
Towards to the development of a virtual environment for operators
training for the ROV KAXAN from CIDESI

Thesis
TO ACHIEVE THE ACADEMIC DEGREE OF

Master of Science inMechatronics

BY

Adrian Rivera Resendiz

Santiago de Queretaro, Qro., Mexico, February 2013

Contents

1 Introduction 11

1.1 Problem Definition . 11

1.2 Description of the project . 12

1.3 Objectives . 12

1.4 Structure of the thesis . 13

2 Theoretical Fundamentals 14

2.1 Marine coordinate system . 14

2.2 Linear and angular velocities’ transformations . 15

2.3 Cinematic and Dynamic Model . 17

2.3.1 The matrix M . 17

2.3.2 The matrix C . 19

2.3.3 The matrix D . 20

2.3.4 The matrix G . 21

2.3.5 Matrices simplifications . 22

2.3.6 The vector τ . 23

2.4 Sea Currents . 24

2.5 CIDESI’s KAXAN ROV . 25

2.6 State of the art . 26

3 Methodology 27

3.1 Set-up and considerations for the visual environment . 27

3.2 The graphic models . 28

3.2.1 Creation of the models . 28

3.2.2 Lighting . 30

3.2.3 Sea bottom & Textures . 31

3.2.4 Water surface & Blending . 33

3.2.5 Fog . 34

3.2.6 3D models in Wavefront format . 36

3.2.7 Object loader Class . 38

3.3 Joystick functions . 42

3.4 Solution of equations (Mass-Spring-Damper) . 44

3.4.1 Matlab vs C# vs Real . 49

3.4.2 Results of P Controller . 53

3.4.3 Results of PI Controller . 56

3.4.4 Results of PID Controller . 59

3.4.5 Conclusions of the Mass-Spring-Damper’s equations 62

3.5 Thrusters . 62

3.5.1 Thruster 520 . 62

3.5.2 Thruster 540 . 67

3.6 Training platform (The simulator) . 69

3.6.1 GUI - Graphical user interface . 70

3.6.2 Matrices’ functions class . 72

3.6.3 Equation’s solution . 74

3.6.4 PID Controllers’ code . 75

3.6.5 Normal mode and Test mode . 76

3.6.6 Matlab’s results vs C#’s . 76

4 Depth PID controller 83

4.1 Selecting Kp . 83

4.2 Selecting Kd . 85

4.3 Selecting Ki . 87

4.4 New controller vs. Old controller . 88

5 Orientation PID controller 91

5.1 Selection Kp - Orientation controller . 91

5.2 Selection Ki - Orientation controller . 93

5.3 Selection Kd - Orientation controller . 94

6 Conclusions & Results 95

6.1 Final results . 95

6.2 Conclusions . 95

6.3 Future work . 95

A Flow Charts 97

A.1 Mass-Spring-Damper on C# . 97

A.2 Simulator on C# . 98

B Thrusters datasheets 99

B.1 Model 520 . 99

B.2 Model 540 . 100

C Joystick programming 101

C.1 Joystick structure code . 101

C.2 Joystick reading code . 101

D Matrix Operations Class 103

D.1 Addition-Subtraction . 103

D.2 Multiplication of matrices . 104

D.3 Matrix × k . 104

D.4 Inverse using Gauss-Jordan Elimination . 105

D.5 Transpose . 107

D.6 Integration . 107

D.7 Matrix printing . 108

D.8 Matrix printing to a file . 108

D.9 Reading matrix from file . 109

E Dynamic model’s matrices 110

E.1 Matrix CRB . 110

E.2 Matrix CA . 110

E.3 Matrix D . 111

E.4 Matrix g . 111

E.5 Matrix J1 . 111

E.6 Matrix J2 . 112

E.7 Matrix J . 112

E.8 Vector ν̇ . 113

References 114

Glossary 114

List of Figures

1.1 KAXAN ROV . 11

1.2 Project schematic . 12

2.1 Body-fixed and earth-fixed references frames . 15

2.2 Thrusters on the ROV . 23

2.3 Diagram of ROV’s computer system . 26

3.1 OpenTK control inside a C# Form . 28

3.2 ROV on Solidworks . 29

3.3 Oil Platform on Solidworks . 29

3.4 OpenGL and Texture coordinates . 32

3.5 Bottom of the see . 34

3.6 Sea surface . 35

3.7 Fog effect . 35

3.8 ROV on Blender . 36

3.9 Round figures using 340 polygons . 36

3.10 Round figures using 124 polygons, after reduction with Blender 37

3.11 Dualshock 3 Sintaxis Joystick . 43

3.12 Axes labels . 44

3.13 Mass Spring Damper model in Matlab . 46

3.14 Mass Spring Damper model in C# . 46

3.15 Position . 50

3.16 Velocity . 51

3.17 Acceleration . 51

3.18 Matlab’s control model . 52

3.19 C#’s control model . 52

3.20 Position P Controller . 53

3.21 Velocity P Controller . 54

3.22 Acceleration P Controller . 54

3.23 Force P Controller . 55

3.24 Position PI Controller . 56

3.25 Velocity PI Controller . 57

3.26 Acceleration PI Controller . 57

3.27 Force PI Controller . 58

3.28 Position PID Controller . 59

3.29 Velocity PID Controller . 60

3.30 Acceleration PID Controller . 60

3.31 Force PID Controller . 61

3.32 1 to 4 degrees polynomial (Forward mode 520) . 63

3.33 5 to 8 degrees polynomial (Forward mode 520) . 63

3.34 Modelled function for the 520 forward mode . 64

3.35 1 to 4 degrees polynomial (Backward mode 520) . 65

3.36 5 to 8 degrees polynomial (Backward mode 520) . 66

3.37 Modelled function for the 520 backward mode . 67

3.38 Modelled functions for the 540 . 69

3.39 Training platform’s GUI . 70

3.40 Model area . 70

3.41 Sea current area . 71

3.42 Depth PID area . 71

3.43 ψ PID area . 71

3.44 Visual environment selection . 72

3.45 Status area . 72

3.46 Start/Stop area . 72

3.47 Simulink model for a constant control voltage . 76

3.48 Acceleration at constant force . 77

3.49 Velocity at constant force . 77

3.50 Position at constant force . 78

3.51 Simulink model for the Depth controller . 78

3.52 Acceleration using the Depth controller . 78

3.53 Velocity using the Depth controller . 79

3.54 Position using the Depth controller . 79

3.55 Simulink model for the Orientation controller . 80

3.56 Acceleration using the Orientation controller . 80

3.57 Velocity using the Orientation controller . 80

3.58 Position using the Orientation controller . 81

3.59 Acceleration on Normal mode . 81

3.60 Velocity on Normal mode . 82

3.61 Position on Normal mode . 82

4.1 Kp Rise time, Settling time & Overshot . 84

4.2 Kp = 65 . 85

4.3 Kd Rise time, Settling time & Overshot . 86

4.4 Kp = 65, Kd = 30 . 86

4.5 Ki Rise time, Settling time & Overshot . 87

4.6 Ki = 0.5 & Ki = 1 . 88

4.7 New vs. Old, Rise time . 89

4.8 New vs. Old, Settling time . 89

4.9 New vs. Old, Overshot . 90

4.10 Old controller, Kp = 100Ki = 0Kd = 10 . 90

5.1 Kp Undershot & Stationary error . 92

5.2 Kp = 250 . 92

5.3 Ki Undershot & No-Error . 93

5.4 Ki responses . 93

5.5 Kd Undershot & No-Error . 94

5.6 Kp = 250, Ki = 300, Kd = 50 . 94

A.1 Flow chart of Mass Spring Damper program on C# . 97

A.2 Flow chart of the Trainings Platform . 98

List of Tables

2.1 Marine vehicles’ notation (SNAME notation) . 14

2.2 Motion vectors . 15

2.3 I0 components . 19

3.1 Position . 50

3.2 Velocity . 51

3.3 Acceleration . 52

3.4 Position P Controller . 53

3.5 Velocity P Controller . 54

3.6 Acceleration P Controller . 55

3.7 Force P Controller . 55

3.8 Position PI Controller . 56

3.9 Velocity PI Controller . 57

3.10 Acceleration PI Controller . 58

3.11 Force PI Controller . 58

3.12 Position PID Controller . 59

3.13 Velocity PID Controller . 60

3.14 Acceleration PID Controller . 61

3.15 Force PID Controller . 61

3.16 Graphic’s values from the 520 forward mode . 62

3.17 Errors in n− degree polynomials . 64

3.18 Graphic’s values from the 520 backwards mode . 65

3.19 Graphic’s values from the 540 forward mode . 67

3.20 Graphic’s values from the 540 backward mode . 69

4.1 Responses for the P controller . 83

4.2 Responses for the PD controller . 85

4.3 Responses for the PID controller . 87

4.4 Old controller vs. New controller . 88

5.1 Responses for the P controller . 92

5.2 Responses for the PI controller . 93

5.3 Responses for the PID controller . 94

8

Acknowledgements

First of all I would like to thank my parents because they have given me their support during my whole
life including this master period.

