
 
  
 

 

Fachhochschule Aachen 

Fachbereich 
Maschinenbau und Mechatronik 

Mechatronik 
Master of Sciences 

 Adaptive Pick & Place Operations with Sensor - 
controlled Robot 

 Rafael Omar Velazquez Lopez 

Matr.-Nr.: 346074 

 

Referent : Prof. Dr.-Ing. Günther Starke 

Korreferent : M. Sc. Thomas Kunkel 

              

      

      

 

 

        

August 2009 

In collaboration with APS - European Centre for 

Mechatronics, Aachen, NRW. 

 

       



DECLARATION 
 

 
 
 
 
Hereby I declare that this thesis is my own work and that I did not use other 
sources than the literature and websites listed in the appendix. 
 
Passages taken verbatim or analogously from published or non-published 
sources are denoted accordingly. 
 
Pictures and drawings were created by myself or are referred to the used 
sources correspondingly. 
 
This work was handed in neither in equivalent nor similar form at any other 
examination authority. 
 

 

 

 

 

SECRECY 
 

This thesis must not be copied, published or made available to a third party 
completely or in parts without permission of the author, the project supervisors 
or APS GmbH. Excepted from secrecy is the abstract. 
 

 

 



 

 2 

ACKNOWLEDGMENTS 
 

 

 

I would like to thank my family for all their invaluable support during the 

development of this Master Project. 

 

 

I would like to thank Prof. Dr.-Ing. Günther Starke for all its trustful and M. Sc. 

Thomas Kunkel for its invaluable advices and help for the development of this 

project.  

 

 

 

 

 

 

 

 

 

 



 

 3 

ABSTRACT 

 

 

 

This thesis is part of the European research project “SOCRADES”, which was 

founded by the European Commission. The main topic is the collaboration of a 

robot and an integrated sensor by means of networking. The system to be 

developed has the objective to enable robots to perform handling operations 

like pick-up objects from batches and to place them on piles again without 

explicit programming of the Z-coordinate. 

The objective of this thesis is to show the collaboration between the industrial 

robot SV3-X (from Motoman Company), a gripper tool and the laser sensor MQ-

LA-S-AC240V (from MATSUSHITA Company) to perform handling operations. 

Therefore some handling procedures were developed, which describe the 

collaboration between the robots and the sensor in order to pick and place 

objects.  

The software consists of several parts. The first is a graphical user interface 

(GUI) for the laser sensor control. This software is designed to allow external 

devices to communicate with the laser sensor by networking. To allow 

communication with the laser sensor an embedded system was designed that 

uses Microcontrollers and others electronic devices for configuration and data 

acquisition.  

For the robot and the gripper there was no need to develop new software 

because it was already designed in a parallel project. It could be reused for the 

performance of the handling operations after some modifications. The 

modifications consist in adding some Object Classes with functions that allow 

the robot to reach different positions using point-to-point movement or following 

linear paths. 

Finally to test the whole system with the purpose of show the correct 

collaboration between the robot, the gripper and the laser sensor a handling 

procedure will be made. The operation that will be performance is a piling 

sequence, which first will take the object A and then will place it over an object 

B.  

 



 

 4 

Index 

 

 

Chapter 1  Introduction        8 

1.1 Purpose          8 

1.2 Justification         9 

1.3 Organization of the thesis       9 

 

Chapter 2  Fundamentals       10 

2.1 Proximity sensors        10 

2.2 Distance measurement       14 

2.3 Microcontroller technology        19 

 2.3.1 Microcontroller characteristics     19 

 2.3.2 AVR Studio        20 

2.4 Motoman          21 

2.5 Gripper          25 

 

Chapter 3  Pick & place operations      26 

3.1 Development of a robot program with adaptive functionality to  

run pick & place operations remotely controlled   26 

3.1.1 Procedure for pick up and place objects    26 

3.1.2 Procedure for object piling      29 

3.2 Development of robot movement equations    32 

 

Chapter 4 Development of Graphical User Interfaces   47 

4.1 Laser sensor control PC-GUI       47 

4.2 Robot control PC-GUI classes      52 

 

Chapter 5  Microcontroller system for sensor data acquisition,  

interpretation and remote commanding   59 

5.1 Sensor control program (microcontroller)     59 

5.2 Sensor mounting        65 

 

Chapter 6 Functional tests and evaluation of the system  

performance       79 

6.1 Tests          79 

 6.1.1 Laser sensor         79 

 6.1.2 Motoman         81 

6.2 Evaluation of the system performance     84 

 

 



 

 5 

Chapter 7 Conclusions and future Work     92 

7.1 Conclusions         92 

7.2 Future work         93 

 

Appendix A, Datasheets        94 

A.1 Motoman KNICKARMROBOTER SV3X data sheet   94 

A.2 ATmega16 features        95 

 

References          97 

 

 

Index of tables 

 

Table 2.1 Pulses causing rotations of 180 degrees.   24 

Table 3.1 Robot joint angles       34 

Table 3.2 Joint angles maximum motion range    36 

Table 6.1 Laser sensor tests       79 

Table 6.2 Sensor measurement precision     80 

Table 6.3 Motoman tests       81 

 

 

 

 

Index of figures 

 

1.1 General relation of the system      8 

 

2.1 Corner-cube retroreflectors      12 

2.2  Diffuse-mode proximity sensors      13 

2.3  Convergent configuration diffuse proximity sensors   14 

2.4  Pinhole camera model       17 

2.5  Light sensor         17 

2.6  Laser sensor with control and power unit    18 

2.7  Pinout if ATmega 16       20 

2.8  AVR Studio 4 user interface      21 

2.9  Motoman         22 

2.10 Example program        23 

2.11 Motoman commands       23 

2.12 Gripper         25 

 

 



 

 6 

3.1  Pick up sequence        27 

3.2 Place sequence        28 

3.3 Piling sequence        29 

3.4 Example of a complete piling process     31 

3.5 Kinematical model A       33 

3.6 Kinematical model B       33 

3.7 Motoman’s work area, plane XY      35 

3.8 Reference systems to measure the joint angles   36 

3.9 Kinematical system 1a       37 

3.10 Kinematical system 1b       37 

3.11 Kinematical system 2a       38 

3.12 Kinematical system 2b       38 

3.13 Kinematical system 2c       39 

3.14 Kinematical system 1b       39 

3.15 Trigonometric model       40 

3.16 Link 2 axis         42 

3.17 Joint angles calculation process      44 

3.18 Linear path         45 

3.19 Linear path calculation process      46 

 

4.1 Communication diagram       47 

4.2 Laser Sensor Graphical User Interface     49 

4.3 Program structure        50 

4.4 Serialtthread class        51 

4.5 lasersensor class        52 

4.6 Communication diagram       53 

4.7 Motoman Graphical User Interface     53 

4.8 Motoman object structure       54 

4.9 Motoman class        55 

4.10 motomanpickdrop class       55 

4.11 motomanlinecurve class       56 

 

5.1 Gripper         66 

5.2 Gripper’s shape        67 

5.3  Sensor support, upper view       67 

5.4 Superior view of sensor support      68 

5.5 Sensor distance range.       69 

5.6 Part A          69 

5.7 Part C          70 

5.8 Final Part         70 

5.9 Sensor Mounting        71 



 

 7 

5.10 Final mounting of the sensor with the gripper    71 

5.11 Laser signal         72 

5.12 Signal to read with the Microcontroller     74 

5.13 Negative part of the laser’s signal after attenuation   75 

5.14 Final signal         75 

5.15 Circuit for cut and attenuate the signal of the laser sensor  76 

5.16 Inverter circuit        76 

5.17 Control circuit        76 

5.18 Negative source circuit       77 

5.19 RS232 coupling circuit       77 

 

6.1 Robot points sequence       82 

6.2 Drawing tool for the third test      83 

6.3 Lines drown by the robot       83 

6.4 Structure of the test system      84 

6.5 sensortrial class        85 

6.6 Relation between the Motoman object and the sensor object 85 

6.7 Client communication data       86 

6.8 Motoman PC-GUI communication data     87 

6.9 Laser sensor PC-GUI communication data    87 

6.10 Piling process part A       89 

6.11 Piling process part B       90 

   

 

 

 

 

Abbreviations 

 

PC  Personal Computer 

I/O  Input/Output 

LAN  Local Area Network 

OO  Object Oriented 

DC  Direct Current 

GUI  Graphical User Interface 

µC  Microcontroller 

TCP  Transmission Control Protocol 

 



- Introduction - 

 8 

 

1 Introduction 

 

1.1 Purpose 

Design and implement an embedded system which can pick and place objects 

using a robot (Motoman) and a sensor for object detection (Laser sensor).   

 

Design and implement a PC graphical user interface (GUI), which can control 

the laser sensor and connect to other systems. 

 

Design and implement a PC-GUI, which can control the robot movement 

allowing the system to develop the tasks of pick-up objects and place or piling 

them without explicit programming.   

 

Figure 1.1 shows the relation between the different system that will be design 

and connected in order to fulfill the task of pick-up and place objects. 

 

 

Figure 1.1 General relation of the System 

Motoman 

PC-GUI 

Robot 

General 

System 

Pick and Place 

operation 
Sensor 

Sensor 

PC-GUI 

User 



- Introduction - 

 9 

1.2 Justification 

Nowadays most of the industrial devices are develop in such way that they can 

make more than one task and also adapt to work with other devices. In that way 

the devices can be part of multiples systems with out have to change its 

configuration or design for a specific work.  Because of this, more and more 

devices which can connect to networks are been designed.   

 

The idea to develop this type of devices is to make easy the design of industrial 

systems because in that way the user only has to developed the application and 

not the control for each device. 

 

At the same time the industrial systems are becoming more and more 

complicated, so the opportunity of have devices that can be controlled and 

accessed in an easy way becomes highly valuable. Because this allows the 

reduction of design time for such systems and as result the development 

becomes cheaper.  

 

With the commonly use of robots in the industry a lot of different applications 

are been developed, one of this applications are the pick and place operations, 

however develop this operations normally use fixed programming. That means 

that the robot always will take and object from the same place and put it in 

another defined position. So, if the user wants to take an object from a different 

point the program for control the robot has to be changed and make that 

change means to spent money and time. Because of this a handling procedure 

that does not need explicit programming will be designed. The idea is to have a 

robot that can pick and place objects from different positions with out to have to 

program the position of the objects.  

 

 

1.3 Organization of the thesis 

 

Chapter two presents a brief introduction to sensors and measurement, 

microcontroller technology and robot programming process. Chapter three talks 

about the general pick-up and place object operations and the development of 

equations to move the robot. The chapter four talks about the PC Graphical 

User Interfaces develop. Chapter five covers the design of a microcontroller 

system for sensor data acquisition. Chapter six details the test used to check 

the performance of the whole system when all the pieces are put together. 

Finally, chapter seven presents conclusions and future possible extensions of 

the work. 

 



- Fundamentals - 

 10 

2 Fundamentals 

 

 

One of the most common tools used to find objects are the proximity sensors. 

And the way to know how much distance a tool must move to pick and object is 

to measure the distance between the object and the tool. 

 

2.1 Proximity sensors 

 

The first sensors used to detect nearby objects were the direct-contact tactile 

sensors. But, as these sensors only allow the detection when the object is 

touching the sensor, a lot of different tasks become impossible to solve. To 

solve this situation a new class of proximity sensors were developed. The 

objective of this new development was to extend the sensing range beyond that 

afforded by direct-contact sensors.  

 

The proximity sensors are classified into several types in accordance with the 

specific properties used to initiate a switching action [MH]: 

 

• Magnetic 

• Inductive 

• Ultrasonic 

• Optical 

• Capacitive 

 

As result of constant research now a days is possible to find sensors that 

display high reliability characteristics, this make them well suited for operation in 

harsh or otherwise adverse environments, while providing high-speed response 

and long service lives. For all of these, proximity devices are valuable when 

detecting objects moving at high speed, when physical contact may cause 

damage, or when differentiation between metallic and nonmetallic items is 

required.  

 

Magnetic, Inductive and Capacitive sensors are commonly used for short range 

detection. They relied on target presence to directly change some electrical 

characteristic or property (i.e., inductance, capacitance) associated with the 

sense circuitry itself. 

As them depend in magnetic fields is no a good idea to use them for detect 

objects in a robot application. So the option is to use ultrasonic, optical o 

microwave sensors. 

 



- Fundamentals - 

 11 

Ultrasonic proximity sensors 

 

The ultrasonic proximity sensor is an example of a reflective sensor that 

responds to changes in the amount of emitted energy returned to a detector 

after interaction with the target of interest. Typical systems consist of two 

transducers (one to transmit and one to receive the returned energy), although 

the relatively slow speed of sound makes it possible to operate in the 

transceiver mode with a common transducer. The transmitter emits a 

longitudinal wave in the ultrasonic region of the acoustical spectrum (typically 

20–200 kHz), above the normal limits of human hearing [MH]. 

 

This type of sensor is useful to detect objects over distances out to several feet. 

If an object enters the acoustical field, energy is reflected back to the receiver. 

The maximum detection range of ultrasonic sensors is dependent not only on 

emitted power levels, but also on the target cross-sectional area, reflectivity, 

and directivity.  

 

The main advantage of these sensors over other type is the range detection, 

because for larger distances the power consumption is not too high. However, 

its main disadvantage is the way the ultrasonic wave is propagated. While the 

detection distance becomes larger, then the width of the detection zone 

becomes bigger. That makes troublesome try to locate small objects using 

ultrasonic sensors. 

 

Optical proximity sensors 

 

The next type of sensors is the optical ones. The work principle is to sense light 

levels. 

Optical (photoelectric) sensors commonly employed in industrial applications 

can be broken down into three basic groups: (1) opposed, (2) retroreflective, 

and (3) diffuse (The first two of these categories are not really “proximity” 

sensors in the strictest sense of the terminology) [HM]. 

