA/GSFC) and

created to investigate the effectiveness of software engineering technologies when applied to

the development of applications software. [8]

This document discusses recommended practices and style for programmers using the C

language in the Flight Dynamics Division environment. Guidelines are based on generally

recommended software engineering techniques, industry resources, and local convention. It

offers preferred solutions to common C programming issues and illustrates through examples

of C code.

It was first published in August 1994. Although this document was written specifically for

programmers in the SEL environment, the majority of these standards are generally applicable

to all environments.

2.2.2 ESA Style Guide for 'C' coding

The Experts Solutions Australia (ESA) style guide for C is a guide to what is considered good

style for C code. According to the ESA guide, style covers general rules to be applied when

8

designing and writing code. While designed for C, the ESA style guide can be applied to any

programming language. [9]

It has recommendations for the use of comments, variable initialization, control flow, the use

of returns and break statements, and the use of pointers, structures, functions and memory.

The document is structured into a number of general headings, and within each heading is a

list of recommendations. The definitions used in the C Coding Standard are used in this

document. It was original published in 1991.

2.2.3 Recommended C Style and Coding Standards Guide

This document is a modified version of a document from a committee formed at AT&T’s

Indian Hill labs to establish a common set of coding standards and recommendations for the

Indian Hill community. The scope of this guide is C coding style. According to it, Good style

should encourage consistent layout, improve portability, and reduce errors. This style guide

does not cover functional organization. [10]

The document for this guide states that individual institutions or groups may adopt part or all

of standards it proposes as a part of program code acceptance. It also recommends that when

changing existing code it is better to conform to the style (indentation, spacing, commenting,

and naming conventions) of the existing code than it is to blindly follow a style guide.

Ultimately, the goal of these standards is to increase portability, reduce maintenance, and

above all improve clarity.

2.3 MISRA Checking Tools

While there exist many software tools that claim to check code for "MISRA conformance", there is no

MISRA certification process and there are not checking tools endorsed or recommended by MISRA

itself. [11]

9

Most of the guidelines can be checked using tools that perform static code analysis. One such

tool is IAR C-STAT which is briefly described next:

2.3.1 IAR C-STAT

C-STAT is a static analysis tool that tries to find deviations from certain coding rules by

performing one or more checks for the rule. The checks are grouped in packages. The various

packages available are:

 STD_CHECKS: Contains checks for rules that come from CWE, as well as checks

specific to C-STAT.

 CERT: Contains checks for CERT. In addition, some CERT rules and recommendations

can be verified by checks for other standard rules.

 MISRA C:2004, C++:2008 and C:2012.

The checks for the mandatory and required rules of MISRA C:2012 are by default on, whereas

the checks for the advisory rules are by default off. [12]

10

Chapter 3

Theoretical Framework

3.1 Appling MISRA C in a project

It is always recommended to adopt the use of the MISRA guidelines from the start of a

project. Although it must be clarified that adherence to the MISRA guidelines does not in

itself ensure error-free robust software or guarantee portability of the code.

In cases when a project is built over the code of a previous project or when MISRA is chosen

to be used later in the development process of a project the benefits of compliance with

MISRA C may be outweighed by the risk of creating defects when editing the code to make it

compliant. In such case it is necessary to evaluate the implementation needs of the MISRA C

guidelines. [1]

3.2 Compliance

In order to ensure that all of the MISRA C guidelines are followed. A compliance matrix

should be produced. This matrix should list every guideline and indicate how the checks are

performed.

In most guidelines the most efficient way for checking the rules will be using a static analysis

tool, the compiler or a combination of both. [1]

When using a static checking tool, the following information should be recorded for each tool

used for checking:

 Version number of the tool.

 Options and configuration of the checking tool when the code was verified.

11

3.2.1 Deviation procedure

In some case it must be necessary to deviate from the guidelines given in the document. It is

then needed that such deviations are documented and authorized.

Such a deviation procedure should be formalized with the code development process. MISRA

does not imposes any MISRA C deviation recording procedure, since the method requirements

will vary between organizations. [1]

3.3 Guidelines classification and categories

MISRA C guidelines are divided in Directives and Rules.

A directive is a more general guideline. They cannot be specifically verified since they

sometimes require additional information, such as design documents or requirements

specifications.

A rule is a guideline with a complete description. It should be possible to check compliance

with a rule by checking the code directly. Most rules are checkable using static analysis tools.

3.3.1 Guideline categories

Each guideline is classified in either “mandatory”, “required” or “advisory”.

It must be noted that an organization or work group can choose to treat any required guideline

as mandatory and any advisory guideline as required or mandatory. [1]

3.3.1.1 Mandatory guidelines

To claim that any C code is MISRA C complaint every mandatory guideline must be obeyed.

In the case of mandatory guidelines deviations are not permitted. [1]

3.3.1.2 Required guidelines

C Code which is claimed to be MISRA C complaint must obey every required guideline, with

a formal documentation in case of deviations needed. [1]

12

3.3.1.3 Advisory guidelines

These guidelines are recommendations, still they must be followed as far as reasonably

practical within the scope of the project. In the case of not complying with an advisory

guidelines a formal deviation is not necessary, although it is always recommended to have

some method of documenting non-compliances. [1]

3.4 Rules decidability

Each rules is either classified as Decidable (D) or Undecidable (U). Decidable rules are the

ones that can be checked using a static analyzer to verify if the code complies with a rule or

not. Undecidable rules much be manually checked and usually depend on the code’s run-time

properties to detect violations. [1]

3.5 Analysis Types

The analysis required for verifying a rule can be either “Single Translation Unit (STU)” or

“System (Sys)”. [1]

Rules are classified as “Single Translation Unit” if compliance to said rule can be verified by

checking each code line or statements individually.

A rule is considered as “System” if the entire source code needs to be verified in other to claim

compliance. This type of rules are more easily checked using a static analysis tool.

3.6 MISRA guidelines

The next are a list of all MISRA C:2012 directives and guidelines, this were studied and

understood for the purpose of this project

3.5.1 Directives

There are a total of 16 directives, divided in 4 groups according to their scopes. A full list of

the directives can be found in Appendix A

13

3.5.2 Rules

There are a total of 143 rules divided in 22 categories. A full list of the MISRA rules can be

found in Appendix B of this document.

14

Chapter 4

C-style Standard for CIDESI

The suggestions in this document cover how code should be designed and written, as opposed

to how the syntactic elements should be laid out, which is the scope of the MISRA C Coding

Standard.

A workgroup standard style has the advantage that the intent and workings of a piece of code

are easier to grasp because the way things are done are similar between al members of the

work group. [9]

The following recommendations are based on the “C style guide by The Software Engineering

Laboratory” and the “ESA Style Guide for 'C' coding” documents.

4.1 Use of indentation, blank lines and space.

The correct use of spacing can help make the source much easier to read and maintain.

4.1.1 Blank lines

It is recommended to divide de code in “paragraphs” grouping the “#include” preprocessing

directives at the start and then leaving a blank space to declare the global variables followed

by another blank line and then a function. For example:

#include "gpio.h"

#include "hw_memmap.h"

bool Data_ready = false;

bool Process_data = false;

bool esperate = false;

uint16_t get_Registro (void)

{

 return sDataMaster.Registro;

}

15

Inside a function is also helpful to organize the code paragraphs for variables and then

statements. It is recommended to leave a blank line before a loop statement like if or else. For

example, the next code segment shows how to use blank lines in a function:

uint8_t sendCoilMaster(sReadCoilMaster MDatos, uint8_t *Data)

{

 uint8_t Data_to_send[100] = "";

 uint8_t Datos_cadena[4];

 f = Armar_Cadena(Datos_cadena,MDatos.address, Data_to_send, i);

 while(intentos < 2)

 {

Only a single blank line should be used. The use of double blank lines should be avoided since

it makes grouping consume too much space which can actually make the text harder to read.

4.1.2 Spacing

Correct spacing makes the readability of variables and operators easier and simpler. It also

improves the overall presentation of the code text. The next examples illustrate how to

correctly use spacing to make the text easier to read:

for(uint8_t k = 0; k < sMasterData -> NoData; k++)

uint32_t pendingBytes2 = uartGetPendingBytes(MODBUS);

if((MSBCRC == MSB_Calculado) && (LSBCRC == LSB_Calculado))

While not using spacing make the statements much harder to read as shown when the previous

examples are modified without correct spacing:

for(uint8_t k=0;k<sMasterData->NoData;k++)

uint32_t pendingBytes2=uartGetPendingBytes(MODBUS);

if((MSBCRC==MSB_Calculado)&&(LSBCRC==LSB_Calculado))

When using commas a space must be added after the comma. For example:

preparare = Modbus(datos_ModbusRx, pendingBytes2, slave);

16

4.1.3 Indentation

Indentation is a tool that makes the structure and logic of a code faster to identify, and thus

easier to read and understand. Four spaces is the recommended indent for readability and

maintainability. In case where using four space would cause the code to reach the end of the

line needing an additional line its acceptable to use less spaces for indentation.

An example on correct indentation is shown next fragment of code:

void decodificar_cadena_Slave(sReadCoilMaster *sMasterData, uint8_t slave)

{

 bool preparar_informacion;

 if(pendingBytes2 != cero)

 {

 preparare = Modbus(datos_ModbusRx, pendingBytes2, slave);

 if(preparar_informacion == true)

 {

 sMasterData -> address = datos_ModbusRx[i++];

 if(sMasterData -> funcion != 0x06)

 {

 registro |= datos_ModbusRx[i++];

 }

 }

 }

}

4.2 Comments

Comments should be used to provide information which is not obvious from only reading the code.

Comments can be added in various sections of the code or in a separate README file.

The README file should explain the code and also include and explanation of the code files

organization.

A file prolog in the code itself can be used to as the first section of the code. It should explain the

purpose of the code and give information for the code identification such as code version or original

programmer.

A prolog can optionally be used before a function to give additional information or an explanation of it.

17

Through the document, wherever data is being declared or defined, comments can be used to explain

the purpose of this various variables or definitions.

Three basic styles of commenting are recommended. Comments should be added to give extra

information about the code or to section the code only. Avoid repeating or giving obvious information

on the comments.

4.2.1 Boxed comments: used for prologs or section separators.

Example:

/**
* FILE NAME *
* *
* PURPOSE *
* *
* OTHER INFORMATION *
***/

4.2.2 Block comments: used at the begging of a code section for description of the code.

Example:

/*
*Comments are written here, in full sentences
* This type of comments are used when more
* than one sentence is used.
*/

4.2.3 Short comments: written in the same line as the code which they describe.

Example:

int8_t variable_X; /* Info on variable_X comment*/

Additionally a comment line as shown in the next example can be used as separator. It is

recommended to use this type of separator to indicate the end of functions.