I will also like to thank my brothers; Angel and Arturo for helping me with my presentation, to Monica
for helping me in every single aspect during these years, to Gibran, Enrique and David for giving me their
ideas and helping me to improve my work.

To the professors Tomas Salgado and Luis Govinda Garcia for guiding me during all the project-developing
process.

And finally to professor Klaus-Peter Kämper and all the teachers in the FH-Aachen and the CIDESI, for
sharing their knowledge with me.

9

Abstract

An ROV is a remotely operated vehicle, and learning how to drive an ROV is not an easy task, there
are a lot factors that complicates the learning process, like: sea currents, low visibility while the depth is
increasing, objects that cannot be seen by the main camera, and a lot more. Because an ROV is expensive,
is not easy to practice how to drive one.

The CIDESI has one ROV named KAXAN, but there is no training platform in which an operator can
learn how to drive it. The objective of this project is to establish the foundations on the creation of a
complete training platform.

A first version of this simulator was created, the program includes the dynamics of the ROV, therefore
the movements on the simulator are similar to the movements of the KAXAN in real life.

Furthermore a PID controller for the orientation and the depth of the ROV was designed.

The training platform was programmed on C#, and OpenGL was used to draw the ROV and the virtual
environment.

10

1 INTRODUCTION

1 Introduction

The acronym ROV in marine robotics is known as Remote Operated Vehicle, which refers to an underwater
ship where the operator controls it remotely. There is also the AUV which are Autonomous Underwater
Vehicle, the main difference between an ROV and the AUV, is that the AUV doesn’t need an operator.

The KAXAN ROV is an unmanned submarine vehicle designed for visual exploration of shallow marine
structures such as oil stations and hydroelectric centrals.

The KAXAN has been created and developed by the CIDESI, and it is remotely controlled using an
umbilical cable that goes from the surface down to the ROV.

Figure 1.1: KAXAN ROV

Further information about the KAXAN can be found on section 2.5.

1.1 Problem Definition

Driving an ROV in the real world is not an easy task, because a marine environment is dark and in most
cases the visibility is good just for a few meters. The operator must trust in the navigation instruments;
depth sensor, compass among others.

The KAXAN is an expensive ROV, it includes a lot of specialized systems like: buoyancy foam, underwater
connectors, cameras, a depth gauge, lights, thrusters, an underwater robotic arm, sensors, etc., so the
user operating the ROV must control it safely in order to protect it.

Also the ROV operates near very expensive equipment like: oil tubes, hydroelectric facilities.

Currently there is not a platform in which an operator can drive the vehicle without the danger of
damaging it or destroying it, so the only way in which an operator can learn how to drive the ROV is
through direct operation of the vehicle under a controlled environment, like a pool.

This environment does not include real phenomenon like sea currents or the difference in density between
salty water and sweet water.

11

1 INTRODUCTION 1.2 Description of the project

1.2 Description of the project

Create the bases of a training platform for the KAXAN in which the operator will be able to learn how
to drive the ROV. The program should simulate the ROV’s real behaviour; effects like: inertia, Coriolis
forces, sea currents, and others, must be considered.

The simulator’s input device must match the one used on the KAXAN.

This simulator must use the mathematical model for the KAXAN, and the results are going to be compared
with Matlab’s model.

The simulator will include a graphical interface where the operator will watch an ROV’s CAD model and
drive it through different environments.

User Mathematical model
On C# Visualization

Figure 1.2: Project schematic

Also for the academic purposes of this project the depth and orientation’s controller must be designed
and implemented (preferably a PID control).

This simulator must be able to be run in a domestic PC, not an industrial computer, the design must be
oriented to save as many computer system’s resources as possible.

This project is the first step in the development of a complex training platform for possible KAXAN’s
operators.

1.3 Objectives

The project’s main objective is:

• Establish the bases for the creation of a training platform for the KAXAN ROV, in which the users
are able to get used to the ROV’s manoeuvrability

The specific objectives for this project are:

• Comprehension of the KAXAN ROV’s mathematical model

• Testing and familiarizing with ROV’s simulator on Matlab/Simulink

• Program and solve ROV’s equations using numerical methods on C#

• Development of a visual model of the ship

• Implementation of a joystick to control the ROV’s model

12

1 INTRODUCTION 1.4 Structure of the thesis

• Add an automatic control law for the depth of the ROV

• Add an automatic control law for the direction of the ROV

• Development of a virtual submarine environment, e.g. oil platform

• Redaction of the final report

1.4 Structure of the thesis

In chapter 2 the theory about the mathematical modelling of marine vehicles is discussed.

In chapter 3 are the specifics about how the program was created, which initial considerations were made
before programming, and which tests were made to validate the results.

Chapters 4 and 5 talk about the design, considerations, tests and results of the PID controllers used in
this project.

And finally in chapter 6 are the conclusions and achieved goals of this project, and the future work that
expands upon this project.

13

2 THEORETICAL FUNDAMENTALS

2 Theoretical Fundamentals

Mathematical modelling of marine vehicles is a complex task because several factors must be taken in
consideration, for example:

• The vehicle’s shape

• If the vehicle is immerse, high speed or a surface ship.

• Sea currents

• The ocean swell

The basic principles about marine vehicles modelling can be found on Fossen’s books, [5] and [4].

Even though modelling the KAXAN ROV’s mathematical model is not the goal of this project, it is impor-
tant to study about how the marine vehicles are modelled and how to explain the different phenomenons
at which the ROV is submitted. The model used in this project was already calculated at the institute.

2.1 Marine coordinate system

To determinate the position and orientation of a marine vehicle is required to know six independent coor-
dinates, therefore is a 6 DOF (degrees of freedom) system, the first 3 degrees are translational coordinates
and the other 3 are rotational coordinates (Table 2.1).

DOF Name Description
Forces and
moments

Linear and
angular vel.

Positions
and Euler

angles
1 Surge Motion in x-direction X u x
2 Sway Motion in y-direction Y v y
3 Heave Motion in z-direction Z w z
4 Roll Rotation about the x-axis K p φ
5 Pitch Rotation about the y-axis M q θ
6 Yaw Rotation about the z-axis N r ψ

Table 2.1: Marine vehicles’ notation (SNAME notation)

When analysing a marine vehicle’s movement is convenient to define 2 different coordinate systems, the
first one attached to the vehicle, and the second one fixed to some point on space.

The first coordinate system is known as body-fixed and it’s formed by: X0 or longitudinal axis directed
from aft to fore Y0 or transverse axis directed to starboard, and finally Z0 or normal axis directed from
top to bottom. Generally the origin of body-fixed axis coincides with the vehicle’s gravity center, but it
can be placed on any convenient point.

The second coordinate system is know as earth-fixed, the figure 2.1 shows both frames.

By convention the position and orientation are expressed relative to the earth-fixed frame, and the linear
and angular velocities referred to the body-fixed frame.

Based on SNAME notation (Table 2.1) and the considerations above the vehicle’s general motion can be
described with the vectors in table 2.2.

14

2 THEORETICAL FUNDAMENTALS 2.2 Linear and angular velocities’ transformations

Body-Fixed

Z
Y

V

(sway)

(pitch)

q

(yaw)

r

(heave)

w

r

Earth-Fixed

Z
Y

X

X
p

u

(roll)

(surge)

Figure 2.1: Body-fixed and earth-fixed references frames

η =

[
η1
η2

]
η1 =

 x
y
z

 η2 =

 φ
θ
ψ


ν =

[
ν1
ν2

]
ν1 =

 u
v
w

 ν2 =

 p
q
r


τ =

[
τ1
τ2

]
τ1 =

 X
Y
Z

 τ2 =

 K
M
N


Table 2.2: Motion vectors

The vector η represents the vehicle’s position referred to earth-fixed frame, the vector ν is the velocity
vector referred to the body-fixed frame, and finally τ is the force vector also referred to body-fixed frame.