 

The work ranges vary from a few millimeters out to several hundred 

centimeters. Common robotic applications include floor sensing, navigational 

referencing, and collision avoidance. Industrial applications include sensing 

presence at a given maximum range (for counting, or to work on a part), 

sensing intrusion for safety systems, alignment, etc. As the optical sensors 

depend in light intensity levels, modulated near-infrared energy is typically 

employed to reduce the effects of ambient lighting, thus achieving the required 

signal-to-noise ratio for reliable operation. However as the infrared light is 



- Fundamentals - 

 12 

invisible to the human eye visible-red wavelengths are sometimes used to 

assist in installation alignment and system diagnostics. 

 

1) Opposed mode 

 

The idea is to have two separate elements, a transmitter and a receptor. Each 

one is physically located on either side of the region of interest; the transmitter 

emits a beam of light, often supplied in more recent configurations by an LED 

that is focused onto a photosensitive receiver. Any object passing between the 

emitter and receiver breaks the beam, disrupting the circuit and creating a 

change in the sensor state. 

 

Commonly called an “electric eye” at the time, the first of these categories was 

introduced into a variety of applications back in the early 1950s, to include parts 

counters, automatic door openers, annunciators, and security systems. 

Effective ranges of hundreds of feet or more are routinely possible and often 

employed in security applications [MH]. 

 

2) Retroreflective mode 

 

These sensors evolved from the opposed variety through the use of a mirror to 

reflect the emitted energy back to a detector located directly alongside the 

transmitter. But as the mirrors normally need critical alignment, then Corner-

cube retroreflectors were used instead of mirrors (see Figure 2.1), cutting down 

the critical alignment.  

 

Corner-cube prisms have three mutually perpendicular reflective surfaces and a 

hypotenuse face; light entering through the hypotenuse face is reflected by 

each of the surfaces and returned back through the face to its source. A good 

retroreflective target will return about 3000 times as much energy to the sensor 

as would be reflected from a sheet of white typing paper (Banner, 1993). In 

most factory automation scenarios, the object of interest is detected when it 

breaks the beam, although some applications call for placing the retroreflector 

on the item itself [HM]. 

 

 

 

 

Figure 2.1 Corner-cube retroreflectors are employed to increase effective range 

and simplify alignment [HM]. 

 



- Fundamentals - 

 13 

 

3) Diffuse mode 

 

Sensors in the diffuse category operate in similar fashion to retroreflective 

types. The difference is that energy is returned from the surface of the object of 

interest, instead of from a co-operative reflector (see Figure 2.2). This principle 

makes the random object detection an easy task to solve. 
 

 

Figure 2.2 Diffuse-mode proximity sensors rely on energy reflected directly from 

the target surface [HM]. 

 

This type of sensor has several advantages over ultrasonic ranging for close-

proximity object detection. There is no appreciable time lag since optical energy 

propagates at the speed of light, whereas up to a full second can be required to 

update a sequentially fired ultrasonic array of only 12 sensors. In addition, 

optical energy can be easily focused to eliminate adjacent sensor interaction, 

thereby allowing multiple sensors to be fired simultaneously. Finally, the shorter 

wavelengths involved greatly reduce problems due to specular reflection, 

resulting in more effective detection of off-normal surfaces. However, as 

happens with all the sensors, there are also some disadvantages, of course, is 

that no direct range measurement is provided, and variations in target 

reflectivity can sometimes create erratic results. Some variants that affect the 

reflectivity are the object color and the surface’s texture. 

 

Convergent Mode, diffuse proximity sensors can employ a special geometry in 

the configuration of the transmitter with respect to the receiver to ensure more 

precise positioning information. The optical axis of the transmitting LED is 

angled with respect to that of the detector, so the two intersect only over a 

narrowly defined region as illustrated in figure 2.3. It is only at this specified 

distance from the device that a target can be in position to reflect energy back 

to the detector. Consequently, most targets beyond this range are not detected. 

This feature decouples the proximity sensor from dependence on the reflectivity 

of the target surface and is useful where targets are not well displaced from 

background objects [HM]. 
 



- Fundamentals - 

 14 

 

Figure 2.3 Diffuse proximity sensors configured in the convergent mode can be 

used to ascertain approximate distance to an object [HM]. 

 

However the problem with the convergent mode is that becomes impossible to 

know when the object is too far or too close to the object. 

 

2.2 Distance measurement 

 

For some applications (industrial, robotics, etc.) is not enough just to detect 

objects, also the distance to the object is important. To measure the distance 

from a reference point range sensors are used. A number of technologies have 

been applied to develop these sensors, the most prominent being light/optics, 

computer vision, microwave, and ultrasonic. As proximity sensors, range 

sensors may be of contact or noncontact types. 

For pick-up and place operations the best sensors are the ones based in 

noncontact principles. 

 

Time-of-Flight, Triangulation, or Field Based 

 

There are many different classes and instances of noncontact ranging devices, 

but with very few exceptions they are based on one of the following three basic 

principles: 

1. Energy propagates at a known, finite, speed (e.g., the speed of light, the 

speed of sound in air) 

2. Energy propagates in straight lines through a homogeneous medium 

3. Energy fields change in a continuous, monotonically decreasing, and 

predictable manner with distance from their source 

 

The techniques associated with these basic phenomena are referred to as time-

of-flight, triangulation, and field based, respectively [MISH]. 

 

Time-of-flight 

 

(TOF) systems may be of the “round-trip” (i.e., echo, reflection) type or the “one-

way” (i.e., cooperative target, active target) type. Round-trip systems measure 

the time taken for an emitted energy pattern to travel from a reference source to 



- Fundamentals - 

 15 

a partially reflective target and back again. Depending on whether radio 

frequencies, light frequencies, or sound energy is used, these devices go by 

names such as radar, lidar, and sonar.  

 

The One-way systems transmit a signal from a reference point and receive it at 

the target receptor or vice versa. In order to establish the time of flight some 

form of synchronizing both devices has to be present a both points. 

TOF systems has the characteristic of its range resolution capability is based 

solely on the shortest time interval they can resolve, and not the absolute range 

being measured. So, if the object is near or far, the measurement error is 

basically constant. 

 

Triangulation 

 

Triangulation is based upon an important premise of plane trigonometry, which 

states that given the length of a side and two angles of a triangle, it is possible 

to determine the length of the other sides and the remaining angle.  

 

Triangulation ranging systems are classified as either passive (use only the 

ambient light of the scene) or active (use an energy source to illuminate the 

target). Passive stereoscopic ranging systems position directional detectors 

(video cameras, solid-state imaging arrays, or position sensitive detectors) at 

positions corresponding to locations P1 and P2. Both imaging sensors are 

arranged to view the same object point, P3, forming an imaginary triangle. The 

measurement of angles θ and φ in conjunction with the known orientation and 

lateral separation of the cameras allows the calculation of range to the object of 

interest. 

 

Active triangulation systems, on the other hand, position a controlled light 

source (such as a laser) at either point P1 or P2, directed at the observed point 

P3. A directional imaging sensor is placed at the remaining triangle vertex and 

is also aimed at P3. Illumination from the source will be reflected by the target, 

with a portion of the returned energy falling on the detector. The lateral position 

of the spot as seen by the detector provides a quantitative measure of the 

unknown angle φ, permitting range determination by the Law of Sines. 

 

The performance characteristics of triangulation systems are to some extent 

dependent on whether the system is active or passive. Passive triangulation 

systems using conventional video cameras require special ambient lighting 

conditions that must be artificially provided if the environment is too dark. 

 



- Fundamentals - 

 16 

Furthermore, these systems suffer from a correspondence problem resulting 

from the difficulty in matching points viewed by one image sensor with those 

viewed by the other. On the other hand, active triangulation techniques 

employing only a single detector do not require special ambient lighting, nor 

do they suffer from the correspondence problem. Active systems, however, can 

encounter instances of no recorded strike because of specular reflectance or 

surface absorption of the light. 

 

Limiting factors common to all triangulation sensors include reduced accuracy 

with increasing range, angular measurement errors, and a missing parts (also 

known as shadowing) problem. Missing parts refers to the scenario where 

particular portions of a scene can be observed by only one viewing location (P1 

or P2). This situation arises because of the offset distance between P1 and P2, 

causing partial occlusion of the target (i.e., a point of interest is seen in one view 

but otherwise occluded or not present in the other). The design of triangulation 

systems must include a tradeoff analysis of the offset: as this baseline 

measurement increases, the range accuracy increases, but problems due to 

directional occlusion worsen [MISH]. 

 

Field-Based Approaches 

 

Whereas TOF and active triangulation techniques employ the wave propagation 

phenomena of a particular energy form, field-based approaches make use of 

the spatially distributed nature of an energy form. 

 

The intensity of any energy field changes as a function of distance from its 

source. Moreover, fields often exhibit vector characteristics (i.e., directionality). 

Therefore, if the location of a field generator is known and the spatial 

characteristics of the field that it produces are predictable, remote field 

measurements contain information that may be used to infer distance from the 

source [MISH]. 

 

Laser-Based Active Triangulation Ranging and Range Imaging Sensors 

Active Triangulation Basics 

 

Figure 2.4 illustrates the basic active triangulation geometry. In this so-called 

“pinhole camera” model, practical aspects like lenses for projection and 

detection and mirrors for scanning are eliminated for clarity. It can be shown by 

means of similar triangles that the range is inversely proportional to the 

deflection of the imaged spot.  

 



- Fundamentals - 

 17 

Where: 

 

R= distance to object 

b= baseline distance 

f= lens to detector distance 

u= detected spot position in the image plane 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.4 A simple pinhole camera model illustrates the basic active triangulation principle. As 

the distance R to the target surface changes, the spot position U on the detector changes, 

maintaining similarity between the large triangle outside the camera and the small triangle 

inside. There is an inverse relationship between R and u [MISH] 

. 

Based in the previews principles, for the object detection part, in the pick-up and 

place process, two different noncontact sensors were chosen. The first one was 

a light sensor (Sensor PZ-V31P,see Figure 2.5) and the second one was a laser 

sensor(Sensor MATSUSHITA MQ-LA-S-AC240V , see Figure 2.6). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.5 Light Sensor 

 



- Fundamentals - 

 18 

 

 

 

Figure 2.6 Sensor Laser with control and power unit. 

 

The advantage of the light sensor is its low power consumption and its larger 

detection range (30cm), however its main disadvantage is the susceptibility to 

the external noise. So, working with the sensor in zones where the intensity of 

ambient light changes constantly causes to have errors in the object detection.  

 

Another disadvantage is that this sensor only can detect objects, this is 

important because when the robot searches for any object, the robot is moving, 

so its difficult to predict the distance that will up to the object after the robot 

stops. The laser sensor has the advantage of can measure distances, however 

has to main disadvantages, the power consumption is higher than the power 

consumption of the light sensor and is detection range is shorter, only 14cm. 

 

The laser sensor is no designed for object detection, however working with 

other devices is possible use it to detect objects. Also the laser sensor doesn’t 

have problems when is measuring if there are light noise. Because of the 

versatility of the laser sensor, it was the option chosen for the project. 

 

In chapter five is explained how the laser sensor is used to detect objects. 

 

 

 

 

 

 



- Fundamentals - 

 19 

2.3 Microcontroller technology 

 

The main advantage of the microcontrollers is its versatility. Because is possible 

to solve a lot of different control tasks just loading a different program, tasks as 

read sensors for data acquisition or convert a distance measurement sensor in 

a proximity sensor, which are the applications that will be used for this project. 

 

 

2.3.1 Microcontroller characteristics 

 

The ATmega16 is a low-power CMOS 8-bit microcontroller based on the AVR 

enhance RISC architecture. By executing powerful instructions in a single clock 

cycle, the ATmega16 achieves throughputs approaching 1 MIPS per MHz 

allowing the system designer to optimize power consumption versus processing 

speed [DA16]. 

 

The microcontroller works with 5V as with 20mA power consumption other 

technical features of the ATmega16 are found in appendix A.5 

 

Microcontroller Pinout: 

 

The microcontroller ATmega 16 has 40 Pins. 32 of them are In/Out pins, and 

are divided in 4 ports. 

 

- Port A: The 8 pins that build this port can be used as Analog inputs for 

Digital conversion, and also can be used as digital inputs or outputs. 

- Port B: All pins can be set as Input or Output. This port has special pins 

for SPI-Bus (Serial Peripheral Interface) and one pin for external Interrupt 

INT2.  

- Port C: All pins can be set as Input or Output. This port has special pins 

for JTAG. 

- Port D: All pins can be set as Input or Output. Has 2 pins for external 

interrupts and 2 pins for USART communication. 

 

The other 8 pins are: 

 

- Pin 9. Reset. Is activated with 0V. 

- Pin 10. VCC. Power Supply between 4.5 V and 5V. 

- Pin 11. Ground. 

- Pins 12 and 13. Pins for connect the Cristal Oscillator. 



- Fundamentals - 

 20 

- Pins 32, 31 and 30. AREF, GND and AVCC. This pins are used for 

provide an analog voltage reference for the Analog Digital Converter 

(ADC). 

 

 

The advantage of use a microcontroller over other devices is its special 

features. Features as ADC, USART, Interrupts, SPI-bus.  

The ADC reads analog signals and converts them to a digital value, it is 

commonly use for data acquisition. 

The USART and SPi-bus are used for communication with other devices, for 

example PCs. 

The Interrupts are events that can be triggered by external voltage signals, or 

internal events as timers. 

 

Figure 2.7 shows how is the pinout of the ATmega16. 

 

 

 

 

Figure 2.7 Pinout of ATmega 16 [DA16]. 

 

2.3.2 AVR Studio 

 

The Software used to program the microcontrollers is the program AVR Studio 

from the ATMEL Company. The software allows the user to program using 

Assembler language or General C Code (GCC) language.  Also with the help off 

some tools as the STK500 board the software allows to load the programs in 

the Microcontroller.  



- Fundamentals - 

 21 

 

 

 

Figure 2.8 AVR Studio 4 user interface 

 

2.4 Motoman 

 

Nowadays there a lot of different robots in the industry, one of them is the 

Motoman (see figure 2.9). It has six rotational axes which kinematical structure 

is based on the principles of the Stanford Arm, which was designed by Victor 

Scheinman in 1969 in the Stanford Artificial Intelligence Laboratory.  