Example separator:

/**/

18

4.3 Recommendation for the use of names

For naming any file, function, constant or variable it is important to take into account the

MISRA C:2012 rules on identifiers and naming. Besides following MISRA, names should be

meaningful related to the object they belong to.

Through the document where any abbreviations are used they must be kept constant thought

the code. For example if a name of a function is declared as DC_Function where DC is an

abbreviation of “data check” the same abbreviation should be used through the code whenever

an object related to “data check” is named.

An underscore should be used to write more elaborated names, for example “Modbus_Value”

is better than “ModbusValue” for reading simplicity and clarity.

Avoid writing similar names or names that only differ in the use of letter case for

differentiation (C is case sensitive). Avoid using names that differ in only one letter. Names

should be unique and differ in at least two letter or have a number added to the names end to

avoid confusions.

Do not assign a variable and a typedef (or struct) with the same name, even though C allows

this. This type of redundancy can make the program difficult to follow.

4.3.1 Standard names

As described in the NASA C-style document when the use of a variable is obvious for the case

of common practice short names, the following naming conventions can be followed:

c characters

i, j, k indices

n counters

p, q pointers

s strings

19

4.3.2 Variable names

Names for global variables should not be same as the name of internal function variables to

avoid creating hidden variables which could cause unwanted behaviors in the code. The matter

of hidden variables is also considered in the MISRA C guidelines.

4.3.4 Capitalization

It is recommended to follow the next rules for the declaration of names to make it easier and

faster to identify between variables, functions and constants within the source code.

Variables: Use lower case letters. Separate words with underscores.

Functions: Capitalize the first letter of each word, use underscores to separate words.

Constants: Use capital letters only. Separate each word with underscores.

Examples:

 Variable: answer_time

 Function: Time_Counting

 Constant: TIME_MIN

4.4 Data structures

A data structure defines the information about an object. All information about an object

should be grouped into a struct. Structs should have more than one element.

The recommended format for a struct is:

struct

{

 uint8_t address;

 uint8_t no_registros;

 uint8_t data[100];

 uint16_t registro;

} struct_name;

4.5 Variable initialization

Avoid initializing an automatic variable where it is defined. Instead, initialize it closer to

where the decision is made about what its value will be, or where it is used. This makes it

easier that the variable is initialized correctly.

20

Chapter 5

C-Style standard modifications to the Modbus code

As a first step towards modification of the Modbus source code files to achieve MISRA

C:2012 compliance the source files were edited to comply with the newly recommended C-

style standard. This modification of the sources files to follow the C-style standard

recommendations made the project files easier to read and easier to understand.

Most expressions and statements spacing and indentations were edited in order comply with

the C-style standard, although no functions or variable identifier names were changed to avoid

possible conflicts. For example, the code for the function decodificar_cadena_Slave written in

Modbus.c was modified as follows, first the original code without the recommendations of C-

style standard is presented:

void decodificar_cadena_Slave(sReadCoilMaster *sMasterData, uint8_t slave)

{

 bool preparar_informacion=false;

 uint8_t datos_ModbusRx[100]="";

 uint8_t i=0;

 uint16_t registro=0;

 uint16_t registerqty=0;

 uint32_t pendingBytes2=uartGetPendingBytes(MODBUS);

 if(pendingBytes2!=0)

 {

 uartGetData(MODBUS,datos_ModbusRx,pendingBytes2);

 preparar_informacion =comprobar_Datos_Modbus(datos_ModbusRx,

 pendingBytes2,slave);

 if(preparar_informacion==true)

 {

 sMasterData->address=datos_ModbusRx[i++];

 sMasterData->funcion=datos_ModbusRx[i++];

 if(sMasterData->funcion!=0x06)

 {

 registro|=datos_ModbusRx[i++];

 registro=registro<<8;

 registro|=datos_ModbusRx[i++];

 sMasterData->Registro=registro;

 registerqty|=datos_ModbusRx[i++];

 registerqty=registerqty<<8;

 registerqty|=datos_ModbusRx[i++];

 sMasterData->NoRegistros=registerqty;

 }

 }

 }

}

21

After the Proposed C-style rules are applied, mostly changing only indentation and spacing:

void decodificar_cadena_Slave(sReadCoilMaster *sMasterData, uint8_t slave)

{

 bool preparar_informacion;

 uint8_t datos_ModbusRx[100] = "";

 uint8_t i = 0;

 uint16_t registro = 0;

 uint16_t registerqty = 0;

 uint32_t pendingBytes2 = uartGetPendingBytes(MODBUS);

 uint32_t cero = 0;

 if(pendingBytes2 != cero)

 {

 (void) uartGetData(MODBUS, datos_ModbusRx, pendingBytes2);

 /* (void) added for rule 17.7 */

 preparar_informacion = comprobar_Datos_Modbus(datos_ModbusRx,

 pendingBytes2, slave);

 if(preparar_informacion == true)

 {

 sMasterData -> address = datos_ModbusRx[i++];

 sMasterData -> funcion = datos_ModbusRx[i++];

 if(sMasterData -> funcion != 0x06)

 {

 registro |= datos_ModbusRx[i++];

 registro = registro << 8;

 registro |= datos_ModbusRx[i++];

 sMasterData -> Registro = registro;

 registerqty |= datos_ModbusRx[i++];

 registerqty = registerqty << 8;

 registerqty |= datos_ModbusRx[i++];

 sMasterData -> NoRegistros = registerqty;

 }

 }

 }

}

In this case indentation and spacing make the code logic and structure easier to follow, as well

as making the operations and statements more readable. It must be noted that the modified

code also presents the MISRA C Guidelines modifications explaining why the syntax is not

exactly the same in both instances presented here of the same function.

22

Chapter 6

MISRA Application

For the modification of the code in order to make it MISRA C:2012 complaint the

recommendations from the MISRA guidelines itself were followed. After the modification to

the code to make it standard to the newly defined C-style the deviation documentation format

and the MISRA C compliance matrix were created.

It must also be stated that creating code that is MISRA C complaint is much easier if MISRA

is considered from the beginning of the source code creation. In the case of this work, MISRA

C 2012 was applied to the Modbus code developed by CIDESI programmers for use in the

arrival systems for Mexico City’s subway.

6.1 MISRA C:2012 Compliance Matrix

To ensure that all directives and rules are checked, and to document any warning or errors

during compilation of the code and the error given by the static analysis checking tool the

compliance matrix must be used.

This compliance matrix was created following the MISRA guidelines recommendations for it.

An example part of the matrix as well as an example way of filling it can be seen in the next

figure. The matrix was written and filled used Microsoft Excel.

In the complete matrix table all 16 directives and 143 rules are listed. The background color

for each rule and directive indicates if the rule is advisory (Pale blue), required (pale orange)

or mandatory (orange). The complete Compliance Matrix used during the modifications to the

Modbus source code can be seen in full in Appendix C of this work.

23

DIRECTIVE COMPILER CHECK TOOL MANUAL REVISION

 IAR E.W. v8.22 Other C-STAT v1.5.2 OTHER

Dir 1.1 No errors N/A Not checkable N/A Directive followed.

Dir 4.4 No errors N/A No errors N/A Followed. Unused code erased.

Dir 4.5 No errors N/A No errors N/A Reviewed. Minor changes done.

Rule 1.1 No errors N/A Not checkable N/A Manual review. No errors found.

Rule 2.2 No errors N/A Multiple errors N/A Corrected: Unused code erased.

Rule 9.1 No errors N/A No errors N/A Manual check: No errors found.

Figure 1. MISRA C:2012 compliance matrix (fragment)

For the matrix filling method, under “compiler” the name as well as the version of the

compiler used most be written. It is recommended to use at least two different compiler

software’s to decrease the chance of errors in case of porting the code to other compiler

software. In the case of the Modbus source code, due to licenses constraints, the code was only

checked and compiled in IAR Embedded Workbench Version 8.22 so “IAR E.W. v8.22” is

filled in as the first compiler and “other” is used as an empty filler name.

After compiling any warning given by the software must be registered in the matrix next to

any rule that could be affected or causing it. Likewise for the Static MISRA check tool, the

use of at least 2 different checking tools is recommended. The checking tool used in this case

was C-STAT for MISRA 2012 which is a plugin extension for IAR Embedded Workbench.

The C-STAT version used is 1.5.2.

Once the automatic checks are realized the results should be filled in the matrix. Short

messages are recommend such as “error”, “no errors” and “multiple errors”. Once the results

of the static check are added to the matrix one can continue to the next step, which is to

manually correct the found rule violations. Tools that can’t be automatically checked by a

software tool must be marked in the matrix, as “not checkable”.

24

For the Manual Revision part of the matrix one should briefly document any changes made to

the code in order to correct the detected rule violation. Cases where the code is not modified

because it was decided not to follow an advisory rule must be also be indicated as well as any

formal deviation declared or any errors that could not be corrected. In the case of this project

each rule was also checked manually even the ones that gave no errors by automated checking

tools.

6.2 Deviation Documentation Format

When a rule has to be breached because of the project requirements, because the changes to

code result too complex, unpractical or when it seems that a modification to a part of the code

could cause more problems than benefits a formal rule deviation most be declared and

documented.

Deviations can be classified in two types: project or specific. Project deviations occur when a

guideline in particular is breached under certain circumstance through the entirety of the

project source code, caused by the project requirements itself. A specific deviation occurs

when a guideline is violated in only one instance of only one file of the project. A format for a

formal deviation declaration, filled for a rule breach in the Modbus code can be found in

Appendix B.

It’s important to remark that only required rules need a formal deviation declaration, since

mandatory rules cannot be violated to claim MISRA compliance for a project. Advisory rules

deviations can be documented too but this not obligatory by MISRA standards.

The fields required for the formal deviation documentation are as follows:

 Deviation number and source file: A number most be assigned to the deviation for

ease of identification. Also the source file where the rule violation occurs must be in

declared.

25

 Type of deviation: state if the deviation is of specific or system type.

 Description of the circumstances causing the deviation from the rule: A brief but

clear description of the causes and circumstances of the deviation must be written.

 Justification to the rule deviation: Include an evaluation of the possible dangers

caused by the rule violation compared against other possible solutions.

 Possible secondary effects due to the rule deviation: If the rule violation could cause

other problems they should be documented here.