2.2 Linear and angular velocities’ transformations

Even thought the velocity is referred to the body-fixed frame, is mandatory to make the transformation
of this velocity vector to earth-fixed system.

Since both frames are not pointing in the same direction, some rotations must be applied, for example
the matrices’ transformation due to rotation in X, Y and Z is given by:

Cx,φ =

 1 0 0
0 cosφ sinφ
0 − sinφ cosφ

 (2.1)

Cy,θ =

 cos θ 0 − sin θ
0 1 0

sin θ 0 cos θ

 (2.2)

Cz,ψ =

 cosψ sinψ 0
− sinψ cosψ 0

0 0 1

 (2.3)

If the transposes of 2.3, 2.2 and 2.1 are multiplied a new matrix is obtained:

J1(η2) = CTz,ψ C
T
y,θ C

T
x,φ

15

2 THEORETICAL FUNDAMENTALS 2.2 Linear and angular velocities’ transformations

J1(η2) =

 cosψ cos θ cosψ sinφ sin θ − cosφ sinψ sinφ sinψ + cosφ cosψ sin θ
cos θ sinψ cosφ cosψ + sinφ sinψ sin θ cosφ sinψ sin θ − cosψ sinφ
− sin θ cos θ sinφ cosφ cos θ

 (2.4)

J1(η2) (Eq. 2.4) is the matrix capable of transforming the data on X0, Y0 and Z0 from body-fixed frame
to the earth-fixed frame.

Now the transformation from vector ν1 to η̇1 is defined by:

η̇1 = J1(η2) ν1 (2.5)

Let’s define η̇2 as

 φ̇

θ̇

ψ̇

, and:

η̇2 = J2(η2) ν2 (2.6)

The problem is that J2(η2) is not defined, but if vector ν2 is cleared, then:

ν2 = J−12 (η2) η̇2 =

 φ̇
0
0

+ Cx,φ

 0

θ̇
0

+ Cx,φCy,θ

 0
0

ψ̇

 =

 φ̇− ψ̇ sin θ

θ̇ cosφ+ ψ̇ cos θ sinφ

ψ̇ cosφ cos θ − θ̇ sinφ

 (2.7)

From equation 2.7, J−12 (η2) can be deduced:

J−12 (η2) =

 1 0 − sin θ
0 cosφ cos θ sinφ
0 − sinφ cosφ cos θ

 ∴

J2(η2) =

 1 sinφ tan θ cosφ tan θ
0 cosφ − sinφ

0
sinφ

cos θ

cosφ

cos θ

 (2.8)

Combining 2.4 and 2.8 the matrix J(η2) can be written as:

η̇1 = J1(η2) ν1

η̇2 = J2(η2) ν2

J =

[
J1 03×3

03×3 J2

]

J(η2) =



c ψ c θ cψ sφ s θ − c φ sψ sφ sψ + c φ cψ s θ 0 0 0
c θ s ψ c φ cψ + s φ sψ s θ c φ sψ s θ − c ψ aφ 0 0 0
−s θ c θ s φ c φ c θ 0 0 0

0 0 0 1 s φ t θ c φ t θ
0 0 0 0 c φ −s φ

0 0 0 0
s φ

c θ

c φ

c θ


Whit c � = cos(�), s � = sin(�) and t � = tan(�)

η̇ = J(η2) ν (2.9)

16

2 THEORETICAL FUNDAMENTALS 2.3 Cinematic and Dynamic Model

The vehicle’s movement vector relative to the earth-fixed coordinate system, is given by the velocity vector
2.9, where J(η2) is a transformation matrix referred to the Euler angles (roll, pitch and yaw).

If a closer look to J2(η2), at θ ≈ ±90◦ a singularity is presented, therefore this mode of operation must
be avoided, but the KAXAN is a very stable ROV, and this vertical position is never reached by the
KAXAN.

2.3 Cinematic and Dynamic Model

The ROV’s dynamics can be expressed with the non-linear equation:

Mν̇ + C(ν)ν +D(ν)ν + g(η) = τ (2.10)

where:

• M = inertia matrix (including added mass)

• C(ν) = Coriolis and centripetal matrix (including added mass)

• D = damping matrix

• g = gravitational forces and moments’ vector

• τ = forces and moments’ vector

If we reduce the equation 2.10 to:
M ν̇ = τ

we get a equation similar to
ma = f

which is the second law of Newton. This function relates the mass, the acceleration and the force into
one equation. If no force is acting on the system then it remains with a constant speed or at body rest.

If we also take in consideration the Euler’s Axioms we can relate both forces and moments referred to the
body’s center of mass:

ṗc = fc

ḣc = mc

ṗc = M ν̇c

ḣc = I ω̇c

where ṗc represent the forces on the body, ḣc the moments, M the mass, I the matrix, ν̇c the linear
acceleration and ω̇c the angular acceleration, these equations usage is usually known as vectorial mechanics.

2.3.1 The matrix M

The matrix M is formed by two different matrices,

M = MRB +MA

17

2 THEORETICAL FUNDAMENTALS 2.3 Cinematic and Dynamic Model

where MRB is the rigid-body inertia matrix, and M − A is the added inertia matrix, this MA should be
understood as the pressure-induced forces and moments due to a forced motion of the body proportional
to the acceleration of the body. MRB and MA matrices are defined bellow1.

MRB =

[
mI3×3 −mS(rG)
mS(rG) I0

]
=


m 0 0 0 mzG −myG
0 m 0 −mzG 0 mxG
0 0 m myG mxG 0
0 −mzG myG Ix −Ixy −Ixz

mzG 0 −mxG −Iyx Iy −Iyz
−myG mxG 0 −Izx −Izy Iz

 (2.11)

MA =

[
A11 A12

A21 A22

]
= −


Xu̇ Xv̇ Xẇ Xṗ Xq̇ Xṙ

Yu̇ Yv̇ Yẇ Yṗ Yq̇ Yṙ
Zu̇ Zv̇ Zẇ Zṗ Zq̇ Zṙ
Ku̇ Kv̇ Kẇ Kṗ Kq̇ Kṙ

Mu̇ Mv̇ Mẇ Mṗ Mq̇ Mṙ

Nu̇ Nv̇ Nẇ Nṗ Nq̇ Nṙ


where m is the mass, xG, yG and zG are the coordinates of the center of mass referred to the body-fixed
frame, the I components the inertia tensors with respect to the origin of the body frame, and the MA

components are the added mass force along one axis due to a certain acceleration in one direction. S is a
Skew-symmetry matrix, where S = −ST and it is defined as:

S(λ) =

 0 −λ3 λ2
λ3 0 −λ1
−λ2 λ1 0

 (2.12)

To calculate MRB is necessary to calculate the center of mass, which is given by the formula

rG =
1

m

∫
V

r ρAdV

where:

• rG is the vector of position referred to body-fixed coordinate system

• r is the position vector referred to earth-fixed coordinate system

• ρA is the density of the vehicle’s mass

• m is the body mass

• V is the displaced fluid’s volume

In practice is easier to calculate the center of mass with an specialized software, like Solidworks.

The inertia tensor (I0) is the equivalent to the mass in the case of unidimensional movement, but in
tridimentional movement, the opposition to rotation movement appears in several directions. The inertia
matrix is defined by

I0 =

 Ix −Ixy −Ixz
−Iyx Iy −Iyz
−Izx −Izy Iz


1[4, p. 26,33]

18

2 THEORETICAL FUNDAMENTALS 2.3 Cinematic and Dynamic Model

and each component is expressed like it is shown in table 2.3

Ix =
∫
v
(y2 + z2) ρA dV Ixy =

∫
v
xy ρA dV =

∫
v
yx ρA dV = Iyx

Iy =
∫
v
(x2 + z2) ρA dV Ixz =

∫
v
xz ρA dV =

∫
v
zx ρA dV = Izx

Iz =
∫
v
(x2 + y2) ρA dV Iyz =

∫
v
yz ρA dV =

∫
v
zy ρA dV = Izy

Table 2.3: I0 components

therefore we can say that I0 = IT0 > 0

Depending on the shape of the vehicle’s submerged part, different formulas can be used to calculate the
matrix coefficients MA, but for irregular or complex shapes these values must be calculated by exper-
imentation or with specialized software, in the case of the KAXAN ROV an specialized software was
used.