 

One of the problems that had the commercial application of robots was the 

limited computing performance of PCs in the past, which made real time 

calculations of the inverse kinematical problem nearly impossible. Unlike the 

forward kinematical problem, the main different in these two calculations is that 

the forward calculation gives  the tool pose from given joint angles, and the 

inverse kinematics calculation is non-unique giving more than one possible 

solutions of joint angles for one pose.  

 

By Scheinman’s arm solution this problem could be avoided to a large extend, 

since the positioning and orientating task was distributed of to upper and lower 

arm respectively. This could be achieved by a configuration of the kinematical 

chain in such a way that the axis of the lower arm intersect in one point, the so-

called wrist centre point (WCP). For pose adjustment of the tool, the joint angles 

of the upper arm were set to position the WCP suitably, i.e. at the desired 

position of the tool centre point reduced by the vector describing the tool pose 

with respect to the WCP. The orientation was then adjusted by setting the joint 

angles of the lower arm. Thereby the inverse kinematical problem could be 

solved in closed form for the first time [MTT]. 



- Fundamentals - 

 22 

 

 

Figure 2.9 Motoman [MTT]. 

 
The most significant difference between the Stanford Arm and the industrial 

robots nowadays is the realization of the upper arm by three rotational joints. 

Scheinman’s arm also included a translational axis. The upper arm of the 

Motoman features three rotational axes, one orientated vertically building the 

connection between the base and the first link and two horizontally orientated 

axes connecting the first with the second link and the latter with the third link 

respectively. The fourth axis is implemented in the third link, while the fifth axis 

is located at the WCP and is oriented orthogonally to the fourth axis. Tool flange 

and penultimate link are connected by the sixth axis, which is oriented 

orthogonally with respect to the fifth axis. The axes of the lower arm intersect in 

the WCP and thus build a so-called “in-line-wrist” [MTT]. 

 

Others characteristics of the Motoman are a total weight of 30 kg, a payload of 

3 kg and an approximately spherical operating range of about 1.4 m in 

diameter. In appendix A.1 the Motoman’s data sheet lists some technical data 

such dimensions, movement range, electrical data. The Motoman is controlled 

by an XRC control unit that can be fed with commands by a control panel or via 

a server.  

 

The control unit features many functions, like for example definition of user 

specific reference systems, different motion types such as linear, joint or 

incremental movements as well as programming, just to mention some. For 

creation of programmes, the points lying on the path have to be taught in and 

the desired movement type and velocity have to be taught in. From the 



- Fundamentals - 

 23 

programmes, the points on the path cannot be seen later on. Only current line, 

movement type and velocity are displayed. An example of a programme is 

given in figure 2.10 [MTT].  

 

NOP

MOVJ VJ=50.00

MOVJ VJ=12.50

MOVL V=123

END

0000

0001

0002

0003

0004

 

Figure 2.10 Example program [MTT] 

 

When the control unit is accessed via the server the number of features is 

reduced since not all functions were implemented yet. There are two main 

classes of functions defined by the manufacturer. “Status Read Functions” can 

be used for reading the robot status (current position, errors, servo status, etc.). 

“System Control Functions” are used for controlling the robot (running and 

interrupting programmes, load jobs, move the robot, etc.).  

 

In figure 2.11 some examples for command lines are given. The first command 

line causes joint motion. The command structure differs from the commands 

used for automated jobs. Besides movement type and velocity the pose 

parameters, tool number and reference coordinate system have to be specified 

when the robot shall be moved. Movements are not defined by angles, but by 

pulses. The number of pulses causing rotations differs for each axis. Table 2.1 

shows the number of pulses resulting in a 180-degree rotation for the six axes 

of the Motoman[MTT]. 

 

Pulse 

movement

BscPMov MOVJ         V 10         7  100 200 300 400 500 600    0 0 0 0 0 0

Joint  

.motion

Velocity: 

10 deg/sec

Tool  

. no.       

Pulses for

Motoman axes

Pulses for

external axes

BscIsLoc 1               (Get Pulses)

BscHoldOn (Set hold on; used for interupting programs)

BscHoldOff (Set hold off)

BscContinueJob (Start Job; execution starts from the current line of current job)

 

Figure 2.11 Some commands for operating the Motoman [MTT] 



- Fundamentals - 

 24 

 

Axis

1st                  

2nd

3rd

4th

5th

6th

Pulses per 180 degrees

240000

322000

242000

155556

162000

102000 
 

Table 2.1 Pulses causing rotations of 180 degrees for different axis [MTT] 

 

For the current control application jus three commands are going to be used. 

The first command corresponds to the pulse movement, the second command 

reads the TCP position and a third one for read the robot’s joint angles. 

 

The commands are the follow ones: 

 

BscPMov MOVJ V 1 0 0 0 0 0 0 0 0 0 0 0 0 0 Command for moving 

BscIsLoc 1      TCP position  

BscIsLoc 0      Joint angles value 

 

In chapter four the use of these commands in the control task will be showed. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



- Fundamentals - 

 25 

2.4 Gripper 

 

The gripper is a tool designed to allow the Motoman to take objects. It has three 

fingers to take objects. Each one of the fingers is controlled by small electric 

coils. Then the gripper has only two states open and close. 

 

   

 

Figure 2.12 Gripper, a) Frontal view, b) bottom view. 

 

a b 



- Pick & Place operations - 

 26 

3 Pick & Place operations 

 

 

A smart robot is the one which can adjust its own behavior for solve different 

tasks. However in order to make a smart robot, first is necessary to develop a 

robot-program which can adapt to different situations. 

 

3.1 Development of a robot program with adaptive functionality  

to run pick & place operations remotely controlled 

 

The main purpose of the robot application is to pick an object from a place 

indicate by a user, and then place the object in another place also indicate by 

the user. This task has to be made using adaptive functionality. The adaptive 

functionality consists in implement a process which can adapt to different 

situations. 

 

For this reason 2 main process sequences were developed. The first one is a 

procedure for pick up objects; the second one is a procedure for place objects. 

Also as result of the development of these two procedures a third process was 

develop, a procedure for piling objects.  

 

3.1.1 Procedure for pick up and place objects 

 

In order to pick an object a system between three devices (Robot, Distance 

Sensor and Gripper) has to be develop and also a sequence of steps has to be 

implemented. 

 

The procedure implemented to pick up objects consists in a sequence of 8 

steps, which are: 

 

A) First the gripper’s fingers are opened.  

 

B) Then the robot moves to the position where the object is located. For 

move the robot the coordinates X and Y of the object are used. In that 

way the gripper is above the object (see Figure 3.1.A). 

 

C) Search for the object. The search is made using a combination between 

the robot and the distance sensor. So, for find the object the robot moves 

down following a straight line. The movement stops when the distance 

sensor finds the object. In order for the sensor to find the object, the 



- Pick & Place operations - 

 27 

sensor is continually measuring the distance between the gripper and the 

object, so when the distance between the object and the gripper 

becomes the distance value assigned by the user the object has been 

found (see Figure 3.1.B) 

 

D) The distance between the gripper and the object is measured, that is 

because there is a delay when the sensor sends to the robot the stop 

signal, so when the robot stops, the distance between the robot and the 

object is different from the one that there were when the object was 

found. Then with the new distance value is possible to calculate the 

distance that the robot has to move to pick the object.  

 

E) The robot calculates the distance to move. 

 

F) The robot moves that value calculated.  

 

G) The gripper closes around the object (see Figure 3.1.C). 

 

H)  Final step. With the object already picked the robot moves in a straight 

line to the position were the search movement starts (see Figure 3.1.D). 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1 Pick up sequence. 

 

A B

C D



- Pick & Place operations - 

 28 

The procedure for place an object is similar to the one used for pick the object. 

The sequence consists in seven steps, which are: 

 

A) The robot moves to the coordinates X and Y where the object is going 

to be placed (see Figure 3.2.A). 

 

B) Then the robot searches for the surface where the object is going to 

be placed. As in the pick sequence the robot moves down in a 

straight line. The movement stops when the sensor finds the surface 

(see Figure 3.2.B). 

 

C) After found the surface the distance between the gripper and the 

object is measured.  

 

D) The robot calculates the distance that has to move.  

 

E) The robot moves the distance calculated.   

 

F) Now the gripper’s fingers are opened setting free the object. 

 

G) Finally the robot moves back to the top position. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.2 Place sequence 

A B 

C D 



- Pick & Place operations - 

 29 

3.1.2 Procedure for Object Piling  

 

The object piling procedure is a special case of the place procedure. The piling 

process is to put one object above another one, creating in that way levels of 

objects. The main difference between the place process and the piling process 

is, that in the place sequence the sensor searches for the surface where the 

object will be placed, and in the piling procedure the sensor searches for the 

object above the new object will be put.  

 

Figure 3.3 shows the piling process. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.3 Piling Sequence 

 

The seven steps for this process are the following: 

 

A) The Robot moves to the coordinates X and Y, where the object, which 

will be the base, is located (see Figure 3.3.A) 

 

A B 

C D 



- Pick & Place operations - 

 30 

B) The Robot searches for the object where the object picked is going to be 

placed. The robot moves down in a straight line. The movement stops 

when the sensor finds the base object (see Figure 3.2.B). 

 

C) After found the object the distance between the gripper and the object is 

measured. 

 

D) The robot calculates the distance that has to move. 

 

E) The robot moves the distance calculated.   

 

F) The gripper’s fingers are opened setting free the object picked above the 

other object. 

 

G) Finally the robot moves back to the top position. 

 

Then, using combinations of these three different processes is possible to fulfill 

different task. For example, moving a pile of two objects (A and B) to another 

position, will need first to pick the object A from the original pile, then place that 

objet in the target zone where the pile is going to be. Now, the object B has to 

be picked and pile above the object A.  

 

Figure 3.4 shows the complete sequence needed to pile the object B above the 

object A (next page). 

 

To make possible the collaboration between the devices in order to fulfill the 

pick and place operation some software and hardware capable of control the 

devices has to be develop. The software that will be designed consist in one 

program capable to read the laser sensor in order to measure the distance to 

the objects and find them, also consist in a program capable of control the robot 

movements allowing it to take and place objects (see Chapter four). The 

hardware consists in an electronic circuit capable of read the sensor and sends 

the data to the PC. This circuit will be made using microcontrollers (see Chapter 

five). 



- Pick & Place operations - 

 31 

 

 

Figure 3.4 Example of a complete piling process 

Coordinates X and 

Y of object B 

Move to the (X ,Y) coordinates 

Moving back to 

the top position 

Closing the gripper around the 

object 

Moving to pick the object 

Calculate the distance to move 

Move to the object 

one step 

Object 

found? 

Search starting 

Measure the distance to the object 

Open the gripper’s fingers 

Coordinates X and Y of 

object A 

 

Move to the (X ,Y) coordinates 

 

Moving back to the top position 

Opening the gripper to set free 

the object B on the object A 

Moving to the top of object A  

Calculate the distance to move 

Move to the object one 

step 

Object 

found? 

Search starting 

Measure the distance to the object 

End A 

A 
Start 

No 
No 

Yes 
Yes 



- Pick & Place operations - 

 32 

3.2 Development of robot movement equations 

 

When the robot takes an object and then places it in a different position it has to 

move from one position to another position. There are two ways the robot can 

reach a position, point to point and following a continuous path. In point to point 

the only thing that matters is move from one position A to another position B, so 

the robot does not matter about how the movement is made. However when a 

continuous path is followed from position A to position B, the robot has to think 

how to make the movement.  

 

The procedure that were developed for pick, place and piling objects makes the 

robot change from one position to another, and in order to have success the 

robot has to combine the point to point movement and the continuous path. 

When the robot moves to the coordinates X and Y of the object, it moves in 

point to point because the robot only needs to reach the position. But, when the 

robot moves searching an object, it has to move following a path, in this case a 

linear path. 

 

However move following a path is the same that move from point to point, 

because a path is made following intermediate points between the positions A 

and B. The first thing the robot needs to know is how to move from one point to 

another point. To solve this, first a kinematical model has to be designed. The 

kinematical model was designed having two main considerations: 

 

- Range of points that can be reached by the robot, 

- Any possible object that can block the robot movement. 

 

With these two considerations, two kinematical approaches were designed. 

 

 

Figure 3.5 shows the first approach and figure 3.6 shows the second approach 

(next page). 

 

 

 

 

 

 

 

 

 



- Pick & Place operations - 

 33 

Plane XY 

Asix Z Movement 

asix 

Gripper 

Link 1 Link 2 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.5 Kinematical model A 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.6 Kinematical model B 

 

 

Link 1 

Link 2 

Plane XY 

Axis Z 

Movement 

Axis 

Gripper 



- Pick & Place operations - 

 34 

The advantage of use the approach A is that the robot can reach higher 

positions. The disadvantage is the robot needs more space to move, so working 

with other devices in the same work space becomes problematic. 

 

The disadvantage of the approach B is the leak to reach higher positions. 

However its main advantage is that the robot does not need too much space to 

move as approach A needs, so working with other devices in the same work 

space is easier. 

 

As one of the objectives of the project is work with other devices and as the 

difference between the points that can be reached with one or other model is 

not too critical, the approach B was chosen. 

 

To reach a point a combination of six joint angles has to be calculated.  

 

Table 3.1 shows the six joint angles. 

 

 

Joint Angle Name Robot Axis 

First Alpha(α) S (Turning/sweep) 

Second  Beta(β) L (Lower Arm) 

Third Epsilon(ε) U (Upper Arm) 

Fourth Gamma(γ) R (Wrist Roll) 

Fifht Theta(θ) B (Bend/Pitch/Yaw) 

Sixth Zeta(ζ) T (Wrist Twist) 
 

Table 3.1 Robot Joint Angles 

 

 

Changing the value of each of these angles allows the robot to reach any point 

in different ways. However that means that one point can be reached for 

different kinematical approaches. But as one kinematical model has been 

chosen, then there is just one combination of joint angles per each point that the 

robot wants to reach. 