 Actions taken or needed to guarantee no other problems due to this deviation:

Any need test or evaluations done to guarantee no further problems should be

documented here.

The full deviation document format, filled for the cases where it was necessary for the Modbus

code modifications can be seen in full in Appendix B.

6.3 MISRA C static check tool C-STAT configuration and results

For the automatic check of the MISRA compliance of the Modbus code the following

configuration for C-STAT was used; first a static analysis was used with the factory settings

on the original version on of the Modbus.c and Modbus.h files using the libraries defined in

this files.

For the analysis of the Modbus files a total of 48 functions, 8 header files and 4 source files

were analyzed using C-STAT version 1.5.2 in two configurations: factory recommended

MISRA checks and all MISRA checks enabled.

The factory settings use 173 of 213 C-STAT specific checks and 175 of 226 possible checks

based on the MISRA C:2012 guidelines.

26

Figure 2. Original Modbus files analysis with factory settings.

A second analysis was made this time with the same recommended C-stat checks but using all

226 possible checks for the MISRA C:2012 guidelines.

Figure 3. Original Modbus files with all MISRA checks enabled.

27

The results of these analysis were as follows:

For the factory settings analysis of the unmodified Modbus files the result was a total of 173

error messages. In Table 1 the total resulting messages and the MISRA violation they

correspond to are shown.

Table 1. Factory settings C-stat analysis results for the original Modbus files.

The following figure shows additional data on the amount of times a same rule is violated, the

source file of origin where the violations happen and the severity of the found violations.

Figure 4. C-STAT Report result of the original files with factory settings

28

As can be seen Rule 10.3 has the most breaches, having almost double the breaches of rule

10.4. While the origin of the breaches is mostly the original Modbus.c file. In the case of the

severity of the violations only medium and low severity breaches were found.

For the Full MISRA C checks analysis of the original Modbus files the result was a total of

215 error messages. In Table 2 the total resulting messages and the corresponding MISRA

violation are shown.

Table 2. All MISRA checks enabled results for the original Modbus files.

The following figure shows the graphs generated by the C-STAT report which gives

additional data on the amount of times a same rule is violated, the source file of origin where

the violations happen and the severity of the found violations.

29

Figure 5. C-STAT Report result of the original files with all MISRA checks enabled.

As can be seen Rule 10.3 again has the most breaches, but in general the same breaches as in

the first analysis still are the most common. While the original Modbus.c file was found to

have almost 40 more breaches. Still no high severity violations are found.

30

Chapter 7

Modbus Source Code Modifications

The following are a list of changes done on the Modbus code to correct any rule breach. The

changes specify which functions are being modified, but only the relevant part of the code that

is being changed is shown.

For directive 4.5

Identifiers in the same name space with overlapping visibility should be typographically

unambiguous.

Some single letter variables were changed to make them harder to confuse between them for

example some “j” named variables were changed to “f” to avoid confusions with “i” variables.

For directive 4.6

typedefs that indicate size and signedness should be used in place of basic numerical

types.

The following changes were made in the next functions:

uint8_t Armar_Cadena(uint8_t *buffer_inicial, FModbusType funcion, uint8_t

 slave, uint8_t *buffer_final, uint32_t

tamano)

{

 uint32_t CRC_MODBUS = 0; /* unsigned char was changed for uint32_t */

/***/

bool comprobar_Datos_Modbus (uint8_t *datos_modbus_string, char tamano2,

 uint8_t slave)

{

 uint32_t crcmodbus = 0; /* unsigned char was changed for uint32_t */

/***/

For rule 2.2:

31

There shall be no dead code

The unused initialization values for many declared variables was erased. It was verified that

this variables were assigned a value before being used in other expressions. In in most cases in

the following code extracts only the expressions “ = 0;” which was never used was removed,

where other changes were made it is specified in comments:

In the function write_data_master:

 uint8_t k;

 uint16_t read_qtyregisters;

 uint8_t pending_bytesMod;

 uint32_t initial_tick;

 uint32_t actual_ticks;

 bool correctinfo; /* “=false;” was removed */

In the function Armar_Cadena
 uint8_t datos_a_enviar;

 uint32_t CRC_MODBUS;

In the function Answer_Modbus:
 uint8_t k;

In the function comprobar_Datos_Modbus:
 char slave_received;

 char MSBCRC;

 char LSBCRC;

 char MSB_Calculado;

 char LSB_Calculado;

 uint32_t crcmodbus;

 crcmodbus = 0; /* this line of code was erased */

In the function decodificar_cadena_Slave:
 bool preparar_informacion; /* “=false;” was removed */

In the functiondecodificar_cadena_Master:
 uint32_t initial_tick;

 uint32_t final_tick;

In the function decodificar_cadena_Slave_Data:
 bool preparar_informacion; /* “=false;” was removed */

In the function decodificar_cadena_Master_
bool preparar_informacion; /* “=false;” was removed */

32

/* Also in this function the following unused variables and

 code were erased */

 uint32_t initial_tick;

 uint32_t final_tick;

 initial_tick = getTicks();

 final_tick = getTicks();

In the function sendCoilMaster:
 uint32_t actual_ticks ;

 uint32_t initial_tick;

 uint8_t f;

For rule 8.2:

Function types shall be in prototype form with named parameters.

Some functions not needing parameters were missing the void statement to be MISRA

complaint.

In the Modbus.c file
/* the void sentence was added, as no parameters are needed*/

uint8_t getaddress(void)

In the TicksTimer.h file:
/* the void sentence was added, as no parameters are needed*/

void iniciarTimerTicks(void);

For rule 10.1:

Operands shall not be of an inappropriate essential type

In the function comprobar_Datos_modbus of the Modbus.c file the next changes were made to

avoid using a char type variable in arithmetic subtraction:

int32_t tamano20 = tamano2 - '0'; /* convertion of the value of char

 tamano2 to int type */

int32_t tamano23 = tamano20 - 3; /* equivalent value to char

 tamano2 - 3 */

int32_t tamano22 = tamano20 - 2; /* equivalent value to char

 tamano2 - 3 */

 if(slave_received == slave)

 {

 /* substitution of the value which previously was of type char */

33

 MSBCRC = datos_modbus_string[tamano23];

 /* substitution of srithmetic substraction using a char variable */

 LSBCRC = datos_modbus_string[tamano22];

For rule 10.3:

The value of an expression shall not be assigned to an object with a narrower essential

type or of a different essential type category.

This rule was the one with the most error messages thorough the code. Some of this errors

were corrected but some were left as modifying the byte size of a global function parameter

could cause further unforeseen problems. Deviation 1 in Appendix D covers this deviation.

However cases where local variables could be corrected by changing their byte size without

causing new or other errors and where no bytes of data from the variables could be loss were

corrected:

In the function Armar_Cadena for example:

uint32_t datos_a_enviar; /* was uint8_t */

In the crc.h file the some function parameters were changed from uint8_t to uint_32:

uint8_t calcularcrc(uint8_t *buffercrc, uint32_t tamano);

uint8_t LSBobtener(uint32_t acomodar);

uint8_t MSBobtener(uint32_t acomodar);

For rule 10.4:

Both operands of an operator in which the usual arithmetic conversions are performed

shall have the same essential type category.

The violations to this rule were corrected as follows:

In the function Armar_Cadena:
uint8_t ten = 10; /* ten was added as a uint8_t variable */

uint8_t once = 11; /* once was added as a uint8_t variable */

uint32_t x = 2; /* two was added as a uint8_t variable */

while ((i-two)<(tamano)) /* the signed constant 2 was changed for variable

 two */

{

34

 *(buffer_final+i) = buffer_inicial[i-x];

 /* The signed constant 2 was replaced by variable x to make the

 substraction between two variables of the same essential type*/

}

if(*(buffer_final+i) == ten) /* the hexadecimal signed constant 0x0A was

 replaced by the uint_8 variable ten */

{

 (buffer_final+i) = once; / the expression “0x0A+1” was

 replaced by the uint_8 variable once */

}

Case where a value of zero was being assigned to a variable were verified and corrected as

needed. For example:

In the function sendCoilMaster
while(intentos < 2) /* False positive; this is complaint due to a rule

 exception explained in the rules for comparison

 used signed constants */

In the function clear_data:
WDataMaster.NoData = cero; /* signed const 0 was changed to uint_8 cero */

In the function decodificar_cadena_Slave
uint32_t cero = 0; /* variable cero added */

if(pendingBytes2 != cero) /* signed const 0 was changed to uint_8 cero */

For rule 12.1:

The precedence of operators within expression should be made explicit.

The only expression where adding a parenthesis made the operations precedence clearer was

the following, only one set of parenthesis was added to the code:

for(uint8_t j = 4; j < (4 + recovering_bytes); j++)

 /* the parenthesis was added in (4 + recovering_bytes)*/

For rule 13.3:

A full expression containing an increment (++) or decrement (--) operator should have no

other potential side effects other than that caused by the increment or decrement

operator.

35

The breaches of this rule were found through the code in multiple expressions similar to the

following:

 sMasterData -> address = datos_ModbusRx[i++];

 sMasterData -> Function = datos_ModbusRx[i++];

To make this sentences complaint with rule13.3 the following change could be applied.

sMasterData -> address = datos_ModbusRx[i];

i++;

 sMasterData -> Function = datos_ModbusRx[i];

i++;

It was decided to keep the code without changes since the original code seems easier to read.

Since this is an advisory rule no formal documentation of the deviation is needed.

For rule 15.5:

A function should have a single point of exit at the end.

There was only one breach to this rule in the function it was found in the next function:

bool get_Data(uint8_t *ui8Datos)

{

 uint8_t cero = 0;

 if(sWDataMaster.NoData != cero)

 {

 for(uint8_t i = cero; i < sWDataMaster.NoData; i++)

 {

 ui8Datos[i] = sWDataMaster.Data[i];

 }

 return true;

 }

 return false; /* Second return in a function, fault to rule 15.5 */

}

Since this is an advisory rule with no chances of causing unknown behaviors, no formal

deviation was documented.

36

For rule 17.3:

A function shall not be declared implicitly.

Most likely a false positive due to lack of libraries. The breaches were found in the following

functions:

iniciarEnable();

Driver_enable();

They were not modified.

For rule 17.7:

The value returned by a function having non-void return type shall be used.

Multiple breaches of this rule were found. In all the cases the “(void)” sentence was added to

the function to make the code MISRA complaint.