For vehicles completely submerged MA will be always strictly positive, that means MA > 0. If MA > 0
then MA = MT

A > 0 is a good approximation2, then:

MA = −


Xu̇ Xv̇ Xẇ Xṗ Xq̇ Xṙ

Xv̇ Yv̇ Yẇ Yṗ Yq̇ Yṙ
Xẇ Yẇ Zẇ Zṗ Zq̇ Zṙ
Xṗ Yṗ Zṗ Kṗ Kq̇ Kṙ

Xq̇ Yq̇ Zq̇ Kq̇ Mq̇ Mṙ

Xṙ Yṙ Zṙ Kṙ Mṙ Nṙ

 (2.13)

After defining MRB and MA now we can proceed to define the value of M :

M = MRB +MA

M =


m−Xu̇ −Xv̇ −Xẇ −Xṗ mzG −Xq̇ −Xṙ −myG
−Xv̇ m− Yv̇ −Yẇ −Yṗ −mzG −Yq̇ mxG − Yṙ
−Xẇ −Yẇ m− Zẇ myG − Zṗ mxG − Zq̇ −Zṙ
−Xṗ −Yṗ −mzG myG − Zṗ Ix −Kṗ −Ixy −Kq̇ −Ixz −Kṙ

mzG −Xq̇ −Yq̇ −Zq̇ −mxG −Iyx −Kq̇ Iy −Mq̇ −Iyz −Mṙ

−Xṙ −myG mxG − Yṙ −Zṙ −Izx −Kṙ −Izy −Mṙ Iz −Nṙ

 (2.14)

2.3.2 The matrix C

The matrix C is the Coriolis and Centripetal matrix, this C matrix is also formed by CRB(ν) + CA(ν),
where CRB(ν) is the rigid-body matrix of Coriolis and centripetal forces and CA(ν) the added mass
Coriolis matrix. Matrix CRB(ν) can be defined3 as:

CRB(ν) =

[
03×3 −mS(ν1)−mS(S(ν2)rG)

−mS(ν1)−mS(S(ν2)rG) mS(S(ν1)rG)− S(I0ν2)

]

CRB(ν) =


0 0 0
0 0 0
0 0 0

−m(yGq + zGr) m(yGp+ w) m(zGp− v)
m(xGq − w) −m(zGr + xGp) m(zGq + u)
m(xGr + v) m(yGr − u) −m(xGp+ yGq))

2[4, p. 34]
3[4, p. 28]

19

2 THEORETICAL FUNDAMENTALS 2.3 Cinematic and Dynamic Model

m(yGq + zGr) −m(xGq − w) −m(xGr + v)
−m(yGp+ w) m(zGr + xGp) −m(yGr − u)
−m(zGp− v) −m(zGq + u) m(xGq + yGq)

0 −Iyzq − Ixzp− Izr Iyzr + Ixyp− Iyq
Iyzq + Ixzp− Izr 0 −Ixzr − Ixyq − Ixp
−Iyzr − Ixyp− Iyq Ixzr + Ixyq − Ixp 0

 (2.15)

Fossen writes in his book that if a rigid-body is moving through an ideal fluid, then the hydrodynamic
Coriolis and centripetal matrix CA(ν) can always be parametrized such that CA(ν) is skew-symmetrical,
CA(ν) = −CTA(ν)4, by defining:

CA(ν) =

[
03×3 −S(A11ν1 +A12ν2)

−S(A11ν1 +A12ν2) −S(A21ν1 +A22ν2)

]

CA(ν) =


0 0 0 0 −a3 a2
0 0 0 a3 0 −a1
0 0 0 −a2 a1 0
0 −a3 a2 0 −b3 b2
a3 0 −a1 b3 0 −b1
−a2 a1 0 −b2 b1 0


whit

a1 = Xu̇u+Xv̇v +Xẇw +Xṗp+Xq̇q +Xṙr

a2 = Xv̇u+ Yv̇v + Yẇw + Yṗp+ Yq̇q + Yṙr

a3 = Xẇu+ Yẇv + Zẇw + Zṗp+ Zq̇q + Zṙr

b1 = Xṗu+ Yṗv + Zṗw +Kṗp+Kq̇q +Kṙr

b2 = Xq̇u+ Yq̇v + Zq̇w +Kq̇p+Mq̇q +Mṙr

b3 = Xṙu+ Yṙv + Zṙw +Kṙp+Mṙq +Nṙr

2.3.3 The matrix D

The matrix D is known as the hydrodynamic damping, this effect can be caused by several reasons:

• DP (ν) radiation-induced potential damping due to forced body oscillations

• DS(ν) linear skin friction due to laminar boundary layers and quadratic skin friction due to turbulent
boundary layers

• DW (ν) wave drift damping

• DM (ν) damping due to vortex shedding

The damping matrix D(ν) can be written as a sum of all these components:

D(ν) = DP (ν) +DS(ν) +DW (ν) +DM (ν)

If a rigid-body is moving through an ideal fluid then the hydrodynamic damping is real, non-symmetrical
and strictly positive, therefore:

D(ν) > 0

4[4, p. 36]

20

2 THEORETICAL FUNDAMENTALS 2.3 Cinematic and Dynamic Model

Potential damping DP (ν) is also known as radiation-induced damping, and it is product of the oscil-
lation produced by the waves. For underwater vehicles operating at great depths the potential damping
can be neglected, but for a surface vehicle the potential damping effect may be significant. The radiation
induced forces and moments can be written as:

τR = −A(ω)η̈ −B(ω)η̇ − C η

where A = −MA is the added inertia matrix, B = −DP represents a linear potential damping, C is the
linearized restoring forces and moments, and finally ω is the wave circular frequency.

Skin friction is important when considering a low-frequency motion of the vehicle, due to laminar
boundary layer theory. This is usually referred as a quadratic or non-linear skin friction.

Wave drift damping can be interpreted as added resistance for surface vessels advancing in waves. For
higher sea states, the wave drift damping is the most important contribution to surge, due to the fact that
this damping forces are proportional to the square of the significant wave height. Wave drift damping in
sway and yaw is small relative to eddy making damping (vortex shedding).

Damping Due to Vortex Shedding is a force produced by frictional forces caused by the movement
of one object through a viscous fluid. This viscous damping force can be modelled as:

f(U) = −1

2
ρCD(Rn)A|U |U

where U is the velocity of the vehicle, A is the cross-sectional area, CD(Rn) is the drag-coefficient based
on the area and ρ is the density of the water. The drag coefficient CD(Rn) depends on:

Rn =
U D

ν

which is known as the Reynolds number, where D is the characteristic length of the body and ν the
coefficient of kinematic viscosity (ν = 1.56 · 10−6 for salt water at 5◦C salinity 3.5%). Finally the
quadratic drag in 6 DOF is expressed as:

DM (ν)ν =


|ν|TD1ν
|ν|TD2ν
|ν|TD3ν
|ν|TD4ν
|ν|TD5ν
|ν|TD6ν


It’s important to mention that CD and A will be different for each matrix’ element.

2.3.4 The matrix G

The restoring forces and moments are represented by the matrix g, these forces are product of the buoyant
and gravitational forces. The gravitational force fc acts at the center of gravity of the body (rG) and the
buoyant force fB acts through the center of buoyancy rB = [xB , yB , zB]T .

To calculate these forces on an underwater vehicle, first we must take in consideration the mass m of the
object to calculate the gravitational force W on it, this submerged weight is defined as: W = mg,where
g is the density, and using the equation 2.4, fG can be defined as:

fG(η2) = J−11 (η2)

 0
0
W


21

2 THEORETICAL FUNDAMENTALS 2.3 Cinematic and Dynamic Model

The buoyancy force is defined as: B = ρg5, where 5 is the volume of fluid displaced by the body and ρ
the density of the water, finally fB is defined as:

fB(η2) = J−11 (η2)

 0
0
B


With fG and fB the matrix g(η) can be written as:

g(η) = −
[

fG(η) + fB(η)
rG × fG(η) + rB × fB(η)

]

g(η) =


(W −B) sin θ

−(W −B) cos θ sinφ
−(W −B) cos θ cosφ

−(yGW − yBB) cos θ cosφ+ (zGW − zBB) cos θ sinφ
(zGW − zBB) sin θ − (xGW − xBB) cos θ cosφ
−(xGW − xBB) cos θ sinφ− (yGW − yBB) sin θ

 (2.16)

In the case on a neutrally buoyant underwater vehicle, like the KAXAN, W = B, therefore:

g(η) =



0
0
0

−BGyW cos θ cosφ+BGzW cos θ sinφ
BGzW sin θ +BGxW cos θ cosφ
−BGxW cos θ sinφ−BGyW sin θ


where BG = [xG − xB , yG − yB , zG − zB]T .