  

 

The kinematical model B has a special configuration where the angle Gamma 

always has a value of 0°. Then, the angles Theta and Zeta give the orientation 

to the tool (gripper). So, just three angles are used to reach the positions. These 

angles are Alpha, Beta and Epsilon. 

 

 



- Pick & Place operations - 

 35 

X -X 

-Y 

Y 

Plane XY 

origin 

 

The best way to explain the range of points the robot can reach is using 

cylindrical coordinates instead of Cartesian coordinates. That is because the 

robot work area has the shape of a sphere, however in order to calculate the 

movement along the Z axis is better to think in the work area as it was a 

cylinder. Cylindrical coordinates uses vector to describe any point. The vector 

has three components “radius”, “height” and “direction angle”. The radius 

indicates how distant is the point from the axis Z. The angle indicates the 

direction of the vector and the height indicates how far is the point from the X, Y 

plane.  

 

From the Motoman’s datasheet is possible to watch that the Robot work area is 

more like a donut than a cylinder. A donut with height Z and where just the 

points between a radius=300 mm and a radius=677mm can be reached (see 

figure 3.7). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.7 Motoman’s work area, plane XY 

 

For the robot the way to understand these limits is converting them to joint 

angles values, this means that there is a maximum motion range for each joint 

angle (see Table 3.2). Figure 3.8 shows the reference systems for measure 

each of the main angles (Alpha, Beta, Epsilon and Theta).  

 



- Pick & Place operations - 

 36 

+ αααα 

- αααα 

+ββββ  - ββββ 

+ ε  

- ε 

+ θθθθ  

- θθθθ 

Z 

Z 

Plane XY’ 

Plane XY’’ 

Name Maximum Motion Range Robot Axis 

Alpha ±170° S (Turning/sweep) 
Beta  +150°/-45° L (Lower Arm) 

Epsilon +190°/-70° U (Upper Arm) 

Gamma ±180° R (Wrist Roll) 

Theta ±135° B (Bend/Pitch/Yaw) 

Zeta ±350° T (Wrist Twist) 
 

Table 3.2 Joint angles maximum motion range 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.8 Reference systems to measure the joint angles 

 

Using the kinematical model B six sets of equations were derived. The 

equations allows to predict which points are inside the motion range of the 

robot. The first two sets of equations calculate the joint angles for the points that 

are above the limit of a radius of 416.8 mm. The other four sets of equations 

calculate the joint angles of the points that are inside an area limited by a small 

radius of 300 mm and a big radius of 416.8 mm.  

 

Each of these two groups follows the next conditions. In the two first sets of 

equations the conditions are: 



- Pick & Place operations - 

 37 

β 

ε 

θ 

θ 

Plane XY 

Z 

Object distance 

Displacement 

in Z 

β 

ε 

θ 

Plane XY 

Z 

Object distance 

Displacement 

in Z 

θ 

a) Epsilon is smaller than 0° and the object distance is bigger than the 

length of the Link 2(assign in Figure 3.6) (266.8 mm) (see Figure 3.9). 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

Figure 3.9 

 

b)  Epsilon is bigger than 0° and the object distance is bigger than the length 

of the Link 2 (266.8 mm) (see Figure 3.10). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.10 

Link 2 

Link 2 



- Pick & Place operations - 

 38 

β 

ε 

θ 

Plane XY 

Z 
Object distance 

Displacement 

in Z 

θ 

β 

ε 

θ 

Plane XY 

Z 

Object distance 

Displacement 

in Z 

θ 

 

For the remaining fourth sets of equations the conditions are: 

 

c)  Beta is bigger than 0°, Epsilon is smaller than 0° and the object distance 

is smaller than the length of the Link 2 (266.8 mm) (see Figure 3.11). 

. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.11 

 

d)  Beta is smaller than 0°, Epsilon is smaller than 0° and the object distance 

is smaller than the length of the Arm2 (266.8 mm) (see Figure 3.12). 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

Figure 3.12 

 

Link 2 

Link 2 



- Pick & Place operations - 

 39 

β 

ε 

θ 

Plane XY 

Z 
Object distance 

Displacement 

in Z 

θ 

ε 

e)  Beta is smaller than 0°, Epsilon is bigger than 0° and the object distance 

is smaller than Link 2 (266.8mm) (see Figure 3.13). 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

Figure 3.13 

 

f) Beta is bigger than 0°, Epsilon is bigger than 0° and the object distance is 

smaller than Link 2 (266.8 mm) (see Figure 3.14). 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.14 

β 

ε 
θ 

Plane XY 

Z Object distance 

Displacement 

in Z 

θ 

Link 2 

Link 2 



- Pick & Place operations - 

 40 

The sets of equations were used to solve the problem of find the robot joint 

angles for any X , Y and Z value gave, where X and Y define the distance 

between the point to reach and the robot’s center (see Figure 3.7). The 

equations were deduced from a trigonometric model of the kinematic model 

(see Figure 3.15). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.15 Trigonometric model 

Where: 

L1  length of the Link 1 
L2  simplify length of the Link 2 
zlim limit of the minimum value of Z in order to avoid collisions 
h  distance to the robot’s center point 

β   joint angle Beta 

ε   joint angle Epsilon 
Z  coordinate Z of the point (X, Y, Z) 
 

from X and Y coordinates the value of h is calculated (see 1): 
  

h = √( x2 + y2)  (1) 

 

from Z and h the value of angle β1 and β2 are found: 

c  =  √( h2 + Z2)     (2) 

β2 = tan-1( Z / h )     (3) 
β1  =  cos

-1
 (( L1

2
+ c

2
 - L2

2
)/(2 * L1 * c))  (4) 

β1 

β  

β7 
β6 

β4 

β2 
  β3 

    β5  

ε  

Plane XY 

Z 

h 

d2 d1 

Zbeta 

Zepsilon 

Zlim 

C 

      L1 

    L2 

Point 

(X,Y,Z) 



- Pick & Place operations - 

 41 

Then, the set of equations that allows to calculate the joint angles for each part 

of our kinematic model are: 

 

a) First set 

β = 90 - β1 - β2     (5) 

β6  =  cos-1 (( L12+ L22 -c2)/(2 * L1 * L2)) (6) 

β7 = 180 – 90 - β     (7) 

ε = 180 - β6 - β7     (8) 

ε =  - ε      (9) 

θ =  - ε + 90 + 12.994    (10) 

ε =  ε - 12.994     (11) 

 

b) Second set 

β = 90 - β1 - β2     (12) 

β6  =  cos-1 (( L12+ L22 -c2)/(2 * L1 * L2)) (13) 

β7 = 180 – 90 - β     (14) 

ε = 180- (360 - β6 -β7)    (15) 

ε1 = 180 - ε -90     (16) 

ε  =  ε - 12.994     (17) 

θ  =  ε1 + 12.994     (18) 

 

c) Third set 

β = 90 - β1 - β2     (19) 

β6  =  cos-1 (( L12+ L22 -c2)/(2 * L1 * L2)) (20) 

β7 = 180 – 90 - β     (21) 

ε = 180 - β6 - β7     (22) 

ε =  - ε      (23) 

θ =  - ε + 90 + 12.994    (24) 

ε =  ε - 12.994     (25) 

 

d) Fourth set 

β = 90 - (180 - β1 - β2)    (26) 

d1  =  sin(β) * L1     (27) 
d2  =  h + d1      (28) 

ε  =  cos-1(d2 / L2)     (29) 

θ  =  ε + 90 +12.994    (30) 

ε =  - ε - 12.994     (31) 

 

 

e) Fifth Set 

β = 90 - (180 - β1 - β2)    (32) 

d1  =  sin(β) * L1     (33) 
d2  =  h + d1      (34) 

ε  =  cos-1(d2 / L2)     (35) 



- Pick & Place operations - 

 42 

Link 2 Lenght 

260 mm 

60mm  
 

 

Link 2 simplify  

266.8 mm 

ε1  =  180 – ε – 90     (36) 

θ  =  ε1 + 12.994     (37) 

ε =  ε - 12.994     (38) 

 

f) Sixth set 

β = 90 - β1 - β2     (39) 

β6  =  cos-1 (( L12+ L22 -c2)/(2 * L1 * L2)) (40) 

β7 = 180 – 90 - β     (41) 

ε = 180- (360 - β6 -β7)    (42) 

ε1 = 180 – 90 – ε     (43) 

ε  =  ε - 12.994     (44) 

θ  =  ε1 + 12.994     (45) 

 

Note, the equations used a calculated length value for the L2 different from the 

real value of Link 2. That is because the reference axis for Link 2 is displaced 

60mm from the reference axis of Link 1 (see Figure 3.16, next page). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.16 

Then in order to simplify the equations of the kinematical model, the original 

reference axis system was displaced 12.99°, that displacement gave origin to a 

new value for Link 2 length. 

L2 = √((60mm)2 + (260mm)2) = 266.8mm (46) 

 



- Pick & Place operations - 

 43 

With that displacement the functions to calculate the joint angles become easier 

to solve. So, finally the only thing to make is add ob subtract the displacement 

of 12.99° to the Epsilon angle calculated. This step is also included in each of 

the different equations sets.  

 

To calculate the joint angle Alpha and the joint angle Zeta the next equations 

are used: 

when Y is bigger than 0 
α = cos-1(X/h)   (47) 

otherwise 
α = - (cos-1(X/h)   (48) 

and  

ζ = α     (49) 

 

As was explained the functions calculate the joint angles form the X, Y and Z 

values gave, however from any point  gave try to find the correct value of 

Epsilon is not to easy, because in a initial calculation the value or Beta can falls 

in any of the six models. Then to determine which set of equations has to be 

applied to find the joint angles the next conditions are used: 

- h > L2 ? 

If h is bigger than L2 then the first and second sets are applied, otherwise the 

other four sets are used. 

- Z > L1 ? 

If Z is bigger than L1 then the first, third and fourth sets are applied, otherwise 

second, fifth and sixth sets are used. 

- β1+ β2 > 90 ? 

If β1 plus β2 is bigger than 90 fourth and fifth sets are applied, if not, then the 

remaining four sets are used. 

 

So, if in the start calculation process h is bigger than L2, Z is bigger than L1 and 

β1 + β2 < 90 then the first set will be used to calculate the joint angles. 

 

With the six equations seems that any point can be calculated, however there 

are some points that can not be calculated and other points that can be 

calculated but can not be reached by the robot, because of its design. To avoid 

the calculation of such points the next conditions have to be fulfilled: 

- c is lower than L1+L2 

- joint angles values must be inside their motions ranges (see Table 3.2) 

 

The process to calculate the joint angles for a point (X, Y, Z) is as follows (see 

Figure 3.17). 

 



- Pick & Place operations - 

 44 

 

 

Figure 3.17 Joint angles calculation process 

Calculation of the h value 

Coordinates of 

Point (X, Y, Z) 

Calculation of the 

condition values 

Joint angles are 

legal? 

Set of equations to use is 

chosen 

The Joint angles are 

calculated 

“Point successfully 

calculated” 

Alpha =… 

Beta =… 

……. 

If  h < L1+ L2 

“Point can’t be 

reached” 

End 

Start 

No 

No 

Yes 

Yes 



- Pick & Place operations - 

 45 

With the equations of joint angles for any point already deduced the last step to 

make the robot moves for one object to another object is to choose how the 

robot will move between the objects. The easiest way is move point-to-point, 

this means that only the joint angles for the final position has to be calculated 

and this can be made with the equations already deduced. However there are 

some times when the robot has to move following a path between one point and 

another point. This is the case when the robot wants to find, take or place and 

object. For these operations the robot must move in a linear path as was 

explained in chapter 3.1. 

 

The way to make a lineal path is using linear interpolation between the origin 

point P1 and the end point P2. Therefore the line is divided in any number of 

points (P3,P4,P5,P6,P7,..,Pn). Then the robot instead of move from P1 to P2 

will move from P1 to P3, then from P3 to P4, from P4 to P5, P5 to P6, and so on 

until finally move from Pn to P2. In this way the robot has moved from P1 to P2 

following a linear path (see Figure 3.18). 

 

 

Figure 3.18 Linear path 

 

The procedure use to calculate the points to follow a linear path is the next one: 

 

- From P1(x1, y1 ,z1) and P2(x2, y2, z2) a V1 is calculated (see formula 50), then 

the size of the vector is determined (see formula 51) 

V1 = P1 –P2    (50) 

d=√(v12 + v22 + v32 )   (51) 

 

P1 

P3 

P4 

P5 

P6 

Pn 

P2 

Z 

Plane XY 



- Pick & Place operations - 

 46 

- With d the number of points needed to reach P2 is calculated. As the 

coordinates of the points are given in millimeters, the value of d is also in 

millimeters. The resolution chose for determine the amount of points is 

the 5mm per point. Then the amount of points is calculated with formula 

46. 

ap= (d / 5)   (52) 

 

- Now the coordinates of the intermediate points are determined (see 

formula 53). 

Pn = Pn-1+ ( V1 / ap )  (53) 

 

- the joint angles for each point are calculated. 

 

- finally the P2 joint angles are calculated 

 

   

 

Figure 3.19 Linear path calculation process

P1 and P2 are given 

From P1 and P2, V1 and its norm are 

calculated 

Amount of points to reach P2 is 

calculated 

Coordinates X, Y and Z for intermediate 

points are determined 

Intermediate points joint angles are 

calculated 

P2 joint angles are calculated 



- Development of Graphical User Ingterfaces - 

 47 

4 Development of Graphical User Interfaces 

 

 

To calculate the robot’s joint angles for multiple points by hand normally will 

take some minutes or even some hours. So, the use of a PC to calculate these 

values is a good idea because in that way the calculation of points is made 

automatically and fast. To do this and to do the pick up and place operations 

some PC-GUIs were developed. These PC-GUIs are one PC-GUI to interact 

with the laser sensor and another one to interact with the Motoman. 