 (void)uartGetData(MODBUS, datos_ModbusRx, pendingBytes2);

 (void)uartGetData(MODBUS, Received_Data, pending_bytesMod);

 (void)Driver_enable();

 (void)Receiver_enable();

 (void)iniciarEnable();

For rule 18.4:

The +, -, += and -= operators should not be applied to an expression of pointer type.

While no -, +=, or -= operators were used, multiple breaches to this rule were found. In all

cases the breaching code was found to be the operation “*(buffer_final + i)”.

A formal deviation was not declared since the rule is advisory so it was decided to keep the

original code without changes.

For rule 21.1:

 #define and #undef shall not be used on a reserved identifier or reserved macro name.

The violations to this rule were found as follows:

37

In Modbus.h:
#ifndef _UART_PROCESS_H

#define _UART_PROCESS_H

In hw_memmap.h:
#ifndef __HW_MEMMAP_H__

#define __HW_MEMMAP_H__

In crc.h:
#ifndef _CRC_H_

#define _CRC_H_

MISRA doesn't allow the use of macro names that start with underscore. Also it was decided

to leave this macros unmodified since them could be referenced on other files and changing

the names could give further errors.

A correction to this rule would be to remove the underscore from the macro's names or change

the macro names entirely, but since this violations occur in a #ifndef structure and because of

possible cross references of this macro names in other files it was decide to leave it

unchanged.

38

Chapter 8

C-STAT Final Results after MISRA C Modifications to the Source Code

After the modifications were done on the original Modbus files, C-STAT analyses were made

again to the changed files. In this instance two different configurations were selected for the

analyses: One with all MISRA checks selected and one without checks for the rules that were

declared as deviations and the advisory rules that were not followed.

For the case with all MISRA C checks are enabled, a total of 56 violations were found.

The results can be seen in the next table

Table 3. C-STAT results with all MISRA checks enabled.

The following graphs show the final result of the current modifications with all the possible

MISRA checks for the C-STAT analysis. As one can see from the graphs and table most of

this rules violations were declared as formal deviations, and a majority of them are of a low

severity.

39

Figure 6. C-STAT report graphs for all MISRA checks enabled.

For the case with the disabled checks for rules with deviations and advisory rules which were

not followed a total of 7 error messages were found. All of them were checked and either

originated from an advisory rule or an apparent false positive.

40

Figure 7. IAR screen after analysis execution with deviation considered.

The results for this C-stat analysis configuration can be seen in the next table:

Table 4. C-STAT results for modified Modbus files.

Finally the following graphics show the origin files for these 7 messages, with one warning in

the uart.c and uart.h being the macro warning to directive 4.8 of an uderscore at the begining

of a macro name.

41

Figure 8. Final C-STAT report graphs with deviations considered.

The final version of the modified Modbus code can be seen in full in appendix E.

42

Conclusions

Even if the MISRA recommendation of starting the creation of code with the MISRA C

guidelines in mind from the begging of a project were not followed in this project’s case, the

results for the modification of the Modbus source files demonstrate that any code can be

“ported” to make it MISRA complaint, although this task can turn to be more complex and

time consuming than what it seems.

It can also be validated that the use of a C-style format standard for the sake of simplifying the

lecture, flow, logic and structure of a source file written code between members of a project

workgroup is a helpful tool to the development of source code since it makes easier to

understand and read the code created by other members of the workgroup.

One of the harder parts of modifying the code was the lack of documentation of its

functionality, and limited knowledge of the C language which difficulted the initial work. It

can be concluded that previous skills in C coding can greatly help when applying MISRA.

Still the changes made should help make the code more safe and unlikely to present unknown

behaviors.

Finally it can be said that from the work of this project, the final Modbus modified code

should be safer, less unlikely to bugs, easier to maintain and to port and that the developed

method to apply MISRA with its documentation formats, the compliance matrix and the

deviation documentation format, should make using MISRA more efficient, structured and

easier.

43

Future work

As a future work a study for coming with a set of easy to follow rules or guidelines to avoid

breaches of rule 13.3 should be proven very useful in reducing the time and work needed for a

project, to make its source code more efficiently MISRA C complaint since it can be seen

from the results of this project that keeping a uniform and MISRA C complaint use of the

essential type for variables and functions declarations and operations is probably the best

solution to avoid any kind of violations to rule 13.3.

Finally, the creation of some development process for the review of code during execution

could help even further in the quest for high safety and security by avoiding errors of data

overflow, invalid shifting of values, memory errors due to accessing invalid memory regions

and accesses to uninitialized data.

Whatever method is decided for runtime checking it would certainly need a standardized

record and documentation protocol just like the one that was produced for this MISRA C

project.

44

References

[1] Stephen Cass and Parthasaradhi Bulusu. “https://spectrum.ieee.org/static/interactive-the-

top-programming-languages-2018”, IEEE Spectrum, 2018

[2] MISRA Compliance:2016 Achieving compliance with MISRA Coding Guidelines,

HORIBA MIRA Limited, 2016.

[3] MISRA C:2012 Guidelines for the use of the C language in critical systems, MIRA

Limited, March 2013

[4] “SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure

Systems”. Software Engineering Institute. Carnegie Mellon University. 2016 Edition.

[5] Michael Barr, “Embedded C Coding Standard”. Barr group PDF document. 2013

[6] “https://cwe.mitre.org/about/index.html”, CWE official web page.

[7] Rich Quinnell “Enhanced Guidelines Appear for Safe, Secure C Programs. MISRA

updates guidelines”, EE times 2016

[8] Software Engineering Laboratory Series. Sel-94-003. “C Style Guide”, National

Aeronautics and Space Administration. August 1994.

[9] “ESA Style Guide for 'C' coding”. Expert Solutions Australia Pty. Ltd. 1991.

[10] Mark Brader, David Keppel, Henry spencer. “Recommended C Style and Coding

 Standards”, Revision 6.0, February 1997

[11] “MISRA C FAQ list” MISRA Consortium

[12] “C-STAT Static Analysis Guide”, IAR Systems AB and Synopsys, Inc. 7th edition,

 October 2017

https://www.eetimes.com/profile.asp?piddl_userid=13521

45

Appendix A: MISRA Directives

Table 5. The Implementation

Directive Category Applies to Analysis Description

Dir 1.1 Required C90, C99

Any implementation-defined behavior on

which the output of the program depends

shall be documented and understood.

Table 6. Compilation and build

Directive Category Applies to Analysis Description

Dir 2.1 Required C90, C99
All source files shall compile without any

compilation errors.

Table 7. Requirements traceability

Directive Category Applies to Analysis Description

Dir 3.1 Required C90, C99
All code shall be traceable to

documented requirements.

Table 8. Code design

Directive Category Applies to Analysis Description

Dir 4.1 Required C90, C99 Run-time failures shall be minimized

Dir 4.2 Advisory C90, C99
All usage of assembly language should be

documented

Dir 4.3 Required C90, C99
Assembly language shall be encapsulated and

isolated.

Dir 4.4 Advisory C90, C99
Sections of code should not be “commented

out.”

Dir 4.5 Advisory C90, C99

Identifiers in the same name space with

overlapping visibility should be

typographically unambiguous.

46

Dir 4.6 Advisory C90, C99

Typedefs that indicate size and signedness

should be used in place of the basic

numerical types.

Dir 4.7 Required C90, C99
If a function returns error information, then

the error information shall be tested.

Dir 4.8 Advisory C90, C99

If a pointer to a structure or union is never

dereferenced within a translation unit, then

the implementation of the object should be

hidden.

Dir 4.9 Advisory C90, C99

A function should be used in preference to a

function-like macro where they are

interchangeable.

Dir 4.10 Required C90, C99

Precautions shall be taken in order to prevent

the contents of a header file being included

more than once.

Dir 4.11 Required C90, C99
The validity of values passed to library

functions shall be checked.

Dir 4.12 Required C90, C99
Dynamic memory allocation shall not be

used.

Dir 4.13 Advisory C90, C99

Functions which are designed to provide

operations on a resource should be called in

an appropriate sequence.

47

Appendix B: MISRA Rules

Table 9. A standard C environment

Rule Category Applies to Analysis Description

1.1 Required C90, C99 D, STU

 Any implementation-defined behavior on

which the output of the program depends

shall be documented and understood.

1.2 Advisory C90, C99 U, STU Language extensions should not be used.

1.3 Required C90, C99 U, Sys
There shall be no occurrence of undefined

or critical unspecified behavior.

Table 10. Unused code

Rule Category Applies to Analysis Description

2.1 Required C90, C99 U, Sys A project shall not contain unreachable code.

2.2 Required C90, C99 U, Sys There shall be no dead code.

2.3 Advisory C90, C99 D, Sys
A project should not contain unused type

declarations.

2.4 Advisory C90, C99 D, Sys
A project should not contain unused tag

declarations.

2.5 Advisory C90, C99 D, Sys
A project should not contain unused macro

declarations.

2.6 Advisory C90, C99 D, STU
A function should not contain unused label

declarations.

2.7 Advisory C90, C99 D, STU
There should be no unused parameters in

functions.

48

Table 11. Comments

Rule Category Applies to Analysis Description

3.1 Required C90, C99 D, STU
The character sequences /* and // shall not

be used within a comment.

3.2 Required C99 D, STU
Line-splicing shall not be used in //

comments.

Table 12. Character sets and lexical conventions

Rule Category Applies to Analysis Description

4.1 Required C90, C99 D, STU
Octal and hexadecimal escape sequences

shall not be terminated.

4.2 Advisory C90, C99 D, STU Trigraphs should not be used.

Table 13. Identifiers

Rule Category Applies to Analysis Description

5.1 Required C90, C99 D, Sys External identifiers shall be distinct.

5.2 Required C90, C99 D, STU
Identifiers declared in the same scope and

name space shall be distinct.

5.3 Required C90, C99 D, STU

An identifier declared in an inner scope shall

not hide an identifier declared in an outer

scope.

5.4 Required C90, C99 D, STU Macro identifiers shall be distinct.

5.5 Required C90, C99 D, STU Identifiers shall be distinct from Marco names.

5.6 Required C90, C99 D, Sys A typedef name shall be unique identifier.

5.7 Required C90, C99 D, Sys A tag name shall be a unique identifier.

5.8 Required C90, C99 D, Sys
Identifiers that define objects or functions with

external linkage shall be unique.

5.9 Advisory C90, C99 D, Sys
Identifiers that define objects or functions with

internal linkage should be unique.