2.3.5 Matrices simplifications

In the past sections all the values of M, C, D and g have been explained and these value were written
as a general expression of each matrix, but under certain circumstances these matrices can be simplified,
therefore their complexity will be reduced and this will reduce the use of CPU’s resources, making the
program faster and lighter.

As said before in section 2.1 the center of the body-fixed frame can be placed at convenience, if this origin
is placed in the same point as the center of mass rG then the matrix I0 is simplified5 to be:

I0 =

 Ix 0 0
0 Iy 0
0 0 Iz


therefore

MRB = diag{m,m,m, Ix, Iy, Iz}

Now let’s simplify matrices MA and CA(ν). In general the motion of an underwater vehicle moving in 6
DOF at high speed is highly non-linear and coupled, but generally an ROV doesn’t move at high speed,
only at low speed, also if the vehicle has 3 planes of symmetry is possible to neglect the effect from the

5[4, p. 28]

22

2 THEORETICAL FUNDAMENTALS 2.3 Cinematic and Dynamic Model

off-diagonal elements in the added mass matrix MA, therefore the matrix CA(ν) is automatically also
simplified:

MA = −diag{Xu̇, Yv̇, Zẇ,Kṗ,Mq̇, Nṙ}

CA(ν) =


0 0 0 0 −Zẇw Yv̇v
0 0 0 Zẇw 0 −Xu̇u
0 0 0 −Yv̇v Xu̇u 0
0 −Zẇw Yv̇v 0 −Nṙr Mq̇q

Zẇw 0 −Xu̇u Nṙr 0 −Kṗp
−Yv̇v Xu̇u 0 −Mq̇q Kṗp 0


The same reasons used to simplify MA applied to D(ν), where the damping matrix will only contain the
diagonal structure with the linear and quadratic damping terms on the diagonal:

D(ν) = −diag{Xu, Yv, Zw,Kp,Mq, Nr} − diag{Xu|u||u|, Yv|v||v|, Zw|w||w|,Kp|p||p|,Mq|q||q|, Nr|r||r|}
= −diag{Xu +Xu|u||u|, Yv + Yv|v||v|, Zw + Zw|w||w|,Kp +Kp|p||p|,Mq +Mq|q||q|, Nr +Nr|r||r|}

2.3.6 The vector τ

The forces and moments applied to the ROV come from the thrusters installed on it, these thrusters are
the active forces on the system and they produce the values on vector τ . The thrusters are placed as
shown on the figure 2.2.

F1

F2

F3

F4

353.17 mm

430.00 mm

211.40 mm

115.90 mm

189.43 mm

523.86 mm

325.49 mm

Figure 2.2: Thrusters on the ROV

There are 4 thrusters placed on the ROV:

• F1 - Back Left thruster

• F2 - Back Right thruster

• F3 - Side thruster

• F4 - Vertical thruster

The vector τ is given by:

23

2 THEORETICAL FUNDAMENTALS 2.4 Sea Currents

τ =


X
Y
Z
K
M
N

 = B


F1
F2
F3
F4

 =


1 1 0 0
0 0 1 0
0 0 0 1
0 0 −D3z D4y

D1z D2z 0 −D4x

−D1y −D2y D3x 0



F1
F2
F3
F4

 (2.17)

where B is a matrix of 6× 4 which distributes the action of the thrusters on the different components of
τ (X,Y,Z,K,M and N). B is formed by Dij which is the distance between each thruster to the center of
mass rG.

After defining the vector τ , all the values of Mν̇+C(ν)ν+D(ν)ν+g(η) = τ (Eq. 2.10) has been explained.

2.4 Sea Currents

One important effect of the ocean that affects every marine vehicle are the sea currents. The sea currents
have been used for centuries as routes through the ocean. The sea currents are caused by different effects
like: gravity, wind friction, water density variations in different parts of the ocean and thermohaline
currents which are produces by heat exchange at the sea surface together with salinity changes.

To model ocean currents and their effects on vessels motion, a new model must be applied:

MRB ν̇ + CRB(ν)ν + g(η) +MAν̇ + CA(νr)νr +D(νr)νr = τ

where MRB ν̇ +CRB(ν)ν + g(η) are the rigid-body terms, MAν̇ +CA(νr)νr +D(νr)νr the hydrodynamic
terms, and νr = ν−νc the current velocity vector, which is assumed to slowly-varing, producing a ν̇c ≈ 0.

Finally the result is:
Mν̇ + CRB(ν)ν + CA(νr)νr +D(νr)νr + g(η) = τ (2.18)

Current speed and direction is determined by vector νc, but the speed is noted as Vc, while its
direction relative to the moving vessel is expressed in terms of the angle of attack α and the sideslip angle
β.

Assuming an irrotational fluid, the 3D current model is given by:

uEcvEc
wEc

 = RTy,αc
RTz,−βc

Vc0
0


with:

RTy,αc
=

cosα 0 − sinα
0 1 0

sinα 0 cosα


RTz,−βc

=

cosβ − sinβ 0
sinβ cosβ 0

0 0 1


this results in:

uEc = Vc cosαc cosβc

vEc = Vc sinβc

wEc = Vc sinαc cosβc

24

2 THEORETICAL FUNDAMENTALS 2.5 CIDESI’s KAXAN ROV

Now we have the vector νEc which is the current velocity vector referred to the earth-fixed frame. If we
apply a rotation with the transformation matrix J(η) the velocity vector is obtained:

νc = J−1(η)νEc (2.19)

It is important to remark that the equation 2.18 is the formula used in all the calculations of the simulator.

2.5 CIDESI’s KAXAN ROV

The center for engineering and industrial development also known as CIDESI, belongs to the national
council of science and technology (CONACYT, Mexico). The CIDESI has two main missions: First,
generating value in companies and enhance their competitiveness by the development and application of
knowledge both relevant and pertinent. The second is promoting Mexican technology development.

In the Mexican oil and power industries there are great potential applications of underwater vehicles,
mainly on the inspection, maintenance and repair of underwater structures, specially in deep waters not
easily accessible to humans.

Because of these reasons CIDESI works in the development of an ROV suitable for the necessities of
Mexican’s oil and power industries. The current version of this ROV is a Shallow Water ROV named
KAXAN, which at Mexican Maya language means the seeker. The article [14] presents the considerations,
characteristics and specifics about the design of the KAXAN ROV.

Some characteristics about the KAXAN are:

• Weight: 108kg

• Dimensions: length 1.1m × width 0.65m × height 0.5m

• Maximum operation depth: 120m

• Sensors: Depth sensor and compass

• Thrusters: 1 vertical, 1 lateral and 2 at the back

• 2 underwater lamps

• Cameras: 1 on the front

• Electric manipulator: 3 functions manipulator, only for sample recollection, maximum sample
weight:5kg

The ROV’s elements and subsystems were designed and drawn using Solidworks, other critical elements,
for example the electronic container, were analysed using the software of finite element: Ansys.

Using specialized software the hydrostatic robot parameters were determinated; weight, buoyancy, gravity
center, flotation center and meta-centric height.

The ROV’s electronic architecture consists of two computers, the first one located at the surface and
the second inside the ROV’s electronic container, these computers communicate by an Ethernet protocol
using an umbilical cable with one optic fibre and two optic fibre’s multiplexer. The surface computer
includes a screen where the user can see the images taken by the ROV’s camera, with this computer the
user is able to move the vehicle using a joystick. The electronic architecture is monitored and controlled
by an application programmed in Labview, showing the system GUI.

25

2 THEORETICAL FUNDAMENTALS 2.6 State of the art

Surface computer

ROV’s computer

DC power supplied

Joystick

Screen

DAQ

DAQ

MUX Camera

Underwater
Lights

Thrusters

InclinometerUnderwater Arm Sensors:
Humidity,

Temperature,
Voltage and Current

Inertial navigation

IMU Depth sensor

Figure 2.3: Diagram of ROV’s computer system

The ROV counts with an specialized vision system capable of identifying patrons and doing object’s
measurements, with a precision of 95% in a range from 0.2m to 0.45m during laboratory experiments,
this kind of equipment is very helpful during underwater inspections.