 

 

4.1 Laser sensor control PC-GUI 

 

The laser sensor control PC-GUI is designed to fulfill three tasks. The first one 

is establish a connection with a network in order that other devices or remotely 

users can access to the laser sensor functions. The second one is to provide 

local users with enough control to configure the sensor data acquisition system. 

And the third one is allows the communication between the PC-GUI and the 

laser sensor device(Figure 4.1).  

 

 

Figure 4.1 Communication diagram 

 

a) Network Connection 

 

The communication with other devices is made by a server, which use 

Transmission Control Protocol (TCP), which is a protocol for internet 

communication. When a device (client) connects to the laser sensor program, 

the client can access to the laser functions sending some commands that are 

listening by the server. These commands are the following: 

Sensor PC-GUI 

External 

devices or 

clients 

Laser sensor 

User 



- Development of Graphical User Ingterfaces - 

 48 

 

- Sensor_Distance 

- Find_Object  

- Open_port  

- Close_port  

 

The first and second commands are used to get direct information from the 

laser sensor. The first command asks for the actual value of the sensor, so 

when this command is received, the PC-GUI sends a signal to the sensor to 

measure the distance to the object. When the distance measurement value is 

received from the laser sensor, this value is transmitted to the client whom asks 

for it.  

 

The second command asks the sensor to starts a search procedure. This 

command has two possible answers from the sensor, the first is a confirmation 

telling that the object was found and the second is an error message telling that 

the laser sensor is off. 

The third and four commands are used to control the state of the serial port of 

the PC where the laser sensor is connected.  

 

  

b) User control interface 

 

The user interface provides the user with control over the laser sensor software 

and the laser sensor functions. Also shows to the user the information that is 

received and transmitted to other clients and the information that is received 

and transmitted to the laser sensor (see Figure 4.2, next page). 

 

The user can control three things. The first is the server. The user can start or 

close the server connection and change the server port number. The second is 

the serial CommPort. As with the server case the CommPort can be closed or 

opened and also selected from a list of CommPorts. The third thing is the laser 

sensor. From the user interface the sensor distance can be asked and a search 

procedure can be started.  There are two things that can be configured from 

here, the minimum distance that has to be between the sensor and objects 

before the sensor can say that an object was found, and a distance factor that 

helps to find the real value of the distance measurement. This factor is 

important because the sensor gives a digital value between 0 and 255 and that 

value has to be converted to distance.  

 

 



- Development of Graphical User Ingterfaces - 

 49 

 

Figure 4.2 Laser Sensor Graphical User Interface 

 

 

c) PC-Sensor communication 

 

The communication between the laser sensor and the PC is made by serial 

communication which uses the protocol RS232 and the following configuration: 

- 9600 bps 

- 8 data bits 

- 1 stop bits 

- no parity. 

 

As external clients communicate with the sensor software with commands, the 

program communicates with the laser sensor also with commands. However the 

commands are sent as hexadecimal values and not as strings. There are three 

commands that the program can send to the sensor. 

- Set distance value 

- Find object 

- Distance to the object 

 

Sensor Control Server Control Serial port Control 

Information center 

Server status Serial status 



- Development of Graphical User Ingterfaces - 

 50 

The first command is used to set the distance for search procedures. The 

second one starts a search procedure. And the last one asks for the distance 

between the sensor and any object. When the sensor answers to any of these 

commands the program receives hexadecimal data which has to be interpreted 

before the information can be displayed to the user or send to any client 

connected to the sensor program. 

 

 

Code level view 

 

The PC-GUI was developed with Object Orientated Programming and the 

software used to write the program code is Qt Creator.  

 

For an easy develop and understanding the program is divided in three object 

classes: 

- main class 

- serialthread class 

- lasersensor class 

 

 

Figure 4.3 Program structure 

 

The main class is used to start the laser sensor class and to show the graphical 

interface (see Figure 4.3). 

 

The serialthread is a compilation or functions used to gain access of the serial 

port. The purpose of this class is to give to the serial port the properties and 

functionality of an object. This class has six attributes, which define the 



- Development of Graphical User Ingterfaces - 

 51 

configuration of the serial port comm, and twelve methods, which allow the user 

to use the serial port (see Figure 4.4). 

 

 

Figure 4.4 Serialthread class 

 

The laser sensor class is designed to allow the communication with the user, 

sensor and external clients. It has five attributes and fifteen methods (see 

Figure 4.5, next page).  To do that four methods are designed to manage the 

serial port comm. (sendSerial, serialReadyRead, OpenPort_clicked, ClosePort_clicked), 

five to manage the server (sendTcp, tcpReadyRead, serverNewConnection, 

StartServer_clicked, CloseServer_clicked), one two manage the numerical values that 

will send to external clients (ChangeRealDistance), three to manage the sensor 

(SensorDistance_clicked, FindObject_clicked, SetDistance_clicked()), one to create the 

laser sensor object (LaserSensor) and one to destroy it when the applications is 

ended (~LaserSensor). 

 

To access to the serial port the sensor class create an internal object using the 

serialthread class. To communicate with external clients the laser sensor class 

creates a server object. The communication with the user is made by buttons 

that calls some methods of the class, and displays that show to the user the 

information received or transmitted by the server or by the PortComm.  

 

serialthread 

+ Baud rate 

+ Flow control 
+ Parity  

+ Data bits 

+ Stop bits 

+ Port Name 

+ setBaudRate() 

+ setFlowControl() 

+ setParity() 

+ setDataBits() 

+ setStopBits() 

+ setPortName() 

+ open() 

+ start() 

+ isOpen() 

+ close() 

+ write() 

+ read() 

Class name 

Attributes 

Methods 



- Development of Graphical User Ingterfaces - 

 52 

 

Figure 4.5 lasersensor class 

 

 

4.2 Robot control PC-GUI classes 

 

The robot PC-GUI is a program developed in a previous project also part of the 

Socrades project. Because of that in this chapter just the changes made to the 

original program are going to be explained. The purpose of the program is to 

allow external clients to communicate with the Motoman robot (see Figure 4.6, 

next page). As in the laser sensor program, the communication between the 

robot PC-GUI and other devices is made by Transmission Control Protocol 

(TCP).  

 

The PC-GUI  consists in two parts. The first part is a graphical user interface 

(see figure 4.7, next page) which shows to the user the information received 

and transmitted by the PC-GUI to the Motoman and to the clients connected to 

it.  The second part is a collection of classes which manage all the information 

received y transmitted by the program and which also manage the behavior of 

the Motoman robot. In this part is where the Motoman class is located, which is 

the interest object of this chapter. 

lasersensor 

- portstatus 

- status 
+ serverport  

+ commport 

- clientrequest 

+LaserSensor() 

+ ~LaserSensor() 

- sendSerial() 

- sendTcp() 

- serialReadyRead() 

- serverNewConnection() 

- tcpReadyRead() 

+ ChangeRealDistance() 

+ SensorDistance_clicked() 

+ FindObject_clicked() 

+ OpenPort_clicked() 

+ ClosePort_clicked() 

+ StartServer_clicked() 

+ CloseServer_clicked() 

+ SetDistance_clicked() 

 

Class name 

Attributes 

Methods 



- Development of Graphical User Ingterfaces - 

 53 

 

Figure 4.6 Communication diagram 

 

 

Figure 4.7 Motoman Graphical User Interface 

 

In the original version the Motoman class fulfills the tasks of create a connection 

between the PC-GUI and the Motoman Server, and the task of calculate the 

joint angles for any point (X ,Y, Z). 

 

The new version of the Motoman class also has the purpose of create a 

connection with the Motoman server and the calculation of joint angles. 

However in order to allow the Motoman to develop pick and place operations 

Motoman PC-GUI 

External 

devices or 

clients 

Motoman 

User 



- Development of Graphical User Ingterfaces - 

 54 

some changes were make to the original class. These changes were the 

creation of two more classes and a restructuration of the functions of the 

Motoman class. The new classes are: 

- motomanpickdrop 

- motomanlinecurve 

 

The first class has the functions needed to develop the pick and place 

operations in a modular and smart way. These means that these functions can 

be accessed for an external client with out have to give any type of especial 

information to the robot. The second class fulfills the task of calculate the join 

angles for point-to-point movement and for linear paths. 

 

With the new restructuration of the Motoman class its main functions change 

from calculation tasks to management tasks.  These management tasks are to 

determine what have to do the robot, move point-to-point, move following a 

path, search for an object of surface or just ask for the position of the 

Motoman’s tool. 

 

The new object relation for the Motoman class is showed in figure 4.8.  

 

 
Figure 4.8 Motoman object structure  

 

The new design of the motoman class has nine attributes and seven methods 

(see figure 4.9). 

 



- Development of Graphical User Ingterfaces - 

 55 

 

 
Figure 4.9 Motoman class 

 

Figure 4.10 and Figure 4.11 shows the attributes and the methods of the new 

classes motomanpickdrop and motomanlinecurve. 

 

 
Figure 4.10 motomanpickdrop class 

motoman 

+ Velocity 

+ Distance 

+ Angles 
+ Position 

+ ReachPosition 

+ AnglesRead 

+ IDdevice 

- commpoint 

+ stop  

+ Motoman() 

+ DeviceMan2this() 

- sendpointcommand() 

- createcommpoints() 

- timeout() 

- readSocket() 

- Socket2this() 

Class name 

Attributes 

Methods 

motomanpickdrop 

+ Zbegin 
+ Zend 

+ xactual  

+ yactual 
+ zactula 

Zobject 

+ sfor 

 
+ motomanpickdrop() 

+ droop_object() 

+ move_back_to_objectXY() 

+ take_object() 

+ move_find_object() 

- actualpos_to_xyz() 

- find_Z_values() 

Class name 

Attributes 

Methods 



- Development of Graphical User Ingterfaces - 

 56 

 
Figure 4.11 motomanlinecurve class 

 

As with the laser sensor program the Motoman PC-GUI also communicates with 

other devices using commands. The commands related to the Motoman class 

are divided in three categories, robot status, move to point, and pick & place. 

The commands are the following ones: 

 

Robot status: 

- GetAngles() 

- GetPosition() 

- SetVelocity(velocity) 

- GetVelocity() 

 

Move to point: 

- MoveStart 

- RobotStop 

- MoveAbs(X,Y,Z) 

- MoveLinAbs(X,Y,Z) 

- MoveRel(X’,Y’,Z’) 

- MoveLinRel(X’,Y’,Z’) 

 

motomanlinecurve 

+ thetaangles 

+ alphaangles 
+ bethaangles 

+ gammaangles 

+ zethaangles 
+ ifor 

+ dfor 

+ vel 

+ qstr 

+ ReachAngles 

 
+ motomanlinecurve() 

+ calculate() 

+ movecommand() 

+ calculatestrightline() 

+ linepoints() 

- equationone() 

- eqautiontwo() 

- equationlone() 

- equationltwo() 

- equationlthree() 

- equationlfour() 

Class name 

Attributes 

Methods 



- Development of Graphical User Ingterfaces - 

 57 

Pick & place: 

- MoveZFIND 

- MoveZTAKE 

- MoveZDROP 

- MoveZBACK 

 

In the first group of commands, the first command transmits to the client the 

value of the robot joint angles ( α, β, ε, γ, θ, ζ). The second one transmits the 

coordinates X, Y and Z of the tool’s position. The third command transmits the 

velocity that the robot uses to move. And the fourth one change the value of the 

velocity with the value sent by the client, i.e. “SetVelocity(5)” where “5”  is the 

need robot’s velocity. 

 

For the second group, the first command moves the robot to an initial position. 

The second one allows stopping the robot when it is moving following a path. 

The third moves the robot to Point two ( X2, Y2 ,Z2) using point to point. The 

fourth one moves the robot from the Point one (X1, Y1, Z1) to the Point two (X2, 

Y2, Z2) following a linear path. The fifth command moves the robot from the 

Point one (X1, Y1, Z1) to the relative coordinates (X’, Y’, Z’) using point-to-point, 

i.e. the actual position of the robot is P1(500, 200, 300) when the command 

“MoveRel(100,-50,100)” arrives the robot will move to the new position P2(600, 

150, 400). The sixth command fulfills the same task as the fifth command 

however instead of moving point-to-point the robot will move following a linear 

path. 

 

The third group are commands for pick and place operations. All the commands 

are designed to make the robot moves following linear paths. The first 

command makes the robot moves down until the maximal range of 

displacement is reach or an object or surface is found. This command fulfills the 

step “search for an object” of the pick and place procedures. The second 

command moves the robot the correct distance to pick an object. The third 

command moves the robot the correct distance to place an object. The fourth 

one moves the robot up until the top position is reached, this position is 

predefined as Z = 200mm. The distance that will move the robot to take an 

object is the distance between the robot’s tool and the object plus the height of 

the object (50mm) and the distance the robot will move to place and object is 

just the distance between the robot’s tool and the object or surface where the 

object already picked is going to be placed.  

 

Note, to get the best result when the pick and place commands are used is 

highly recommended that the laser sensor is also working and connected to the 



- Development of Graphical User Ingterfaces - 

 58 

client that is managing the procedure, that is because the laser sensor is the 

device which will know when an object was found, and also is the device which 

measures the distance between the robot’ tool and the objects.  

 



- Microcontroller system for sensor data acdqusition, 

interpretation and remote commanding - 

 59 

 

5 Microcontroller system for sensor data acquisition, 

   interpretation and remote commanding 

 

The second part of the control system is the microcontroller system for sensor 

data acquisition. The microcontroller system is divided in two parts the sensor 

control program and the sensor mounting. The first part consist in develop a 

microcontroller program capable of control the sensor, read the sensor and 

communicate with the PC-GUI. The second part consists in mounting the 

sensor and to design the control circuits. 

 

5.1 Sensor control program (microcontroller) 

 

The microcontroller has three main tasks: 

- Reads the sensor distance 

- Watch over the sensor on/off state 

- And communicate with the PC-Gui. 

 

The communication between the PC-GUI and the microcontroller uses the 

protocol RS232.  The communication purpose is transmits commands from the 

PC-GUI to the microcontroller and the sensor data from the microcontroller to 

the PC-GUI. 