49

Table 15. Literals and constants

Rule Category Applies to Analysis Description

7.1 Required C90, C99 D, STU Octal constants shall not be used.

7.2 Required C90, C99 D, STU

A “u” or “U” suffix shall be applied to all

integer constants that are represented in an

unsigned type.

7.3 Required C90, C99 D, STU
The lowercase “l” shall not be used in a

literal suffix.

7.4 Required C90, C99 D, STU

A string literal shall not be assigned to an

object unless the object’s type is pointer to

“const-qualified char.”

Table 16. Declarations and definitions

Rule Category Applies to Analysis Description

8.1 Required C99 D, STU Type shall be explicitly specified.

8.2 Required C90, C99 D, STU
Function types shall be in prototype form

with named parameters.

8.3 Required C90, C99 D, Sys

All declarations of an object or function

shall use the same names and types

qualifiers.

Table 14. Types

Rule Category Applies to Analysis Description

6.1 Required C90, C99 D, STU
Identifiers that define objects or functions

with external linkage shall be unique.

6.2 Advisory C90, C99 D, STU
Identifiers that define objects or functions

with internal linkage should be unique.

50

8.4 Required C90, C99 D, STU

A compatible declaration shall be visible

when an object or function with external

linkage is defined.

8.5 Required C90, C99 D, Sys
An external object or function shall be

declared once in one and only one file.

8.6 Required C90, C99 D, Sys
An identifier with external linkage shall

have exactly one external definition.

8.7 Advisory C90, C99 D, Sys

Functions and objects should not be

defined with external linkage if they are

referenced in only one translation unit.

8.8 Required C90, C99 D, STU

The static storage class specifier shall be

used in all declarations of objects and

functions that have internal linkage.

8.9 Advisory C90, C99 D, Sys

An object should be defined at block

scope if its identifier only appears in a

single function.

8.10 Required C99 D, STU
An infinite function shall be declared

with the static storage class.

8.11 Advisory C90, C99 D, STU

When an array with external linkage is

declared, its size should be explicitly

specified.

8.12 Required C90, C99 D, STU

Within an enumerator list, the value of an

implicitly-specified enumeration constant

shall be unique.

8.13 Advisory C90, C99 U, Sys
A pointer should point to a const-

qualified type whenever possible.

8.14 Required C99 D, STU
The restrict type qualifier shall not be

used.

51

Table 17. Initialization

Rule Category Applies to Analysis Description

9.1 Mandatory C90, C99 U, Sys

The value of an object with automatic

storage duration shall not be read before it

has been set.

9.2 Required C90, C99 D, STU
The initializer for an aggregate or union

shall be enclosed in braces.

9.3 Required C90, C99 D, STU Arrays shall not be partially initialized.

9.4 Required C99 D, STU
An element of an object shall not be

initialized more than once.

9.5 Required C99 D, STU

Where designated initializers are used to

initialize an array object the size of the

array shall be specified explicitly.

Table 18. The essential type model

Rule Category Applies to Analysis Description

10.1 Required C90, C99 D, STU
Operands shall not be of an inappropriate

essential type.

10.2 Required C90, C99 D, STU

Expressions of essentially character type

shall not be used inappropriately in addition

and subtraction operations.

10.3 Required C90, C99 D, STU

The value of an expression shall not be

assigned to an object with a narrower

essential type or of a different essential type

category.

10.4 Required C90, C99 D, STU

Both operands of an operator in which the

usual arithmetic conversions are performed

shall have the same essential type category.

10.5 Advisory C90, C99 D, STU
The value of an expression should not be

cast to an inappropriate essential type.

10.6 Required C90, C99 D, STU

The value of a composite expression shall

not be assigned to an object with wider

essential type.

52

10.7 Required C90, C99 D, STU

If a composite expression is used as one

operand of an operator in which the usual

arithmetic conversions are performed then

the other operand shall not have a wider

essential type.

10.8 Required C90, C99 D, STU

The value of a composite expression shall

not be cast to a different essential type

category or a wider essential type.

Table 19. Pointer type conversions

Rule Category Applies to Analysis Description

11.1 Required C90, C99 D, STU
Conversions shall not be performed between

a pointer to a function and any other type.

11.2 Required C90, C99 D, STU

Conversions shall not be performed between

a pointer to an incomplete type and any other

type.

11.3 Required C90, C99 D, STU

A cast shall not be performed between a

pointer to a pointer to object type and a

pointer to a different object type.

11.4 Advisory C90, C99 D, STU
A conversion should not be performed

between a pointer to object and integer type.

11.5 Advisory C90, C99 D, STU
A conversion should not be performed from

pointer to void into pointer to object.

11.6 Required C90, C99 D, STU
A cast shall not be performed between

pointer to void and an arithmetic type.

11.7 Required C90, C99 D, STU

A cast shall not be performed between

pointer to object and a non-integer arithmetic

type.

11.8 Required C90, C99 D, STU

A cast shall not remove any const or volatile

qualification from the type pointed to by a

pointer.

11.9 Required C90, C99 D, STU
The macro NULL shall be the only permitted

from of integer null pointer constant.

53

Table 20. Expressions

Rule Category Applies to Analysis Description

12.1 Advisory C90, C99 D, STU
The precedence of operators within

expressions should be made explicit.

12.2 Required C90, C99 U, Sys

The right-hand operand of a shift operator

shall lie in the range zero to one less than

the width in bits of the essential type of the

left-hand operand.

12.3 Advisory C90, C99 D, STU The comma operator should not be used.

12.4 Advisory C90, C99 D, STU
Evaluation of constant expressions should

not lead to unsigned integer wrap-around.

Table 21. Side effects

Rule Category Applies to Analysis Description

13.1 Required C99 U, Sys
Initializer list shall not contain persistent

side effects.

13.2 Required C90, C99 U, Sys

The value of an expression and its

persistent side effects shall be the same

under all permitted evaluation orders.

13.3 Advisory C90, C99 D, STU

A full expression containing an increment

(++) or decrement (--) operator should have

no other potential side effects other than

that caused by the increment or decrement

operator.

13.4 Advisory C90, C99 D, STU
The result of an assignment operator should

not be used.

13.5 Required C90, C99 U, Sys

The right hand operand of a logical && or ||

operator shall not contain persistent side

effects.

13.6 Mandatory C90, C99 D, STU

The operand of the sizeof operator shall not

contain any expression which has potential

side effects.

54

Table 22. Control statement expressions

Rule Category Applies to Analysis Description

14.1 Required C90, C99 U, Sys
A loop counter shall not have essentially

floating type.

14.2 Required C90, C99 U, Sys A for loop shall be well-formed.

14.3 Required C90, C99 U, Sys Controlling expressions shall be invariant.

14.4 Required C90, C99 D, STU

The controlling expression of an if statement

and the controlling expression of an

iteration-statement shall have essentially

Boolean type.

Table 23. Control flow

Rule Category Applies to Analysis Description

15.1 Advisory C90, C99 D, STU The goto statement should not be used.

15.2 Required C90, C99 D, STU
The goto statement shall jump to a label

declared later on the same function.

15.3 Required C90, C99 D, STU

Any label referenced by a goto statement

shall be declared in the same block, or in any

block enclosing the goto statement.

15.4 Advisory C90, C99 D, STU

There should be no more than one break or

goto statement used to terminate any

iteration statement.

15.5 Advisory C90, C99 D, STU
A function should have a single point of exit

at the end.

15.6 Required C90, C99 D, STU

The body of an iteration-statement or a

selection-statement shall be a compound-

statement.

15.7 Required C90, C99 D, STU
All if… else if constructs shall be terminated

with an else statement.

55

Table 25. Functions

Rule Category Applies to Analysis

17.1 Required C90, C99 D, STU
The features of <stdarg.h> shall not be

used.

17.2 Required C90, C99 U, Sys
Functions shall not call themselves, either

directly or indirectly.

17.3 Mandatory C90 D, STU A function shall not be declared implicitly.

17.4 Mandatory C90, C99 D, STU

All exit paths from a function with a non-

void return type shall have an explicit

return statement with an expression.

17.5 Advisory C90, C99 U, Sys

The function argument corresponding to a

parameter declared to have an array type

shall have an appropriate number of

elements.

Table 24. Switch statements

Rule Category Applies to Analysis Description

16.1 Required C90, C99 D, STU All Switch statements shall be well formed.

16.2 Required C90, C99 D, STU

A switch label shall only be used when the

most closely-enclosing compound statement

is the body of a switch statement.

16.3 Required C90, C99 D, STU
An unconditional break statement shall

terminate every switch-clause.

16.4 Required C90, C99 D, STU
Every switch statement shall have a default

label.

16.5 Required C90, C99 D, STU
A default label shall appear as either the first

or the last switch label of a switch statement.

16.6 Required C90, C99 D, STU
Every switch statement shall have at least

two switch clauses.

16.7 Required C90, C99 D, STU
A switch-expression shall not have

essentially Boolean type.

56

17.6 Mandatory C99 D, STU

The declaration of an array parameter shall

not contain the static keyword between the

[].

17.7 Required C90, C99 D, STU
The value returned by a function having

non-void return type shall be used.

17.8 Advisory C90, C99 U, Sys
A function parameter should not be

modified.

Table 26. Pointer and arrays

Rule Category Applies to Analysis

18.1 Required C90, C99 U, Sys

A pointer resulting from arithmetic on a

pointer operand shall address an element of

the same array as that pointer operand.

18.2 Required C90, C99 U, Sys

Subtraction between pointers shall only be

applied to pointers that address elements of

the same array.

18.3 Required C90, C99 U, Sys

The relationship operators >, >=, < and =<

shall not be applied to objects of pointer type

except where they point into the same

object.

18.4 Advisory C90, C99 D, STU
The +, -, += and -= operators should not be

applied to expressions of pointer type.

18.5 Advisory C90, C99 D, STU
Declarations should contain no more than

two levels of pointer nesting.

18.6 Required C90, C99 U, Sys

The address of an object with automatic

storage shall not be copied to another object

that persist after the first object has ceased to

exist.

18.7 Required C99 D, STU
Flexible array members shall not be

declared.

18.8 Required C99 D, STU
Variable-length array types shall not be

used.

57

Table 28. Preprocessing directives

Rule Category Applies to Analysis

20.1 Required C90, C99 D, STU
#include directives should only be preceded

by preprocessor directives or comments.

20.2 Required C90, C99 D, STU

The ‘, “ or \ characters and the /* or //

character sequences shall not occur in a

header file name.

20.3 Required C90, C99 D, STU
The #include directive shall be followed by

either a <filename> or “filename” sequence.