2.6 State of the art

There exists a big number of delicate and expensive equipment which must be used carefully, there also
exist equipment which needs very special environmental conditions to work with, and to reproduce these
effects in a controlled environment is not suitable in every case, due to these reasons the use of simulators
is a necessity in several applications.

A lot of simulation platforms have been implemented both for fun or with scientific purposes.

A well known game that acts as a simulator is a flight simulator from Microsoft which recreates several
different flying conditions, and the user can fly through different environments using a rich number of
aircrafts. If the user counts with a joystick in his computer, the sensation of manoeuvring the airplane
with a shaft can be simulated.

A more scientific example is a training platform for a large tactical communication equipment [1], where
the real object is designed to work under war conditions, as one can image these environmental conditions
are not easily reproduced, therefore a training platform is required to teach the operators how to interact
with the machine and the different weather conditions and special phenomenons.

A simulation platform for a ship’s propulsion plant has also been created [15], in this simulator the non-
linear mathematical model of the propulsion systems has been programmed. The engine is a large low
speed, two-stroke diesel motor, the mathematical model also includes the shaft, a fixed pitch propeller
and ship hull dynamics. The navigation condition of the main propulsion of the ship can be properly
simulated and a good visualization of the engine is gained by the system. This system can adopted both,
training facility under laboratory conditions and a platform of intelligent control algorithm for marine
main diesel propulsion plant.

26

3 METHODOLOGY

3 Methodology

3.1 Set-up and considerations for the visual environment

The objective of this thesis is to program a simulator for the KAXAN ROV, capable to behave similarly
to the real submarine.

Some important aspects of the program must be:

• The program has to be a real time simulation.

• The input interface must be similar to the input interface of the KAXAN

• A visual output of the robot must be provided to the user

• The user must have the ability to simulate different sea currents

The compiler selected to program this simulator was Visual Studio C# (C Sharp). C#’s language was
selected instead of other languages because:

• It’s intended to be simple, modern, general-purpose and object-oriented

• It has source code portability, especially for those programmers already familiar with C and C++

• C#’s applications are intended to be economical regarding processing power and memory require-
ments, but the language was not intended to compete directly on performance and size with C or
assembly language

It is easier and faster to program in C# rather than C++, the language is more user-friendly than
traditional C++, even though a program in C++ runs faster than a program in C#, a light program (in
terms of size) like this, didn’t present any speed during its operation. Another important aspect is that
C# is object-oriented, therefore the code and the classes created for this program are suitable for its reuse
in other projects.

For the creation of the virtual environment, the ROV’s model was drawn using the libraries of OpenGL.
OpenGL stands for Open Graphics Library and it is an API for rendering graphics, usually in 3D. Since
graphic cards usually include an Open GL implementation, and the Open GL specification is not platform-
specific, a lot of the graphic process is done directly by the graphic card.

Different plug-ins (or libraries) exist to bind OpenGL’s functions and the forms created by C#, one of
these libraries is OpenTK. OpenTK allows C#’s users to access OpenGL, OpenAL and OpenCL, and
includes a lot of helpful functions like: mathematical functions, fonts, etc. It has been used in scientific
visualizations, modelling software and other projects. It also works directly with the graphic card so a
lot of computing work has been made by the graphic hardware, instead of the processor, making the
application nicer and faster.

To work with OpenTK, it is necessary to include the library into the project and then add a control
window to the form.

OpenTK offers support for different input devices, however the information about said support is scarce
so the TaoFrame was used instead. TaoFrame is an older library than OpenTK, but it offers support for
different joystick devices and the there’s plenty information on how to do it.

27

3 METHODOLOGY 3.2 The graphic models

Figure 3.1: OpenTK control inside a C# Form

3.2 The graphic models

To draw a graphic model in OpenGL, one must specify the position of each vertex for each polygon, to add
shadows and reflections to the drawings, one must include the normal vector for each vertex or polygon of
the model. Modifying these models directly in OpenGL implies that every time that a vertex needs to be
changed, it must be changed in all of the polygons that include this vertex. Doing this is easy for a simple
model (few polygons) but when the model is more complex, has round edges or is very detailed, doing
this manually, represents a real problem, so instead of drawing complex models directly with OpenGL,
other specialized programs for CAD or 3D modelling can be used. These programs include several tools
to draw and add effects to the model.

The disadvantage in drawing the models in another program is that the resulting file must be transformed
to OpenGL’s functions, however the model can be modified when needed with the specialized editor and
reconverted for use in the simulator.

3.2.1 Creation of the models

The KAXAN is already built and all the designs were made using the CAD program: Solidworks, therefore
for the purposes of this project Solidworks was also chosen.

The models drawn for this simulator were:

• KAXAN

– Top section

– Bottom section

• Oil Platform

– Buildings

– Platform

28

3 METHODOLOGY 3.2 The graphic models

– Supports

As it can been seen, the models were split in parts because each part has its own specific color, and each
part is loaded in the program as a complete object, with the ”Object loader class” (it will be discussed
in the following sections) it is not possible to specify a color (or any other property) for just a section of
the object, it must be applied to the whole object.

Figure 3.2: ROV on Solidworks

The original model of the ROV (Fig. 3.2) is very complex and has a lot of round shapes, therefore a
simpler model was created, all of the parts were neglected with the exception of the structures and the
thrusters in the back of the ROV. The thrusters were represented with two round cylinders in the back
part of the ROV. When creating the model it is recommended to add extra axes of reference, but these
axes must correspond with the axes of the body-fixed frame (Z axis pointing down). This is helpful in
order to give the correct orientation to the model.

Figure 3.3: Oil Platform on Solidworks

The oil platform (Fig. 3.3) is also a very simple representation of the real object, and it works just to
illustrate how a real platform would look from the perspective of the ROV. It is important to remark
that the model is just a visual object, and it does not interfere neither the dynamics of the robot nor the
currents.

A visual improvement to any program is the addition of shadows. The shadows create the effect of depth
in a model.

29

3 METHODOLOGY 3.2 The graphic models

To draw the shadows is necessary to:

• Include the information about the normal vector of each vertex

• Enable the lighting capabilities of OpenGL

• In order to use the colors of the model is necessary to define the behaviour of the materials

Calculating by hand the values of the normal vectors is easy but time consuming. The good thing about
some CAD programs is that they do these calculations automatically. How to implement these vectors in
the program will be defined later.

To enable the lighting capabilities it is required to define the light sources acting on the scene. There are
three different components in light sources: Ambient, Diffuse and Specular, because of the complexity of
these components, the differences between them are not going to be explained in this paper. OpenGL can
set until 8 different light sources at the same time. The following code shows how to configure a light in
the scene.

//Set the ambient, diffuse and specular components of the light

GL.Light(LightName.Light0, LightParameter.Ambient, Vector4.One);

GL.Light(LightName.Light0, LightParameter.Diffuse, Vector4.One);

GL.Light(LightName.Light0, LightParameter.Specular, Vector4.One);

GL.Light(LightName.Light0, LightParameter.Position,

new Vector4(1, 1, -1, 0));

GL.Enable(EnableCap.Light0);

3.2.2 Lighting

The light configured is set as Light0, it is a white light and includes the specular, the diffuse and the
ambient component. One important parameter is the position of the light, the position contains 4 values,
the first 3 values are the X, Y and Z components, and the fourth has an special behaviour, it tells OpengGL
whether the first three values are a position or a vector. In this example the fourth value is equal to 0,
therefore the other coordinates are the components of the light vector.

This was the code used to create a light source, but enabling the lighting in the scene is still needed:

GL.Enable(EnableCap.Light0);

GL.Enable(EnableCap.Lighting);

EnableCap.Light0 turns on the Light0 and EnableCap.Lighting enables the lighting capability.