The commands send by the PC-GUI have the function of find objects, measure 

the distance between the sensor and the robot, and set the distance for find 

objects.  

 

For solve this tasks using the microcontroller, three tools were use, USART 

(communication), ADC (distance measurement) and external interrupts (sensor 

state). Also two different programs were written, the first program fulfills the 

main tasks (control and communication) and the second program runs the 

watch over operation. 

 

Main microcontroller program 

 

The main program is divided in five parts: 

- Microcontroller configuration 

- PC-GUI commands reading 

- Sensor reading (find object and distance measurement) 

- Watch over the sensor state (only start the operation) 

- And send data to the PC-GUI 



- Microcontroller system for sensor data acdqusition, 

interpretation and remote commanding - 

 60 

 

Microcontroller configuration: 

The microcontroller configuration part configures the USART, the ADC, the 

interrupts and the microcontroller PIN ports. 

 

Port configuration:  

The ATMEGA16 has 4 output/input ports, the project application uses 

different pins from the 4 ports however just 3 of the ports needs to be 

configure. These ports are PINA, PINB and PINC. And the configuration 

for these ports is the following: 

PORTA: All the pins are set as inputs 

PORTB: All the pins are set as inputs 

PORTC: PINC4 is set as input and the rest are set as outputs 

 

USART configuration:  

The USART is set to 9600 bps, 8 data bits, 1 stop bits and no parity. The 

receiver, transmitter and receiver interrupts are enabled. 

 

ADC configuration: 

The ADC is set for run in one lecture mode, and the lecture is left adjust, 

this means that the 10 bits resolution only the 8 more significant are take 

in count for calculation effects. Only channel 0 is used. 

 

Interrupts configuration: 

There are two interrupts used in the program, the external interrupt INT2 

and the USART receiver interrupt. The first one is configured as Rising-

edge and is used just when the find object operation is running. The 

second interrupt is configured to listen all the time to the commands 

sends by the PC-GUI.  

  

Code to configure the Microcontroller 
 

void configure() 

 { 

 DDRA=0x00; // PortA as input 

 PORTA=0xFF; 

 DDRC=0b11101111; // PortC as output and PINC4 as input 

 PORTC=0b00010000; 

 DDRB=0X00; // PortB as input 

 PORTB=0XFF; 

 adcinic(0); // function for configure the ADC 

 Init_USART(); // USART configuration 

/* GICR   |=(1<<5); // Enables the External Interrupt 



- Microcontroller system for sensor data acdqusition, 

interpretation and remote commanding - 

 61 

 MCUCSR |=(1<<6); // Rising edge */ 

 SREG   |=(1<<7); // Enables Global Interrupts (bit7 is I) and start the USART interrupt 

 } 

 

PC-GUI commands reading: 

The program which is loaded in the microcontroller number 1 depends 

completely from the instructions send by the PC-GUI, in other words, the 

microcontroller process the sensor data only when the PC-GUI asks it. Because 

of that the command reading part is one of the central points of the program. 

The microcontroller has to be able to listen in any moment the information 

transmitted by the PC-GUI and also must understand any command send to it. 

There are three main commands send by the PC-GUI, “set distance value”, 

“find object” and “distance to the object”, these commands are sent as 

hexadecimal values to the microcontroller, so when a command arrives the 

USART interruption triggers and save the value in a variable called “request”, 

then a special function “command()” deciphers the information and tells to the 

microcontroller what to do. 

 

The function structure is the next one: 

 

Funtion for read the commands 

void command() 

 { 

 //Sets the distance value for find an object 

 if((request!=4)&&(request!=1)&&(request!=3)&&(request!=6)&&(request!=0)) 

  { 

  limit=request; //The limit value becomes the value send by the PC-GUI 

  object=limit; 

  sensoranswer(); 

  } 

//Reads the distance between and object and the sensor 

 if((PINA & (1<<PINA6))||(request==4)) 

  { 

  object=sensor(); 

  sensoranswer();  

  } 

//Find Object 

 if((PINA & (1<<PINA7))||(request==1)) 

  { 

  find_object(); 

  } 

 } 

 

 

 



- Microcontroller system for sensor data acdqusition, 

interpretation and remote commanding - 

 62 

 

Sensor reading (find object and distance measurement): 

The sensor reading is basically done with the microcontroller’s ADC, the ADC 

reads the sensor voltage signal and converts this voltage value to a digital 

value. When the reading is done, the program determines the distance between 

the object and the sensor. This value can go from 0 to 255, 255 is the largest 

distance a 0 is the shorter one, however a value 0 can also means that the 

sensor is working out of its range. 

 

Because of this a work range was set. This range goes from 255 to 21, then any 

value below 21 means that the sensor is working out of its range. After the 

distance is measured the digital value is sent to the PC-GUI. 

 

For find and object multiple distance measurements are done. The process 

consists in a loop which compares the distance measurement with the value set 

for find the object.  

 

The loop ends when both values are equal meaning that and object has been 

found. Finally a message of “Object find” is sent to the PC-GUI. 

 

The code for the loop is the next one: 

void find_object() 

 { 

.. 

//Comparation loop between the distance measurement and the set value 

while((value!=limit)) 

  { 

  //distance measurement 

  ADCSRA|=(1<<ADSC); 

  loop_until_bit_is_clear(ADCSRA,ADSC); 

  value=ADCH; 

  }   

.. 

}  

 

Watch over the sensor state (only start the operation): 

 

Know when the sensor is “on” or is “off” is critical when a “find object” operation 

is in process, when an object is found the microcontroller sends a signal which 

is going to stop the movement of the robot, then if for any possible reason the 

sensor is “off” when a “find object” operation is in process the microcontroller 

will never send the stop signal causing that the robot could result damage. To 

avoid this situation a special function was implemented using the 



- Microcontroller system for sensor data acdqusition, 

interpretation and remote commanding - 

 63 

microcontroller. This function has the purpose of monitor the sensor’s state 

when a “find object” process is running. Then if in any moment the sensor stops 

working the microcontroller sends a signal to stop the robot. 

 

This special function was implemented using the ADC and consist in read all 

the time the sensor’s signal. However as was explained when a “find object” 

operation is in process the ADC is running, so for avoid any problem between 

the sensor reading and the sensor monitoring, the task was divided in two 

microcontrollers, the first one just start the monitoring process and the second 

one executes the process. The interaction between these ones is made using 

the external interrupts. So, to start the process the first microcontroller sends a 

signal of 5 volts which triggers the external interrupt in the second 

microcontroller. When the search process ends with any problem and the object 

is found the microcontroller sends a signal of 0 V which also triggers the 

external interrupt and stops the monitoring function. But if there is any problem 

while the search process still running, the second microcontroller sends a signal 

of 5V which triggers the external interrupt in the first microcontroller, so the 

microcontroller ends the search process and sends a stop signal to the PC-GUI. 

 

Sending data to the PC-GUI: 

Send information from the Microcontroller to the PC-GUI is an important task 

because is how the sensor information is transmitted to the Robot. The 

information is sent using simple hexadecimal values. The code use to do it is 

the next: 

 

//Function for send bytes 

void SendByte(unsigned char u8Data) 

{ 

// Wait if a byte is being transmitted 

while((UCSRA&(1<<UDRE)) == 0); 

// Transmit data 

UDR = u8Data;  

} 

 

Auxiliary Microcontroller Program 

 

The second program where the monitor action is made, consists in two parts 

- Microcontroller configuration 

- Watch over the sensor state 

 

 

 



- Microcontroller system for sensor data acdqusition, 

interpretation and remote commanding - 

 64 

Microcontroller configuration: 

The configuration part configures the ADC, the interrupts and the 

microcontroller PIN ports. 

 

Port configuration: 

The configuration for the microcontroller ports is the following: 

PORTA: All the pins are set as inputs 

PORTB: All the pins are set as inputs 

PORTC: All the pins are set as outputs 

 

ADC configuration: 

The ADC is set for run in one lecture mode, the lecture is left adjust, this 

means that the 10 bits resolution only the 8 more significant are take in 

count for calculation effects. Two channels are used, channel 0 and 

channel 1. 

 

Interrupts configuration: 

Only the external interrupt INT2 is used.  However this one is configure 

according to the search step, when is waiting for start the watch over 

process, the external interrupt is configure as rising edge, so any change 

from 0V to 5V will trigger the interrupt. Otherwise when the watch over 

process is running the INT2 is configure as falling edge, and then any 

change from 5V to 0V will trigger the interrupt. 

 

Watch over the sensor state: 

The part that the second microcontroller redeems is the direct watch over 

operation. Because the sensor signal goes between -10V and 10V, and the 

microcontroller can read only positive signals; the signal needs to be adequate. 

This problem was solved dividing the sensor signal in two parts, a positive part 

and a negative part. Then in order to can watch over the completed sensor 

signal two channels of the ADC were used. 

 

Now, to know if the sensor is working or not, is to watch if in any moment the 

signal becomes 0V. To know that the microcontroller read both signal parts, 

when both of them have at the same time a value of 0V is possible to know that 

the sensor is no working.  

 

 

 

 



- Microcontroller system for sensor data acdqusition, 

interpretation and remote commanding - 

 65 

5.2 Sensor Mounting  

 

After design the control program a new task was found, integrate the sensor 

with the robot.  This task was divided in two parts, the first part is the 

mechanical solution and the second part is the electronic solution. 

 

The mechanical solution tells how to mount the sensor over the robot. And the 

electronic solution tells how to supply electrical power to the sensor and how to 

read the sensor’s signal. 

 

Mechanical mounting 

 

For the mechanical problem the best position to mount the sensor is over the 

gripper, the reason is that the gripper is the critical robot’s part that we want to 

control using the laser sensor, also is the nearest part to the objects that we 

want to pick-up or place. As the gripper is the nearest part to the objects we 

avoid one important problem, the sensor range. The laser sensor has a 

detecting range of  5cm to 14 cm so is very important that the object, that is 

going to be found, is inside this range, for this sake the sensor works with a 

maximal detecting distance of  10cm  and a minimal detecting distance of 

5.5cm. Looking at the gripper shape we found that there is no a simple way for 

mounting the sensor over the gripper. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.1 Gripper 

 



- Microcontroller system for sensor data acdqusition, 

interpretation and remote commanding - 

 66 

For this reason we have to design a new piece that fulfills the function of joining 

the sensor with the gripper. In order to design the new piece we have to think in 

the next restrains: 

1. Sensor detection range 

2. sensor’s dimensions 

3. angle of the sensor 

4. Gripper’s dimensions 

5. gripper’s shape 

6. the sensor has to look for the object middle point 

7. Object high 

8. gripper and sensor safety 

9. easy to fabricate 

 

The first step was to take the dimensions and the shape of the gripper. Then the 

main obstructions between the sensor and the object were found. The mains 

obstacles are the gripper’s fingers, so the position of the sensor has to avoid all 

the time any possible interference of the gripper’s fingers.  

 

 

 

 

 

 

 

 

Figure 5.2 a) Shape of the upper part of the gripper, 

b) Shape off the gripper with fingers. 

 

Now we have to think a shape for our piece. First of all, it has to have the shape 

of the gripper. The reason is for guaranties that our piece won’t move out of 

place when the robot is moving. However as the gripper shape is a complicate 

one we decide to find a simple shape. 

 

 

 

 

 

 

 

 

Figure 5.3 Sensor support, upper view 

Finger 

a b 

External arm 

Part A0 Part B0 



- Microcontroller system for sensor data acdqusition, 

interpretation and remote commanding - 

 67 

 

 

The design of the piece is made of two parts, which are going to be joined with 

screws. Also the sensor is going to be fixed in the external arm, which one is 

pointing to the middle point off the gripper (see Figure 5.3). However this design 

has two problems, is complicate to fabricate and due to the shape of the gripper 

is probably that with the time it presents a small movement when the robot 

moves, for this reason we choose to change the design. 

 

For get a piece easier of fabricate the new design consists in a piece made of 

four parts. Of these four parts, three parts correspond to “Part A” and the other 

one corresponds to “Part B”. 

 

After that the “Part B” will melt with a “Part A” making the “Part C”. In that way 

our final piece is made of two “Part A” and one “Part C” (see Figure 5.4). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.4 Superior view of: a) Part A, b)Part B, c)Part C,  

d) Sensor Support final design Top View 

 

As the preview design the three “Part A” are going to be joined with screws, 

however the difference between this new design and the old one is that the new 

design is made to fix perfectly with the gripper. This is because the screws help 

to adjust the piece to the gripper. The sensor is going to be mounted in the 

external arm. Until now the shape of the piece has been design taking care of 

not violate our restrains (easy to fabricate, gripper shape, the sensor looking for 

the object middle point and gripper dimensions), however our piece is not 

completed design yet. In order to complete the last design step, we are going to 

a b 

d 

c 



- Microcontroller system for sensor data acdqusition, 

interpretation and remote commanding - 

 68 

base in four main restrains (sensor detection range, object high, gripper shape 

and dimensions). 

Knowing the maximal sensor range (14 cm), the object high (5cm), gripper 

shape, the gripper high (6.11cm) and a maximal center distance between 

objects (12.5cm), we design a practical system that allows us to find the best 

inclination angle for the sensor. Also with this system the dimensions for the 

Part B were found.  The system has the finality to show the work area of the 

sensor (see Figure 5.5). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.5 Sensor distance range.  

 

Finally our pieces look like: 

   

Figure 5.6a and 5.6b  Part A  

Object A Object B 

Object C 

Gripper 

Laser 

Beam 

Sensor 

Sensor support 

a b 



- Microcontroller system for sensor data acdqusition, 

interpretation and remote commanding - 

 69 

 

   
Figure 5.7 Part C, a) Behind view, b) lateral view and c) frontal view. 

 

   

   

Figure 5.8 Final part, a) before final assembling, b) frontal view,  

c) top view and d) lateral view.  

c d 

a b 

b  c a 



- Microcontroller system for sensor data acdqusition, 

interpretation and remote commanding - 

 70 

 

 

 

     

 

Figure 5.9 Sensor Mounting, a) part C and laser sensor before mounting, 

b)sensor mounted, behind view and c) sensor mounted, frontal view. 