20.4 Required C90, C99 D, STU
A macro shall not be defined with the same

name as a keyboard.

20.5 Advisory C90, C99 D, STU #undef should not be used.

20.6 Required C90, C99 D, STU

Tokens that look like a preprocessing

directive shall not occur within a macro

argument.

20.7 Required C90, C99 D, STU

Expression resulting from the expansion of

macro parameters shall be enclosed in

parenthesis.

20.8 Required C90, C99 D, STU

The controlling expression of a #if or #elif

preprocessing directive shall evaluate to 0 or

1.

20.9 Required C90, C99 D, STU

All identifiers used in the controlling

expression of #if or #elif preprocessing

directives shall be #define’d before

evaluation.

20.10 Advisory C90, C99 D, STU
The # and ## preprocessor operations should

not be used.

Table 27. Overlapping storage

Rule Category Applies to Analysis

19.1 Mandatory C90, C99 U, Sys
An object shall not be assigned or copied to

an overlapping object.

19.2 Advisory C90, C99 D, STU The union keyword should not be used.

58

20.11 Required C90, C99 D, STU

A macro parameter used as an operand to the

or ## operators shall not be immediately

followed by a ## operator.

20.12 Required C90, C99 D, STU

A macro parameter used as an operand to the

or ## operators, which is itself subject to

further macro replacement, shall only be

used as an operand to these operators.

20.13 Required C90, C99 D, STU
A line whose first token is # shall be a valid

preprocessing directive.

20.14 Required C90, C99 D, STU

All #else, #elif, and #endif preprocessor

directives shall reside in the same file as the

#if, #ifedf or #ifndef directive to which they

are related.

Table 29. Standard libraries

Rule Category Applies to Analysis

21.2 Required C90, C99 D, STU
#define and #undef shall not be used on a

reserved identifier or reserved macro name.

21.2 Required C90, C99 D, STU
A reserved identifier or macro name shall

not be declared.

21.3 Required C90, C99 D, STU
The memory allocation and deallocation

functions of <stdlib.h> shall not be used.

21.4 Required C90, C99 D, STU
The standard header file <setjmp.h> shall

not be used.

21.5 Required C90, C99 D, STU
The standard header file <signal.h> shall not

be used.

21.6 Required C90, C99 D, STU
The standard Library input/output functions

shall not be used.

21.7 Required C90, C99 D, STU
The atof, atoi, atoll, and atoll functions of

<stdlib.h> shall not be used.

21.8 Required C90, C99 D, STU
The library functions abort, exit, getenv and

system of <stdlib.h> shall not be used.

21.9 Required C90, C99 D, STU
The library functions bsearch and qsort of

<stdlin.h> shall not be used.

59

21.10 Required C90, C99 D, STU
The Standard Library time and date

functions shall not be used.

21.11 Required C99 D, STU
The standard header file <tgmath.h> shall

not be used.

21.12 Advisory C99 D, STU
The exception handling features of <fenv.h>

should not be used.

Table 30. Resources

Rule Category Applies to Analysis

22.1 Required C90, C99 U, Sys

All resources obtained dynamically by

means of the standard Library functions

shall be explicitly released.

22.2 Mandatory C90, C99 U, Sys

A block of memory shall only be freed if it

was allocated by means of a Standard

library function.

22.3 Required C90, C99 U, Sys

The same file shall not be open for read

and write access at the same time on

different streams.

22.4 Mandatory C90, C99 U, Sys

There shall be no attempt to write to a

stream which has been opened as read

only.

22.5 Mandatory C90, C99 U, Sys
A pointer to a FILE object shall not be

dereferenced.

22.6 Mandatory C90, C99 U, Sys

The value of a pointer to a FILE shall not

be used after the associated stream has

been closed.

60

Appendix C: Modbus MISRA C compliance matrix

DIRECTIVE COMPILER CHECK TOOL MANUAL REVISION

IAR E.W.
v8.22 Other C-STAT v1.5.2 OTHER

Dir 1.1 No errors N/A Not checkable N/A Directive followed

Dir 2.1 No errors N/A Not checkable N/A Directive followed

Dir 3.1 No errors N/A Not checkable N/A Directive followed

Dir 4.1 No errors N/A Not checkable N/A Considered

Dir 4.2 No errors N/A Not checkable N/A Directive followed, not used

Dir 4.3 No errors N/A No errors N/A Directive followed, not used

Dir 4.4 No errors N/A No errors N/A Followed. Unused code erased

Dir 4.5 No errors N/A No errors N/A Reviewed. Minor changes done.

Dir 4.6 No errors N/A Errors N/A Directive followed

Dir 4.7 No errors N/A No errors N/A Directive followed

Dir 4.8 No errors N/A No errors N/A Directive followed

Dir 4.9 No errors N/A No errors N/A Directive followed

Dir 4.10 No errors N/A No errors N/A Directive followed

Dir 4.11 No errors N/A No errors N/A General review done. No obvious faults

Dir 4.12 No errors N/A No errors N/A Directive followed

Dir 4.13 No errors N/A No errors N/A General review done. No obvious faults

Rule 1.1 No errors N/A Not checkable N/A Manual review. No errors found

Rule 1.2 No errors N/A Not checkable N/A Manual review. No errors found

Rule 1.3 No errors N/A No errors N/A Manual review. No errors found

Rule 2.1 No errors N/A No errors N/A Checked

Rule 2.2 No errors N/A
Multiple
Errors N/A Corrected: Unused code erased.