To calculate the light reflected on, OpenGL can take in consideration the color of the model. For example
if the model is red, then all the light reflected will be red, because all the other colors are absorbed by
the model. The materials have also ambient, specular and diffuse components, and they specify how
the different light components will be reflected by the model. In addition the materials have a shining
component, which defines how focused the specular light is, being 0 unfocused, the focus value goes form
1 to 128 being 128 a surface very notable and shiny. The code used to specify the materials properties is
shown below:

Vector4 mat_amb = new Vector4(.2f, .2f, .2f, 1);

30

3 METHODOLOGY 3.2 The graphic models

Vector4 mat_diff = new Vector4(.8f, .8f, .8f, 1);

Vector4 mat_spec = new Vector4(.8f, .8f, .8f, 1);

//Set the specular, diffuse, ambient

//and shininess components

//of the material’s light response

GL.Material(MaterialFace.Front,

MaterialParameter.Specular, mat_spec);

GL.Material(MaterialFace.Front,

MaterialParameter.Diffuse, mat_diff);

GL.Material(MaterialFace.Front,

MaterialParameter.Ambient, mat_amb);

GL.Material(MaterialFace.Front,

MaterialParameter.Shininess, 25);

GL.ColorMaterial(MaterialFace.Front,

ColorMaterialParameter.Ambient);

GL.ColorMaterial(MaterialFace.Front,

ColorMaterialParameter.Diffuse);

//Enable material’s response to the light

GL.Enable(EnableCap.ColorMaterial);

It is required to specify as well which material parameters track the current color, GL.ColorMaterial()is
the function in charge to do this, if these properties are not specified then the color of the model is not
taken in consideration by OpenGL.

3.2.3 Sea bottom & Textures

As said before simpler models can be drawn directly in OpenGL, this is the case for the models created
for the bottom of the sea and the water surface.

To create the bottom of the sea a quad was draw, this was made by using simple equations of OpenGL,
the following code will exemplify how to draw it:

//Creation of a polygon

GL.Begin(BeginMode.Polygon);

GL.Vertex3(-0.2f, 0.2f, 0.0f);

GL.Vertex3(0.2f, 0.2f, 0.0f);

GL.Vertex3(0.2f, -0.2f, 0.0f);

GL.Vertex3(-0.2f, -0.2f, 0.0f);

GL.End();

To add a texture different considerations must be made, the first one is the coordinate system, this is
because the coordinate system of the textures is different that the original OpenGL coordinate system.

Therefore when the texture coordinates are bind with the polygon, in normal conditions, the polygon
coordinate (0,0) must not interfere with the texture coordinate (0,0). The following example show how
to apply bind a polygon vertex with a texture corner (or other position):

GL.BindTexture(TextureTarget.Texture2D, 0);

GL.Enable(EnableCap.Texture2D);

//Binding of texture coordinates with the polygons vertices

31

3 METHODOLOGY 3.2 The graphic models

(a) OpenGL coodinates (b) Texture coodinates

Figure 3.4: OpenGL and Texture coordinates

GL.Begin(BeginMode.Polygon);

GL.TexCoord2(0.0, 0.0);

GL.Vertex3(-0.2f, 0.2f, 0.0f);

GL.TexCoord2(1.0, 0.0);

GL.Vertex3(0.2f, 0.2f, 0.0f);

GL.TexCoord2(1.0, 1.0);

GL.Vertex3(0.2f, -0.2f, 0.0f);

GL.TexCoord2(0.0, 1.0);

GL.Vertex3(-0.2f, -0.2f, 0.0f);

GL.End();

But before the texture can be bind with the polygon it is necessary to load the texture, it can be saved
in a .bmp or .png or .jpg file and then it must be load into our program memory, assigned to a positon
and then it can be used. The following code shows how to load the texture information in our program:

GL.BindTexture(TextureTarget.Texture2D, 0);

//Load a new image

Bitmap bmp = new Bitmap("sand.bmp");

//Extract image data

BitmapData bmp_data = bmp.LockBits(new Rectangle(0, 0, bmp.Width,

bmp.Height),ImageLockMode.ReadOnly,

System.Drawing.Imaging.PixelFormat.Format32bppArgb);

//Bind texture to the image

GL.TexImage2D(TextureTarget.Texture2D, 0, PixelInternalFormat.Rgba,

bmp_data.Width, bmp_data.Height, 0,

OpenTK.Graphics.OpenGL.PixelFormat.Bgra, PixelType.UnsignedByte,

bmp_data.Scan0);

bmp.UnlockBits(bmp_data);

//Established texture parameters

GL.TexParameter(TextureTarget.Texture2D,

TextureParameterName.TextureMinFilter,

(int)TextureMinFilter.Linear);

GL.TexParameter(TextureTarget.Texture2D,

TextureParameterName.TextureMagFilter,

(int)TextureMagFilter.Linear);

//Generates mipmap for different sizes of polygons

GL.Ext.GenerateMipmap(GenerateMipmapTarget.Texture2D);

When more than one texture is being used (like in our case) it is important to use the sentence:

32

3 METHODOLOGY 3.2 The graphic models

GL.BindTexture(TextureTarget.Texture2D, x);

where the x is a number that specifies in which position the texture is going to be saved (there are a
limited number of positions that can be used, so one must be careful), the instruction is first used to bind
the following texture to the current environment, and the it must be used when the texture is applied to
the shapes.

To create the effect of a wide ocean bottom it is necessary reproduce this polygon n-times in X and Y
direction, a nested for instruction and dX and dY can do the work:

//Creation of several polygons with the same texture coordinates

GL.Enable(EnableCap.Texture2D);

for (float i = -10; i < 10; i++)

{

for (float j = -10; j < 10; j++)

{

GL.Begin(BeginMode.Polygon);

GL.TexCoord2(0.0, 0.0);

GL.Vertex3(-0.2f + (0.4*i), 0.2f + (0.4*j), 0.0f);

GL.TexCoord2(1.0, 0.0);

GL.Vertex3(0.2f + (0.4*i), 0.2f + (0.4*j), 0.0f);

GL.TexCoord2(1.0, 1.0);

GL.Vertex3(0.2f + (0.4*i), -0.2f + (0.4*j), 0.0f);

GL.TexCoord2(0.0, 1.0);

GL.Vertex3(-0.2f + (0.4*i), -0.2f + (0.4*j), 0.0f);

GL.End();

}

}

The final product will be an array of polygons producing an environment similar to an ocean bottom (Fig.
3.5)

3.2.4 Water surface & Blending

To create the sea surface it is important the same code can be used, with 2 small differences:

GL.BindTexture(TextureTarget.Texture2D, 1);

Bitmap bmp = new Bitmap("sea.bmp");

The name of the texture has changed to sea.bmp and since more than one texture is going to be used,
this new texture must be bind to a different position than the bottom texture.

Other important difference is that a second polygon must be included in the model, but this polygon must
face the opposite direction, by doing this the water surface can be watched from below.

Other visual difference between the bottom of the sea and the sea surface is that the surface is semi
translucent, this effect can be added to our simulator with just a few more instructions:

//Enable blending capabilities

33

3 METHODOLOGY 3.2 The graphic models

Figure 3.5: Bottom of the see

GL.Color4(1, 1, 1, 0.9f);

GL.Enable(EnableCap.Blend);

//Blending function

GL.BlendFunc(BlendingFactorSrc.SrcAlpha,

BlendingFactorDest.OneMinusSrcAlpha);

GL.CallList(surface);

GL.Disable(EnableCap.Blend);

The blending capability of OpenGL allows the model to blend with the others, to accomplish this instead of
using an RGB color, an RGBA color must be specified, the difference between an RGB and an RGBA color
is the opacity channel. Depending on the opacity and the Blending function (GL.BlendFunc) different
effects can be achieved.

Finally a water surface model was implemented (Fig. 3.6).

3.2.5 Fog

Other nice effect is the Fog effect. With this effect all the objects placed after a certain distance will be
covered with fog. In OpenGL different properties of the fog can be programmed, like: the behaviour, the
distance, the color, the density, etc.

GL.Enable(EnableCap.Fog);

float[] color = { 0f, 0.0f, .3f, 1f };

//Fog behaviour linear

GL.Fog(FogParameter.FogMode,(int)FogMode.Linear);

GL.Fog(FogParameter.FogColor, color);

//Density of the fog

GL.Fog(FogParameter.FogDensity, 0.35f);

34

3 METHODOLOGY 3.2 The graphic models

Figure 3.6: Sea surface

GL.Hint(HintTarget.FogHint, HintMode.Nicest);

//Where the fog starts

GL.Fog(FogParameter.FogStart, 25.0f);

//Where it ends

GL.Fog(FogParameter.FogEnd, 50.0f);

The code above set the characteristics of the fog used in our model, and in the following image (Fig. 3.7),
the final result can be seen.

Figure 3.7: Fog effect

35

3 METHODOLOGY 3.2 The graphic models

3.2.6 3D models in Wavefront format

Several formats for 3D model objects exist, almost each CAD editor or 3D model creator has its own
extension, but portability is necessary and there are other common extensions to share 3D models. One
commonly used extension is .obj (Wavefront .obj file). This extension can be used for several different
programs, and the specifications of theses files are well known so it’s easy to know how to implement them
in a new program like this.