 

 

   
Figure 5.10  Final mounting of the sensor with the gripper, a) lateral view and  

b) bottom view. 

 

 

 

 

 

a b 

a b c 



- Microcontroller system for sensor data acdqusition, 

interpretation and remote commanding - 

 71 

 

 

Electronic design 

 

The second part of using the sensor is “How to read it?” and “How to watch over 

it?”, for this action a embedded system was developed. The embedded system 

has two basic parts, a microcontroller and the laser sensor. 

 

The purpose of the laser sensor is to measure the distance between the gripper 

and the objects. 

 

The purpose of the microcontroller is to interpret the laser sensor measures, 

send them to a Pc-GUI and watch over the laser sensor. 

 

Then the electronic design is centered in create an electronic circuit that joins 

the microcontroller and the laser sensor. The circuit needs to provide power 

supply to all the parts and a way to the microcontroller for control the laser 

sensor.  

 

The main point of or designs is how to couple the laser sensor’s signal with the 

microcontroller. The laser sensor gives an analog signal that goes between 10V 

and -10V (see Figure 5.11). The microcontroller can read analog signals 

between 0V and 5V.   

 

 

 

 

 

 

 

 

 

 

 

Figure 5.11 Laser Signal 

 

The best way of coupling the laser sensor and the microcontroller is modifying 

the signal to read. We have two ways of modify it. The first option is to add a 

level of 10V to the laser’s signal, so the signal is always positive and then just 

attenuate it. 

 

-10V 

10V 

0V 



- Microcontroller system for sensor data acdqusition, 

interpretation and remote commanding - 

 72 

 

 

The second option is to cut out the negative part of the laser signal and then 

attenuate the new signal.  For both options the final signal always has to be 

between 5V and 0V, so our range of 5V is going to give us how many times the 

laser’s signal has to be attenuated. 

 

For select and option the advantages and disadvantages of each one are going 

to be analyze. The main advantage of the first option is that we can read the 

laser sensor’s signal in its complete shape and range but the main 

disadvantage is the way to add the 10V to the signal, this operation uses 

OPAMs, and the OPAMs for an adding operation of 10V to a signal of 10V need 

a power supply of -24V and 24V, so the circuit becomes more complicate. The 

second option has the advantage of be simple to apply. The only thing need to 

cut the signal is a DIODE, however the negative part of the signal is going to be 

lost, so is impossible to read the Laser Sensor during all its range.   

 

As we want a circuit simple of make the option would be the second, however 

losing control of the Laser Sensor in any moment isn’t an option, so the first 

option would be the option to choose.  Now there is another factor that can be 

considered, when the laser’s signal provides the system with important control 

information. In figure 5.11 is possible to watch the laser sensor range and 

understand that the most critical points for the measurement are in the far point 

to the Sensor.  This point also corresponds to the higher value in the laser 

sensor’s signal.   

 

So, for or control operations just the higher values of the signal are important, 

and as this part of the curve doesn’t lost when we apply the second option, then 

is possible to choose the second way to couple the signal. 

  

 

 

 

 

 

 

 

 

 

 

Figure 5.12 Signal to read with the Microcontroller 

  0V 

  4 V 



- Microcontroller system for sensor data acdqusition, 

interpretation and remote commanding - 

 73 

 

 

Then, applying the second option, the signal that is going to be read with the 

microcontroller is the one showed in Figure 5.12 This signal is created using a 

DIODE and attenuate using a voltage divider. The voltage divider consist in two 

resistors one of 3KΩ and another one of 2KΩ. So with these values we have a 

final signal between 0V and 4V.  

 

Now, the signal is ready to be interpreted by the microcontroller. This task is 

fulfilled with the ADC in the microcontroller. So the signal is connected to the 

microcontroller’s “PINA0”. 

 

Once the laser sensor’s signal is coupled with the microcontroller, the third task 

of the microcontroller “How to watch over the laser sensor” needs to be fulfilled. 

The only way to watch over the laser sensor is watching over the laser sensor’s 

signal, so the laser sensor signal needs to be read all the time or at least when 

a critical procedure is in process.    

 

This task is also solved using the ADC in the microcontroller; however this time 

the complete shape of the signal needs to be read. The positive part of the 

signal is already available so just the negative part of the signal is needed for 

get the complete signal of the laser sensor, to get it another DIODE is used, this 

one cuts out the laser sensor’s signal positive part. Now the signal is attenuate 

in the range of 0V and -5V. 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.13 Negative part of the laser’s signal after attenuation 

 

The microcontroller just can read positive signals so the negative signal is 

inverted using an OPAM with negative gain.  As the signal to multiply with the 

OPAM is a small one is possible to use a voltage supply of 5V and -5V.  

 

-1V 

  0V 



- Microcontroller system for sensor data acdqusition, 

interpretation and remote commanding - 

 74 

 

 

 

 

 

 

 

 

 

 

Figure 5.14 Final Signal 

 

The new final signal is the one showed in Figure 5.14.  With these two signals is 

possible to have a total control of the laser sensor. In Figure 5.15 and 5.16 are 

showed the circuits used for coupling the signals. The circuit showed in figure 

5.15 split the signal in positive and negative part and the circuit showed in figure 

5.16 rectifies the negative part. 

 

 

 

 

 

 

 

 

 

 

Figure 5.15 Circuit for cut and attenuate the signal of the laser sensor 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.16 Inverter circuit 

 

0 V 

1 V 



- Microcontroller system for sensor data acdqusition, 

interpretation and remote commanding - 

 75 

 

Now, the figure 5.17 shows the control circuit. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.17 Control Circuit 

 

 

 

 

 

 

 

 

 

 

Figure 5.18 Negative source circuit 

 

Finally there is one circuit more needed, one circuit for coupling the computer 

serial port with the microcontroller serial port (USART), for this task the circuit 

MAX232 is used, the typical connection is showed in figure 5.19 (next page). 

 

 

 

 

 

 



- Microcontroller system for sensor data acdqusition, 

interpretation and remote commanding - 

 76 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.19 RS232 coupling circuit 

 

The microcontroller’s pin TX is connected to MAX232 pin 11 and the 

microcontroller’s pin RX is connected to MAX232 pin 12. The computer’s TX is 

connected to MAX232 pin 13 and the computer’s RX is connected to MAX232 

pin 14. 

 

The components needed for make all the circuits are: 

 Control circuit 

2 Microcontroller ATMEGA16 

6 Leds 

9 Resistors 330Ω 

1 Voltage Regulator LM7805CT 

1 Voltage RegulatorLM7905CT 

1 Diode 1N4001 

2 Push Button 

 Signal circuit 

1 OPAM LM471 

2 Diode 1N4007 

1 Resistor 3KΩ 

1 Resistor 2KΩ 

4 Resistor 1KΩ 

 RS232 coupling circuit 

5 Capacitor 1µF 

1 MAX232 



- Functional tests and evaluation of the system performance - 

 77 

6 Functional tests and evaluation of the system 

    performance 

 

6.1 Tests 

 

Until this moment everything has been a theoretical approach with out 

validation, so to demonstrate that the approach develop during the previous 

chapters to this one fulfills the objective of “pick and place objects with out 

explicit programming by networking collaboration of a robot and interpreted 

sensors” some test were made. The test has the purpose of check the correct 

performance of the laser sensor, the correct performance of the Motoman and 

finally the correct performance of the complete system when both devices 

collaborate between them to pick and place objects. 

 

6.1.1 Laser Sensor 

 

To verify the correct performance of the system relate to the laser sensor the 

devices shows in Table 6.1 were tested in the points also listed in Table 6.1. 

 

Device Point to test 

Program 

Fuse bits Configuration 

Serial Communication 

Port Read 

Microcontroller 
Atmega16 

External Interrupts 

Output Signal 
Laser Sensor 

Range of measurement 

Server control 

PortComm control PC-GUI 

Interface control 

 

Table 6.1 Laser sensor tests 

 

The Program and Fuse bits configuration of the microcontroller first were tested 

with the AVR Studio software, when a program is been uploaded to any 

microcontroller the software allows to check if the program was correctly upload 

and check if the fuse bits configuration is correct. In that test the two point did 

not have any problem.  

 

To test the Port Read, External Interrupts and the self program, an interface 

with buttons to simulate signals and LEDs to show the behavior of the 

microcontroller were designed. The serial communication were tested sending 



- Functional tests and evaluation of the system performance - 

 78 

some hexadecimals values from a PC to the microcontroller and then reading in 

the PC the data arrived from the microcontroller. This test was made with the 

laser sensor PC-GUI.    

 

All of these test showed a correct performance, which can be appreciate in the 

final test of this chapter (see point 6.2) 

 

The test related to the PC-GUI are all test of communication, the test consisted 

in connect external clients with the PC-GUI and then send commands in order 

to test the communication, to do this the PC-GUI was used as a mirror, so any 

message that were received was sent back to the device whom sent it. The 

interface test consisted in verify that when the user interacted with the program 

the commands gave by him were done correctly, this part was tested using the 

debugger of the QT Creator software, because the debugger allows to follow 

the changes that happen in the program when this is running. The port Comm 

were tested sending hexadecimal values to the port and then reading these 

values with an oscilloscope. When the communication was correct the test was 

to connect the PC with the microcontroller.  At this point the first problem of the 

system happens. The problem was that the PC-GUI was not responding to the 

values sending by the microcontroller. That was because the PC-GUI needs to 

wait few milliseconds between sending and receiving data, and the 

microcontroller was transmitting information before the wait time ended. To 

solve this a delay of 250miliseconds was added to the microcontroller program 

before send any answer to the PC-GUI. 

 

The laser sensor tests are divided in two parts. The first part consisted in get 

the work range of the sensor, this range was between 4cm and 14cm. Which is 

the range of distance where the sensor gives a voltage value different from        

-10V. The second part was to check the precision and exactness of the sensor 

when is measuring a distance. To check this some readings were taken with the 

sensor suspended in different heights. Table 6.2 shows the result of this test.  

 

Point Measure 1 Measure 2 Measure 3 Measure 4 

P1 179 177 178 181 

P2 145 146 144 143 

P3 147 147 148 146 

P4 180 181 179 182 

P5 146 149 147 147 

Table 6.2 Sensor measurement repeatability 

 

From table 6.2 is possible to appreciate that the precision has a variation of 4 

digital units when a distance is measured 



- Functional tests and evaluation of the system performance - 

 79 

 

6.1.2 Motoman 

 

To verify the correct performance of the system relate to the Motoman robot the 

devices shows in Table 6.3 were tested in the points also listed in Table 6.3. 

 

Device Point to test 

Server connection 
Motoman 

Motoman commands 

Interface 

PC-GUI Server and client 
connection 

Calculation of joint 
angles 
point-to-point 
movement 

Motoman 
movement 

linear path  

Table 6.3 Software Tests 

 

The Motoman was the tested with a software client. The test consisted in send 

some commands and verifies that the Motoman did what has asked. The 

commands sent as part of the test are the following: 

- BscPMov MOVJ V 1 0 0 80500 60500 0 40500 0 0 0 0 0 0 0 

- BscIsLoc 0 

- BscIsLoc 1 

The first command is used to move the robot given the value of the joint angles. 

The second command asks for the value of the tool coordinates and the third 

command asks for the value of the robot joint angles.  

 

The PC-GUI was tested connecting some clients to the program and sending 

some command to it. This was another mirror test were the PC-GUI has to send 

back the commands received. 

 

The Motoman movement was tested just after the classes developed to move 

the robot where finished and included in the PC-GUI program. To test this point, 

three test were made. The first consist is ask the PC-GUI to calculate the joint 

angles for any point and then just display the value. This test gives answers as 

the next line: 

-119969 31953 9804 0 74436 -50939 

where the value of the joint angles is expressed in pulses. 

 

The second was to connect the PC-GUI to the Motoman server and send the 

values calculated in the test one. The purpose of this test was to verify that the 



- Functional tests and evaluation of the system performance - 

 80 

functions deduce in chapter three, calculates the joint angles for any point 

correctly. The next sequence of pictures (see Figure 6.1) shows the robot 

moving trough seven different points, from point P1 ( 0, -480, 224 ) to point     

P7 ( 0, -480, 494). 

 

 

Figure 6.1 Robot points sequence 

 

From the sequence is possible to see that the behavior of the robot corresponds 

with the behavior proposed in chapter three (see Figures 3.6 and 3.9 to 3.14).  

 

The third test was to check the calculation of linear paths and also the 

performance of the robot while moving in straight line.  To do this test a pen was 

(0, -480, 224) (0, -480, 274) (0, -480, 324) 

(0, -480, 374) (0, -480, 424) (0, -480, 474) 

(0, -480, 494) 



- Functional tests and evaluation of the system performance - 

 81 

attached to the robot’s tool (see Figure 6.2). The objective of this test is to use 

the robot to draw straight lines (see Figure 6.3). 

 

Figure 6.2 Drawing tool for the third test 

 

 

Figure 6.3 Lines drown by the robot 

 

Figure 6.3 shows a favorable result of the test, because is possible to 

appreciate straight lines between the points, this means that the procedure 

propose in chapter 3.2 to calculate linear paths works okay. Also means that the 

robot does not  have problems moving following linear paths. 

 

 

 

P1 

P8 

P2 

P4 

P5 

P6 

P7 

P9 

P3 

Drawing 

tool 



- Functional tests and evaluation of the system performance - 

 82 

6.2 Evaluation of the system Performance 

 

The final test is a complete test of the whole system. This test has the purpose 

of shows the performance of the collaboration between the laser sensor and the 

Motoman to do a pick and place operation following the procedures developed 

in chapter 3.1. 