Rule 2.3 No errors N/A No errors N/A Manual check: No errors found

Rule 2.4 No errors N/A No errors N/A Manual check: No errors found

Rule 2.5 No errors N/A No errors N/A Manual check: No errors found

Rule 2.6 No errors N/A No errors N/A Manual check: No errors found

Rule 2.7 No errors N/A No errors N/A Manual check: No errors found

Rule 3.1 No errors N/A No errors N/A Manual check: No errors found

Rule 3.2 No errors N/A No errors N/A Manual check: No errors found

Rule 4.1 No errors N/A Not checkable N/A Manual check: No errors found

Rule 4.2 No errors N/A Not checkable N/A Manual check: No errors found

Rule 5.1 No errors N/A No errors N/A Manual check: No errors found

Rule 5.2 No errors N/A No errors N/A Manual check: No errors found

Rule 5.3 No errors N/A No errors N/A Manual check: No errors found

Rule 5.4 No errors N/A No errors N/A Manual check: No errors found

Rule 5.5 No errors N/A No errors N/A Manual check: No errors found

Rule 5.6 No errors N/A No errors N/A Manual check: No errors found

61

Rule 5.7 No errors N/A No errors N/A Manual check: No errors found

Rule 5.8 No errors N/A No errors N/A Manual check: No errors found

Rule 5.9 No errors N/A No errors N/A Manual check: No errors found

Rule 6.1 No errors N/A No errors N/A Manual check: No errors found

Rule 6.2 No errors N/A No errors N/A Manual check: No errors found

Rule 7.1 No errors N/A No errors N/A Manual check: No errors found

Rule 7.2 No errors N/A No errors N/A Manual check: No errors found

Rule 7.3 No errors N/A No errors N/A Manual check: No errors found

Rule 7.4 No errors N/A No errors N/A Manual check: No errors found

Rule 8.1 No errors N/A No errors N/A Manual check: No errors found

Rule 8.2 No errors N/A 2 Errors N/A Corrected: Parameters added

Rule 8.3 No errors N/A No errors N/A Manual check: No errors found

Rule 8.4 No errors N/A
Error (low
severity) N/A Manual check: Libraries related

Rule 8.5 No errors N/A 1 Error N/A False positive

Rule 8.6 No errors N/A Not checkable N/A Manual check: No errors found

Rule 8.7 No errors N/A No errors N/A Manual check: No errors found

Rule 8.8 No errors N/A Not checkable N/A Manual check: No errors found

Rule 8.9 No errors N/A No errors N/A Manual check: No errors found

Rule 8.10 No errors N/A No errors N/A Manual check: No errors found

Rule 8.11 No errors N/A No errors N/A Manual check: No errors found

Rule 8.12 No errors N/A No errors N/A Manual check: No errors found

Rule 8.13 No errors N/A No errors N/A Not followed. No changes

Rule 8.14 No errors N/A No errors N/A Manual check: No errors found

Rule 9.1 No errors N/A No errors N/A Manual check: No errors found

Rule 9.2 No errors N/A No errors N/A Manual check: No errors found

Rule 9.3 No errors N/A No errors N/A Manual check: No errors found

Rule 9.4 No errors N/A No errors N/A Manual check: No errors found

Rule 9.5 No errors N/A No errors N/A Manual check: No errors found

Rule 10.1 No errors N/A Errors N/A Errors successfully corrected

Rule 10.2 No errors N/A No errors N/A Manual check: No errors found

Rule 10.3 No errors N/A
Multiple
Errors N/A Formal Deviation 1

Rule 10.4 No errors N/A No errors N/A Not all instances of the error corrected

Rule 10.5 No errors N/A No errors N/A Manual check: No errors found

Rule 10.6 No errors N/A No errors N/A Manual check: No errors found

Rule 10.7 No errors N/A No errors N/A Manual check: No errors found

Rule 10.8 No errors N/A No errors N/A Manual check: No errors found

Rule 11.1 No errors N/A No errors N/A Manual check: No errors found

Rule 11.2 No errors N/A No errors N/A Manual check: No errors found

Rule 11.3 No errors N/A No errors N/A Manual check: No errors found

62

Rule 11.4 No errors N/A No errors N/A Manual check: No errors found

Rule 11.5 No errors N/A No errors N/A Manual check: No errors found

Rule 11.6 No errors N/A No errors N/A Manual check: No errors found

Rule 11.7 No errors N/A No errors N/A Manual check: No errors found

Rule 11.8 No errors N/A No errors N/A Manual check: No errors found

Rule 11.9 No errors N/A No errors N/A Manual check: No errors found

Rule 12.1 No errors N/A No errors N/A Manual check: No errors found

Rule 12.2 No errors N/A No errors N/A Manual check: No errors found

Rule 12.3 No errors N/A No errors N/A Manual check: No errors found

Rule 12.4 No errors N/A Not checkable N/A Manual check: No errors found

Rule 13.1 No errors N/A No errors N/A Manual check: No errors found

Rule 13.2 No errors N/A No errors N/A Manual check: No errors found

Rule 13.3 No errors N/A No errors N/A Manual check: No errors found

Rule 13.4 No errors N/A No errors N/A Manual check: No errors found

Rule 13.5 No errors N/A No errors N/A Manual check: No errors found

Rule 13.6 No errors N/A No errors N/A Manual check: No errors found

Rule 14.1 No errors N/A No errors N/A Manual check: No errors found

Rule 14.2 No errors N/A No errors N/A Manual check: No errors found

Rule 14.3 No errors N/A No errors N/A Manual check: No errors found

Rule 14.4 No errors N/A No errors N/A Manual check: No errors found

Rule 15.1 No errors N/A No errors N/A Manual check: No errors found

Rule 15.2 No errors N/A No errors N/A Manual check: No errors found

Rule 15.3 No errors N/A No errors N/A Manual check: No errors found

Rule 15.4 No errors N/A No errors N/A Manual check: No errors found

Rule 15.5 No errors N/A Error N/A Manual check: No errors found

Rule 15.6 No errors N/A No errors N/A Manual check: No errors found

Rule 15.7 No errors N/A No errors N/A Manual check: No errors found

Rule 16.1 No errors N/A No errors N/A Checked. Not used

Rule 16.2 No errors N/A No errors N/A Checked. Not used

Rule 16.3 No errors N/A No errors N/A Checked. Not used

Rule 16.4 No errors N/A No errors N/A Checked. Not used

Rule 16.5 No errors N/A No errors N/A Checked. Not used

Rule 16.6 No errors N/A No errors N/A Checked. Not used

Rule 16.7 No errors N/A No errors N/A Checked. Not used

Rule 17.1 No errors N/A No errors N/A Checked. Not used

Rule 17.2 No errors N/A No errors N/A Manual check: No errors found

Rule 17.3 No errors N/A Error N/A Error likely caused by missing library

Rule 17.4 No errors N/A No errors N/A Manual check: No errors found

Rule 17.5 No errors N/A No errors N/A Manual check: No errors found

Rule 17.6 No errors N/A No errors N/A Manual check: No errors found

Rule 17.7 No errors N/A Multiple N/A Errors successfully corrected

63

errors

Rule 17.8 No errors N/A No errors N/A Manual check: No errors found

Rule 18.1 No errors N/A No errors N/A Manual check: No errors found

Rule 18.2 No errors N/A No errors N/A Manual check: No errors found

Rule 18.3 No errors N/A No errors N/A Manual check: No errors found

Rule 18.4 No errors N/A
Multiple
errors N/A Advisory rule, not followed

Rule 18.5 No errors N/A No errors N/A Manual check: No errors found

Rule 18.6 No errors N/A No errors N/A Manual check: No errors found

Rule 18.7 No errors N/A No errors N/A Manual check: No errors found

Rule 18.8 No errors N/A No errors N/A Manual check: No errors found

Rule 19.1 No errors N/A No errors N/A Checked

Rule 19.2 No errors N/A No errors N/A Manual check: No errors found

Rule 20.1 No errors N/A No errors N/A Manual check: No errors found

Rule 20.2 No errors N/A No errors N/A Manual check: No errors found

Rule 20.3 No errors N/A Not checkable N/A Manual check: No errors found

Rule 20.4 No errors N/A No errors N/A Manual check: No errors found

Rule 20.5 No errors N/A No errors N/A Manual check: No errors found

Rule 20.6 No errors N/A Not checkable N/A Manual check: No errors found

Rule 20.7 No errors N/A No errors N/A Manual check: No errors found

Rule 20.8 No errors N/A Not checkable N/A Manual check: No errors found

Rule 20.9 No errors N/A Not checkable N/A Manual check: No errors found

Rule
20.10 No errors N/A No errors N/A Manual check: No errors found

Rule
20.11 No errors N/A Not checkable N/A Manual check: No errors found

Rule
20.12 No errors N/A Not checkable N/A Manual check: No errors found

Rule
20.13 No errors N/A Not checkable N/A Manual check: No errors found

Rule
20.14 No errors N/A Not checkable N/A Manual check: No errors found

Rule 21.1 No errors N/A Errors N/A Checked. Violation not relevant.

Rule 21.2 No errors N/A No errors N/A Manual check: No errors found

Rule 21.3 No errors N/A No errors N/A Manual check: No errors found

Rule 21.4 No errors N/A No errors N/A Manual check: No errors found

Rule 21.5 No errors N/A No errors N/A Manual check: No errors found

Rule 21.6 No errors N/A No errors N/A Manual check: No errors found

Rule 21.7 No errors N/A No errors N/A Manual check: No errors found

Rule 21.8 No errors N/A No errors N/A Manual check: No errors found

Rule 21.9 No errors N/A No errors N/A Manual check: No errors found

Rule No errors N/A No errors N/A Manual check: No errors found

64

21.10

Rule
21.11 No errors N/A No errors N/A Manual check: No errors found

Rule
21.12 No errors N/A No errors N/A Manual check: No errors found

Rule 22.1 No errors N/A
Error in
various files N/A Manual check: No errors found

Rule 22.2 No errors N/A No errors N/A Manual check: No errors found

Rule 22.3 No errors N/A No errors N/A Manual check: No errors found

Rule 22.4 No errors N/A No errors N/A Manual check: No errors found

Rule 22.5 No errors N/A No errors N/A Manual check: No errors found

Rule 22.6 No errors N/A No errors N/A Manual check: No errors found

 Mandatory rule

 Required rule

 Advisory rule

65

Appendix D: MISRA C Formal deviation documentation format

DEVIATION DECLARATION FORMAT FOR MISRA C:2012

Deviation number, rule number and source file: Deviation #1, Modbus.c

Rule or Directive number: rule 10.3

Type of deviation: Specific

Description of the circumstances causing the deviation from the rule:

In the function “uint8_t cadena_slave” has the final expressions:

datos_a_enviar = i;

return datos_a_enviar;

The variable datos_a_enviar is a uint8_t type while the variable “i” is of type uint_32t.

In this section of the code the variable “i” also is used as a counter and is compared with other

variables such as tamano, “i” is also declared as a parameter for the function “uint8_t

calcularcrc(uint8_t *buffercrc, uint8_t tamano);” which is of type uint_8t. Changing i type

causes further rule 10.3 violations in the function.

Justification to the rule deviation. Include an evaluation of the possible dangers caused

by the rule violation compared against other possible solutions:

It’s impossible to define I maximum value i can reach. An overflow could cause a wrong

value return for the cadena_slave function.

Possible secondary effects due to the rule deviation:

Loss of data counted by i if value goes over 255

Actions taken or needed to guarantee no other problems due to this deviation:

The maximum reachable value for I needs to be documented in other to guarantee no overflow

and data losses.

66

Appendix E: MISRA C:2012 complaint Modbus.c code with C-style format

changes

#include "Modbus.h"

#include "crc.h"

#include <stdint.h>

#include <stdbool.h>

#include "Uart.h"

#include "TicksTimer.h"

#include "uartTM4C123.h"

#include "gpio.h"

#include "hw_memmap.h"

bool Data_ready = false;

bool Process_data = false;

bool esperate = false;

sReadCoilMaster sDataMaster;

sWriteMaster sWDataMaster;

/***/

uint16_t get_Registro (void)

{

 return sDataMaster.Registro;

}

/***/

uint16_t get_Registerqty(void)

{

 return sDataMaster.NoRegistros;

}

/***/

void set_Registro (uint16_t value)

{

 sDataMaster.Registro = value;

}

/***/

void set_Registerqty(uint16_t value)

{

 sDataMaster.NoRegistros = value;

}

/***/

void clear_data(void)

{

 uint8_t cero = 0;

 sWDataMaster.NoData = cero;

}

bool get_Data(uint8_t *ui8Datos)

67

{

 uint8_t cero = 0;

 if(sWDataMaster.NoData != cero)

 {

 for(uint8_t i = cero; i < sWDataMaster.NoData; i++)

 {

 ui8Datos[i] = sWDataMaster.Data[i];

 }

 return true;

 }

 return false; /* Second return in a function, fault to rule 15.5 */

}

/***/

* @brief {Function to build the MODBUS sent string} *

* *

* @param buffer_inicial information wanted to be send by MODBUS *

* @param[in] funcion Value of the MODBUS function which is planned to *

* be used *

* *

* @param[in] slave Address of the responding slave *

* *

* @param buffer_final The uart sent data string (MODBUS) *

* @param[in] tamano The amount of data to send *

* *

* @return {Description_of_the_return_value } *

/***/

uint8_t Armar_Cadena(uint8_t *buffer_inicial, FModbusType funcion, uint8_t

 slave, uint8_t *buffer_final, uint32_t tamano)

{

 uint32_t datos_a_enviar;

 uint32_t i = 2; /* Deviation 1, rule 10.3*/

 uint32_t CRC_MODBUS;

 buffer_final[0] = slave;

 buffer_final[1] = funcion; /* Variable enum Fmodbustype*/

 uint32_t x = 2;

 uint8_t ten = 10;

 uint8_t once = 11;

 while ((i-x)<(tamano))

 {

 *(buffer_final+i) = buffer_inicial[i-x];

 i++;

 }

 CRC_MODBUS = calcularcrc(buffer_final, i); /* Deviation 1, rule 10.3 */

 *(buffer_final+i) = MSBobtener(CRC_MODBUS);

 if(*(buffer_final+i) == ten)

 {

 *(buffer_final+i) = once;

 }

 i++;

 *(buffer_final+i) = LSBobtener(CRC_MODBUS);

68

 if(*(buffer_final+i) == ten)

 {

 *(buffer_final+i) = once;

 }

 i++;

 *(buffer_final+i) = '\n';

 i++;

 datos_a_enviar = i;

 return datos_a_enviar;

 }

/***/

void set_data(void)

{

 Data_ready = true;

}

/***/

uint8_t getaddress(void)

{

 return sDataMaster.address;

}

/***/

void set_data_modbus (void)

{

 Process_data = true;

}

/***/

void data_recepcion_Modbus(void)

{

 decodificar_cadena_Slave(&sDataMaster, SLAVEADDRESS);

 decodificar_cadena_Slave_Data(&sWDataMaster,SLAVEADDRESS);

}

/***/

* *

* @param datos_modbus_string The data that is wanted to be compared*

* To know which information a device. *

* Holds *

* @param[in] tamano2 The amount of data to compare. *

* *

* @param[in] slave Address which is wanted to receive the*

* Information. *

* *

*@return {Value that indicates if the information is right and the *

* device is the correct wanted one.} *

/***/

bool comprobar_Datos_Modbus (uint8_t *datos_modbus_string, char tamano2,

 uint8_t slave)