 

To run this test an external client program will be used. The client has the 

function of manage the pick and place operation. Also to have a faster network 

the client is connected to the Motoman PC-GUI, and the Motoman PC-GUI is 

connected to the Laser sensor PC-GUI. In that way the client can control the 

whole system only sending commands to the Motoman PC-GUI (see Figure 

6.4) 

 

 

Figure 6.4 Structure of the test system 

 

In order to connect the Motoman PC-GUI with the laser sensor PC-GUI the 

program was modified one more time. The modification consists in the addition 

of a new class that allows the communication between both programs. The 

class is sensortrial and runs a client to connect with the laser sensor PC-GUI 

(see Figure 6.5 and 6.6). 

 

With this change the Motoman PC-GUI adds two new commands to control the 

laser sensor. Te commands are: 

- SensorFind, puts the laser sensor system in search mode. 

- SensorDistance, ask to the laser sensor to measure the distance. 

Client 

Motoman Laser sensor 

Motoman 

PC-GUI 

Laser Sensor 

PC-GUI 

Gripper 



- Functional tests and evaluation of the system performance - 

 83 

 

 

Figure 6.5 sensortrial class 

 

 
Figure 6.6 Relation between the Motoman object and the sensor object 

 

The test were run in two levels, software level and hardware level. The software 

level shows the performance of the PC-GUIs when they have to communicate 

with other devices. The hardware level shows the collaboration of the Motoman, 

the laser sensor and the gripper to move the objects. The test will be a piling 

operation, where the Object A will be placed on the object B. 

 

sensortrial 

- HostAddress 

- HostPortNumber 

- IDdevice  

- stop 

readSockSensor() 

SesorTrial() 

SockSensor2this() 

Class name 

Attributes 

Methods 



- Functional tests and evaluation of the system performance - 

 84 

Software level 

 

Before start the test the IP address and port of communication for each program 

has to be configured. The configuration for the programs is the following one: 

 

IP address: 127.0.0.1 , as all the PC-GUIs runs at the same PC the IP 

address is the same for all the devices. 

Motoman PC-GUI server address, port 2000 

Motoman server address, port 4000 

Laser sensor PC-GUI server address, port 3000 

Laser sensor PC-GUI serial port, port Comm1 

 

To know if the performance of the software communication is the correct one 

the information display on each PC-GUI is used (see Figures 6.7 , 6.8 and 6.9).  

 

And to follow the change of information (commands) between the net  the 

following color code is used: 

Commands send by the Client:,     blue  

Commands send by the Laser sensor,    green 

Commands send by the Laser sensor PC-GUI,  red 

Commands send by the Motoman,   green 

Commands send by the Motoman PC-GUI,  yellow 

 

 

 

Figure 6.7 Client communication data 

system: Looking up the host 
system: Waiting for the connection 

system: Connection established 

 
system:SEND:SensorFind 

Server:Sensor::SensorFind 

 

system:SEND:MoveZFIND 

system: READ 

Server:Motoman::Command Received MoveZFIND 

Server:Motoman::Is posible move to find 

system: READ 

Server:Sensor::ObjectFind 
Server:Motoman::Command Received RobotStop 

system: READ 

Server:Motoman::Lineal Path Sent 
system: READ 

Server:Motoman::Position Reached 

system: READ 
Server:Motoman::0.19,-470.06,334.71,0.00,0.00,179.92  

 

system:SEND:SensorDistance 

system: READ 

Server:Sensor::SensorDistance 

system: READ 

Server:Sensor::Distance:6.99972550096075 



- Functional tests and evaluation of the system performance - 

 85 

 

Figure 6.8 Motoman PC-GUI communication data 

 

 

Figure 6.9 Laser sensor PC-GUI communication data 

 

As is appreciate in Figure 6.7 the client stars sending the command 

“SensorFind” which triggers the begging of the pick process which is a 

interchange of commands between all the programs. Also the figures show that 

the flux of information is made following a logical way and that there are not 

confusion between the systems when the information is transmitted.  From this 

---------------------TCP----------------------- 

Server Started 

Server Close 

Server Started 

Client Connected 

IN : Find_Object 

OUT: Object_find 

IN : Sensor_Distance 

OUT: Distance: 6.99972550096075 

 

---------------------Serial----------------------- 
Port Open 

Port Closed 

Port Open 

OUT: � � 

Object_Find 

�OUT:  

Distance: 255 

Distance calculation: 6.99972550096075 

Default 

GUI::Conection OK 

GUI::Verifying the initial position 

GUI::Error: Unknown message:: -ERROR! puts -1 !  

GUI::Error: Trying to write to an unconnected device:Comm::Send::Motoman::Position Reached 

GUI::Position ask? 

GUI::Motoman::0.00,-470.03,199.99,0.00,0.00,180.00  

GUI::Error: Trying to write to an unconnected device:Comm::Send::Motoman::0.00,-

470.03,199.99,0.00,0.00,180.00  

GUI::SensorFind 

127.0.0.1:1104 
GUI::Error: Unknown message: SensorFind 

127.0.0.1:1104 

GUI::Error: Unknown message: SensorFind 
Default 

GUI::MoveZFIND 

127.0.0.1:1104 

GUI::Is posible move to find 

Default 

GUI::Sensor::Object_find 

Default 

GUI::RobotStop 

127.0.0.1:1104 

GUI::Error: Unknown message: RobotStop 

Default 

GUI::PathSend 
Default 

GUI::Position ask? 

127.0.0.1:1104 
GUI::Motoman::0.19,-470.06,334.71,0.00,0.00,179.92  

Default 

GUI::SensorDistance 

127.0.0.1:1104 

GUI::Error: Unknown message: SensorDistance 

Default 

GUI::Sensor::Distance: 6.99972550096075 



- Functional tests and evaluation of the system performance - 

 86 

result is possible to conclude that the PC-GUIs have a correct performance 

related to the network behavior.  

 

About the pick and place procedure performance the commands sent by the 

client were: 

 

SensorFind 

MoveZFIND 

SensorDistance 

MoveZTAKE 

CloseGripper 

MoveZBACK 

 

MoveRel(120, 0, 0) 

SensorFind 

MoveZFIND 

SensorDistance 

MoveZDROP 

OpenGripper 

MoveZBACK 

 

The first six commands fulfills the task or pick the object A, the remaining seven 

commands place the object A above the object B.  From this part is possible to 

see  that the only thing that the system needs to know for pick or place an 

object are the coordinates X and Y of the position where the object will be took 

or placed. 

 

 

 

 

Hardware level 

 

 

The hardware level is explained with the sequence showed in Figure 6.10(next 

page) and Figure 6.11 (page 90). 

 

 

 

 

 

 



- Functional tests and evaluation of the system performance - 

 87 

 

 

 

 

 

Figure 6.10 Piling process part A 

 

 

 

Searching object A 

Object A found, 

distance measurement Moving to take 

Moving to take Closing gripper Moving to top 

Moving to top Top reached Moving to X and Y 

of object B  

a 

A B 



- Functional tests and evaluation of the system performance - 

 88 

 

 

 

Figure 6.11Piling process part B 

 

In the complete sequence can be appreciate the different steps needed to pick 

and place and object. These steps are the same steps explained in chapter 3.1. 

The sequence is the direct result of the commands sent by the client device to 

Moving to top Operation complete 

Object B found, 

dsitance measurement Moving to place Opening gripper 

X and Y reached Searching object B Moving to X and Y 

of object B  

Top reached 

a 

A 

B A 

B 



- Functional tests and evaluation of the system performance - 

 89 

the Motoman PC-GUI and the collaboration between the Motoman, the laser 

sensor and the gripper. From the sequence is possible to say that the pick 

procedure and the collaboration of device at hardware level have a correct 

performance.  

 

 

So, considering the result of the test at software and hardware level the result is 

that the system has a correct performance when the Motoman system and laser 

sensor system collaborates to pick, place or pile objects. 

 

 



- Conclusions and Future Work - 

 90 

7 Conclusions and Future Work 

 

7.1 Conclusions 

 

Within this project it could be shown that is possible to develop handling 

procedures that do not need explicit programming. Also was showed that is 

possible to have different devices working together to do handling procedures 

with out have to develop specific software for each device in order to do the 

required task. This means that the software developed to control each device 

allows the device to be part of multiply systems with any need of change one 

single line of code. By example the laser sensor system with its two main 

functionalities “Detect object” and “Measure distance” can be used to avoid 

collisions using the “Detect object” function, or to reproduce surfaces using the 

“Measure distance” function. In the same way the Motoman with the 

functionality or move point-to-point and move following linear paths can be used 

to develop task like welding and filming. This is possible because the PC-GUIs 

related to the devices were designed to make the devices be part of a net and 

be access by TCP, which makes very easy the communication between 

devices, because there is not need to develop any type of communication 

protocol for the system. The second thing that makes easy the communication 

is the use of commands that allows the access to the services provide by each 

device in an easy way. 

 

The thing that makes the handling procedure developed really versatile is that 

the only data that has to be provided to the system which is managing the 

procedure are the coordinates X and Y where the objects to be taken are 

located, because the system will search the object using the Z axis. And that 

allows the robot to pick objects even from batches.  

 

Also was demonstrated that is possible to use ranging sensors as proximity 

sensors. That was the case of the laser sensor which originally was a ranging 

sensor and now works as proximity and ranging sensor. One more thing that 

was demonstrated is that the robot can be used to draw planes just changing 

the gripper tool for a drawing tool, because when the robot is moving following 

paths it can move over the plane XY , YZ or XZ without vary the value of the 

remaining axis. 

 

With the final test was showed that the software developed to control the 

Motoman and the laser sensor, was vital to fulfil the objective of show the 

collaboration of both devices to pick and place objects with any explicit 

programming. 



- Conclusions and Future Work - 

 91 

 

7.2 Future Work 

 

As future work lets the task of improve the speed of the system when a handling 

procedure is done, because now takes between one minute and two minutes 

move one object from one point to another point. Also there is the idea of 

includes a camera in the system with the purpose to indicate to the manager 

device the coordinates X and Y of the objects to be picked and the coordinates 

X and Y of the position where the objects will be place. The camera also will 

have the task of check if the new position for the object is not to near to other 

objects that can damage the robot during the handling procedure.   



 

 92 

Appendix A 

 

A.1 Motoman KNICKARMROBOTER SV3X Data Sheet (SV3X Robot) 

 

 

 

 

 



 

 93 

A.2 ATmega 16 Features 

 

Features 

• High-performance, Low-power AVR® 8-bit Microcontroller 

 

• Advanced RISC Architecture 

– 131 Powerful Instructions – Most Single-clock Cycle Execution 

– 32 x 8 General Purpose Working Registers 

– Fully Static Operation 

– Up to 16 MIPS Throughput at 16 MHz 

– On-chip 2-cycle Multiplier 

 

• Nonvolatile Program and Data Memories 

– 16K Bytes of In-System Self-Programmable Flash 

Endurance: 10,000 Write/Erase Cycles 

– Optional Boot Code Section with Independent Lock Bits 

In-System Programming by On-chip Boot Program 

True Read-While-Write Operation 

– 512 Bytes EEPROM 

Endurance: 100,000 Write/Erase Cycles 

– 1K Byte Internal SRAM 

– Programming Lock for Software Security 

 

• JTAG (IEEE std. 1149.1 Compliant) Interface 

– Boundary-scan Capabilities According to the JTAG Standard 

– Extensive On-chip Debug Support 

– Programming of Flash, EEPROM, Fuses, and Lock Bits through the JTAG 

Interface 

 

• Peripheral Features 

– Two 8-bit Timer/Counters with Separate Prescalers and Compare Modes 

– One 16-bit Timer/Counter with Separate Prescaler, Compare Mode, and 

Capture 

Mode 

– Real Time Counter with Separate Oscillator 

– Four PWM Channels 

– 8-channel, 10-bit ADC 

8 Single-ended Channels 

7 Differential Channels in TQFP Package Only 

2 Differential Channels with Programmable Gain at 1x, 10x, or 200x 

– Byte-oriented Two-wire Serial Interface 



 

 94 

– Programmable Serial USART 

– Master/Slave SPI Serial Interface 

– Programmable Watchdog Timer with Separate On-chip Oscillator 

– On-chip Analog Comparator 

 

• Special Microcontroller Features 

– Power-on Reset and Programmable Brown-out Detection 

– Internal Calibrated RC Oscillator 

– External and Internal Interrupt Sources 

– Six Sleep Modes: Idle, ADC Noise Reduction, Power-save, Power-down, 

Standby 

and Extended Standby 

 

• I/O and Packages 

– 32 Programmable I/O Lines 

– 40-pin PDIP, 44-lead TQFP, and 44-pad QFN/MLF 

 

• Operating Voltages 

– 2.7 - 5.5V for ATmega16L 

– 4.5 - 5.5V for ATmega16 

 

• Speed Grades 

– 0 - 8 MHz for ATmega16L 

– 0 - 16 MHz for ATmega16 

 

• Power Consumption @ 1 MHz, 3V, and 25°C for ATmega16L 

– Active: 1.1 mA 

– Idle Mode: 0.35 mA 

– Power-down Mode: < 1 µA 

 

 

 

 

 

 

 

 



 

 95 

References 

 

[MISH]  Measurement, Instrumentation, and Sensors Handbook 

CRCnetBASE 1999 

© 1999 by CRC Press LLC 

Page 285 to 295 

 

[MH]  THE MECHATRONICS H A N D B O O K 

The University of Texas at Austin 

Austin, Texas 

Page 460 

 

[DA16] Datasheet: Atmel-ATmega16: 8 bit AVR Microcontroller with 

16kBytes In-System Programmable Flash, Rev 2466N–AVR, 

October 2006 

 

[MTT] Development of a Joystick Control for Telenavigation of a Hybrid 

Robot System 

M. Sc. Thomas Kunkel  

Master Thesis 

 

[ZAC]  Kooperation von Roboter und Sensoren auf der basis von “Web 

Services” in einem draftlosen Sensor / Aktor Netzwerk 

  Zeuxis A. Conde de Felipe 

 Diplomarbeit, Aachen 2007 

  

[MD]   MOTOMAN KNICKARMROBOTER SV3X data sheet 

  YASKAWA company 

  October 2003 