{

 unsigned char slave_received; /* changed from char to unsigned char */

 unsigned char MSBCRC;

 unsigned char LSBCRC;

69

 unsigned char MSB_Calculado;

 unsigned char LSB_Calculado;

 bool Data_recuperada = false;

 uint32_t crcmodbus;

 int32_t tamano20 = tamano2 - '0';

 int32_t tamano23 = tamano20 - 3;

 int32_t tamano22 = tamano20 - 2;

 uint8_t ten = 10;

 slave_received = datos_modbus_string[0];

 if(slave_received == slave)

 {

 MSBCRC = datos_modbus_string[tamano23];

 LSBCRC = datos_modbus_string[tamano22];

 crcmodbus = calcularcrc(datos_modbus_string, tamano20);

 MSB_Calculado = MSBobtener(crcmodbus);

 if(MSB_Calculado == ten) /* if MSB_Calculado equals 10 */

 {

 MSB_Calculado = 0x0B; /* MSB_Calculado = 11 */

 }

 LSB_Calculado = LSBobtener(crcmodbus);

 if(LSB_Calculado == ten) /* if MSB_Calculado equals 10 */

 {

 LSB_Calculado = 0x0B; /* MSB_Calculado = 11 */

 }

 if((MSBCRC == MSB_Calculado) && (LSBCRC == LSB_Calculado))

 {

 Data_recuperada = true;

 }

 else

 {

 Data_recuperada = false;

 }

 }

 return Data_recuperada;

}

/**

*/

void decodificar_cadena_Slave(sReadCoilMaster *sMasterData, uint8_t slave)

{

 bool preparar_informacion;

 uint8_t datos_ModbusRx[100] = "";

 uint8_t i = 0;

 uint16_t registro = 0;

 uint16_t registerqty = 0;

 uint32_t pendingBytes2 = uartGetPendingBytes(MODBUS);

 uint32_t cero = 0;

 if(pendingBytes2 != cero)

 {

 (void) uartGetData(MODBUS, datos_ModbusRx, pendingBytes2);

 /* (void) added for rule 17.7 */

70

 preparar_informacion = comprobar_Datos_Modbus(datos_ModbusRx,

 pendingBytes2, slave);

 if(preparar_informacion == true)

 {

 sMasterData -> address = datos_ModbusRx[i++];

 sMasterData -> funcion = datos_ModbusRx[i++];

 if(sMasterData -> funcion != 0x06)

 {

 registro |= datos_ModbusRx[i++];

 registro = registro << 8;

 registro |= datos_ModbusRx[i++];

 sMasterData -> Registro = registro;

 registerqty |= datos_ModbusRx[i++];

 registerqty = registerqty << 8;

 registerqty |= datos_ModbusRx[i++];

 sMasterData -> NoRegistros = registerqty;

 }

 }

 }

}

/**

*/

void decodificar_cadena_Slave_Data(sWriteMaster *sMasterData, uint8_t

 slave)

{

 bool preparar_informacion;

 uint8_t datos_ModbusRx[100] = "";

 uint8_t i = 0;

 uint16_t registro = 0;

 uint16_t registerqty = 0;

 uint32_t pendingBytes2 = uartGetPendingBytes(MODBUS);

 uint8_t cero = 0;

 if(pendingBytes2 != cero)

 {

 (void)uartGetData(MODBUS, datos_ModbusRx, pendingBytes2);

 /* (void) added for rule 17.7 */

 preparar_informacion = comprobar_Datos_Modbus(datos_ModbusRx,

 pendingBytes2, slave);

 if(preparar_informacion == true)

 {

 sMasterData -> address = datos_ModbusRx[i++];

 sMasterData -> Function = datos_ModbusRx[i++];

 if(sMasterData->Function == 0x06)

 {

 registro |= datos_ModbusRx[i++];

 registro = registro << 8;

 registro |= datos_ModbusRx[i++];

 sMasterData -> Register = registro;

 registerqty |= datos_ModbusRx[i++];

 registerqty = registerqty << 8;

71

 registerqty |= datos_ModbusRx[i++];

 sMasterData -> NoRegister = registerqty;

 sMasterData -> NoData = datos_ModbusRx[i++];

 for(uint8_t k = 0; k < sMasterData -> NoData; k++)

 {

 sMasterData->Data[k] = datos_ModbusRx[i++];

 }

 }

 }

 }

}

/**

*/

uint8_t decodificar_cadena_Master(uint8_t *buffer_recuperar_uart, uint8_t

 slave)

{

 bool preparar_informacion;

 uint8_t datos_ModbusRx[100] = "";

 uint8_t recovering_bytes = 0;

 uint8_t data_to_send = 0;

 uint32_t pendingBytes2 = uartGetPendingBytes(MODBUS);

 uint8_t cuatro = 4;

 if(pendingBytes2 != 0)

 {

 (void)uartGetData(MODBUS, datos_ModbusRx, pendingBytes2);

 /* (void) added for rule 17.7 */

 Uart_Transmit(RASPBERRY, datos_ModbusRx, pendingBytes2);

 preparar_informacion = comprobar_Datos_Modbus(datos_ModbusRx,

 pendingBytes2, slave);

 if(preparar_informacion == true)

 {

 recovering_bytes = datos_ModbusRx[2];

 for(uint8_t j = cuatro; j < (cuatro + recovering_bytes); j++)

 {

 buffer_recuperar_uart[j-4] = datos_ModbusRx[j-1];

 data_to_send++;

 }

 }

 }

 return recovering_bytes;

}

/**

*/

uint8_t sendCoilMaster(sReadCoilMaster MDatos, uint8_t *Data)

{

 uint8_t Data_to_send[100] = "";

 uint8_t Datos_cadena[4];

 uint8_t i = 0;

 uint8_t f;

72

 uint8_t intentos = 0;

 uint8_t received_bytes = 0;

 uint32_t actual_ticks;

 uint32_t initial_tick;

 Datos_cadena[i++] = MDatos.Registro >> 8;

 Datos_cadena[i++] = MDatos.Registro;

 Datos_cadena[i++] = MDatos.NoRegistros >> 8;

 Datos_cadena[i++] = MDatos.NoRegistros;

 f = Armar_Cadena(Datos_cadena, MDatos.funcion, MDatos.address,

Data_to_send, i);

 while(intentos < 2) /* False positive due to exception*/

 {

 (void)Driver_enable(); /* (void) added for rule 17.7 */

 Uart_Transmit(MODBUS, Data_to_send, f);

 Uart_Transmit(RASPBERRY, Data_to_send, f);

 (void)Receiver_enable(); /* (void) added for rule 17.7 */

 initial_tick = getTicks();

 while((Process_data == false))

 {

 actual_ticks = getTicks();

 if(actual_ticks > (initial_tick + TIMEOUT_ANSWER_MASTER))

 {

 break;

 }

 }

 if(Process_data == true)

 {

 Process_data = false;

 received_bytes = decodificar_cadena_Master(Data,

 MDatos.address);

 if(received_bytes!= 0)

 break;

 }

 else

 {

 intentos++;

 }

 }

 return received_bytes;

}

/***/

bool write_data_master(sWriteMaster SdataWrite)

{

 uint8_t Data_to_send[100] = "";

 uint8_t i = 0;

 uint8_t f = 0;

 uint8_t k;

 uint8_t Datos_cadena[50] = "";

 uint8_t Received_Data[100] = "";

 uint8_t intentos = 0;

 uint16_t read_register = 0;

73

 uint16_t read_qtyregisters;

 uint32_t pending_bytesMod; /* before uint8_t */

 uint32_t initial_tick;

 uint32_t actual_ticks;

 bool transferied = false;

 Datos_cadena[i++] = SdataWrite.Register >> 8;

 Datos_cadena[i++] = SdataWrite.Register;

 Datos_cadena[i++] = SdataWrite.NoRegister >> 8;

 Datos_cadena[i++] = SdataWrite.NoRegister;

 Datos_cadena[i++] = SdataWrite.NoData;

 while(f < SdataWrite.NoData)

 {

 Datos_cadena[i++] = SdataWrite.Data[f++];

 }

 k =Armar_Cadena(Datos_cadena, SdataWrite.Function, SdataWrite.address,

 Data_to_send, i);

 while(intentos < 2)

 {

 bool correctinfo;

 (void)Driver_enable(); /* (void) added for rule 17.7 */

 Uart_Transmit(MODBUS, Data_to_send, k);

 (void)Receiver_enable(); /* (void) added for rule 17.7 */

 initial_tick = getTicks();

 while((Process_data == false))

 {

 actual_ticks = getTicks();

 if(actual_ticks > (initial_tick + TIMEOUT_ANSWER_MASTER))

 {

 break;

 }

 }

 if(Process_data == true)

 {

 pending_bytesMod = uartGetPendingBytes(MODBUS);

 (void)uartGetData(MODBUS, Received_Data, pending_bytesMod);

 /* (void) added for rule 17.7 */

correctinfo = comprobar_Datos_Modbus(Received_Data,

 pending_bytesMod ,SdataWrite.address);

 if(correctinfo == true)

 {

 read_register |= Received_Data[2];

 if(read_register == SdataWrite.NoData)

 {

 transferied = true;

 }

 }

 break;

 }

 else

 {

74

 intentos++;

 }

 }

 return transferied;

}

/***/

void Answer_Modbus (slaveModbusStruct SDatos)

{

 uint8_t Data_to_send[250] = "";

 uint8_t Datos_cadena[100];

 uint8_t i = 0;

 uint8_t f = 0;

 uint8_t k;

 Datos_cadena[i++] = SDatos.NoRegistros;

 while(f < (SDatos.NoRegistros))

 {

 Datos_cadena[i++] = SDatos.Data[f++];

 }

 k = Armar_Cadena(Datos_cadena, SDatos.funcion, SDatos.address,

 Data_to_send, i);

 (void)Driver_enable(); /* (void) added by rule 17.7 */

 Uart_Transmit(MODBUS, Data_to_send, k);

 (void)Receiver_enable(); /* (void) added by rule 17.7 */

}

/***/

void Inicializar_Modbus(void)

{

 inicializarUart1();

 inicializaBufferUart(MODBUS);

 (void)iniciarEnable(); /* (void) added to comply with rule 17.7 */

}

/***/

void procesar_Modbus(void)

{

 #ifdef SLAVE

 if(Process_data == true)

 {

 Process_data = false;

 data_recepcion_Modbus();

 }

 #endif

}