The disadvantage is that KAXAN model was made using Solidworks, and Solidworks doesn’t work with
.obj files, then another program had to be used to transform the Solidworks’ files to Wavefront’s files.
For this purpose the 3D model software: Blender, was selected. Solidworks can save the model like an
STL file (.stl) and then Blender can import this file, change it if necessary (in case of round shapes for
example) and export the model as Wavefront.

Figure 3.8: ROV on Blender

Round shapes have the problem that are drawn using several polygons, using Blender we can reduce
the number of polygons in the model by joining vertex that are close to each other. If the number of
polygons is reduced, then the quality of the image decreases, but also the processing work of this graphics
diminishes, we must not forget that not only the KAXAN model must be drawn, also all the virtual
environment surrounding it.

Figure 3.9: Round figures using 340 polygons

36

3 METHODOLOGY 3.2 The graphic models

Figure 3.10: Round figures using 124 polygons, after reduction with Blender

A Wavefront file is made of the following sections:

Vertex section: Each vertex specified in the file is precede by a ’v ’, it is important not to forget the
space after the ’v’, and then the x, y and z coordinates. After each vertex definition the next ’v ’ will be
placed (if there is any other vertex left). For example v 0.0 0.0 1.0v 1.0 0.0 0.0, defines 2 vertex, one in
the coordinates (0,0,1) and the second in (1,0,0).

Texture coordinates section: This section begins with a ’vt ’, followed by the u and v coordinates,
these u and v coordinates are points of the texture that will be bound to some vertex in the polygon. For
example vt 0.0 1.0vt 1.0 0.0, defines 2 texture coordinates, the first coordinate is the (0,1) of the bitmap
and the second the (1,0).

Normals section: Each normal specified in the file is preceded by a ’vn ’, and then the x, y and z
component of the vector, as in the Vertex section after each vertex definition a new ’vn ’ will precede. For
example vn 0.7 0.7 0.0vn 0.0 1.0 0.0, defines 2 normals, the first pointing to (0.7,0.7,0) and the second
to (0,1,0).

Faces section: The faces definitions begin with an ’f ’ and then the three or more indexes. Each index
contains the information about the vertex, the texture coordinates and the normal vector, and each index
can be written in 3 different ways.

1. The first one is just the information about the vertex, for example f 1 2 3f 2 3 4 5, defines 2 faces,
the first one is made by 3 different vertex, in this case ’1’ that means the first defined vertex in the
vertex section, ’2’ the second defined vertex and so on, so the first face is a triangle made by the
first, the second and the third defined vertex. The second face is made with the second, the third,
the fourth and the fifth defined vertex, so it will be a four sided polygon like an rectangle.

2. The second specifies the vertex and the texture coordinate and these two are separated by a slash
’/’. For example f 1/1 2/2 3/3f 2/1 3/2 4/3 5/4, the first face has the same shape as in the last
example, but in this example the first vertex is bound with the first texture coordinate and so on.

3. The third specifies the vertex, the texture coordinate and the normal vector, these three are separated
by a slash ’/’, here is important to say that the texture coordinate can be omitted. For example
f 1//1 2//2 3//3f 2//1 3//2 4//3 5//4 the first face has the same shape as in the last example,
but all the texture coordinates were omitted and instead a new normal vector was bound to each
vertex. This is actually the specification used in the simulator.

There are more specifications in the Wavefront files that can be used to select textures or materials, but
they were not considered in this project due to timing and complexity.

37

3 METHODOLOGY 3.2 The graphic models

3.2.7 Object loader Class

As said before the models created in a Wavefront format need to be transformed to OpenGL functions,
that is why for the purposes of this project a Class was created, so the model can be easily changed in
a CAD application and then easily loaded in the simulator without making changes to the code of the
program. This class can be found in the files of the program as load obj.cs.

This Class is divided in 3 sections:

• Object Structure

• Decoding

• Printing

Object Structure is a section where a new structure is defined, every instance of the structure will hold
all the information about the model like: its vertex, its normals and the faces (or polygons) forming the
model.

public struct new_object

{

public ArrayList vertex;

public ArrayList normals;

public ArrayList faces

}

The structure holds 3 ArrayList, these lists are an easy way to store and retrieve information in C#. To
create an instance of the object it is necessary to add the class to the project and then the following code
to our main file:

load_obj.new_object rov;

Now a new instance of the structure call rov has been created.

Decoding is the section where the .obj file is being read and then save into the structure defined before.

The first part of the function is the declaration part:

public new_object decoder(string file_name)

{

new_object obj = new new_object();

obj.vertex = new ArrayList();

obj.normals = new ArrayList();

obj.faces = new ArrayList();

string file_str = "";

It is worth mentioning that the function returns a structure of type new object and its only input pa-
rameter is a string containing the path and name of the .obj file. Inside of the structure a new empty

38

3 METHODOLOGY 3.2 The graphic models

instance of our structure is declared. Since the structure is formed by an Arraylist (that is also a class),
the instances for the vertex, normals, and faces must be initialized.

After the initialization it is necessary to check if the file exists, if not a dummy file call cube.jpg will be
loaded

if (File.Exists(file_name) == true)

{

StreamReader file = new StreamReader(file_name);

file_str = file.ReadToEnd();

file.Close();

}

else

{

StreamReader file = new StreamReader("cube.obj");

file_str = file.ReadToEnd();

file.Close();

}

As it was explained in the Wavefront section (3.2.6) the .obj file used in this application contains three
parts: the vertex part, the normals and the faces. The vertex part and the normals part work in a very
similar way, therefore only the vertex part will be explained.

Every vertex triad is preceded by a ’v ’ (a ’vn ’ in the case of the normals) so the function must look
for every ’v ’ inside the document. After finding the chain (’v ’), the following 3 numbers will be the
coordinates of the vertex, the function will take this substring and then divided by their comas, the first
number will be the the x coordinate, then the y and finally the z coordinate. These coordinates are saved
into a Vector3d structure and finally this structure is added to the obj.vertex (obj.normals in the case of
the normals) array.

int i = 0;

int index_nextv = 0;

do

{

if (index_nextv == 0)

{

//Search where the next vector begins

int index = file_str.IndexOf("v ", i);

i = index + 2;

}

else

{

i = index_nextv;

i += 2;

}

string[] num = new string[3];

string sub = "";

index_nextv = file_str.IndexOf("v ", i);

if (index_nextv > 0)

{

sub = file_str.Substring(i, index_nextv - i);

}

39

3 METHODOLOGY 3.2 The graphic models

else

{

int nextvn = file_str.IndexOf("vn ", i);

sub = file_str.Substring(i, nextvn - i);

}

num = sub.Split(’ ’);

double x, y, z;

x = double.Parse(num[0]);

y = double.Parse(num[1]);

z = double.Parse(num[2]);

Vector3d v = new Vector3d(x, y, z);

obj.vertex.Add(v);

} while (index_nextv > 0);

The difference between the faces part and the vertex part is that in the faces case, they are constructed
for at least 3 vertex but they can be formed by 4 or more, and for every corner of the polygon it exists
also a normal vector bound to it. After finding the ’f ’ preceding the corners information, this subchain
is divided one more time at every blank space, and each section of this is also split at every slash, the first
element of the slash is the vertex index, the second is the texture coordinate which will be empty in our
models, and the third one will be the normal index. The normal index and the vertex index are saved as
text into a string variable separated by a coma, then every other pair of normal and vertex indexes are
added to the string. Finally this string is added to the obj.faces array.

do

{

if (index_nextf == 0)

{

int index = file_str.IndexOf("f ", i);

i = index + 2;

}

else

{

i = index_nextf;

i += 2;

}

string num = "";

string sub = "";

index_nextf = file_str.IndexOf("f ", i);

if (index_nextf > 0)

{

sub = file_str.Substring(i, index_nextf - i);

}

else

{

sub = file_str.Substring(i);

}

string[] face_parts;

face_parts = sub.Split(’ ’);

for (int k = 0; k < face_parts.Length; k++)

{

string[] vertex;

vertex = face_parts[k].Split(’/’);

40

3 METHODOLOGY 3.2 The graphic models

num += vertex[2] + "," + vertex[0] + ",";

}

num = num.Substring(0, num.Length - 1);

obj.faces.Add(num);

} while (index_nextf > 0);

This ends the decoder section, now all the information about the model is stored in the target structure.

Printing is the section where the model is actually transformed into OpenGL instructions. The function
in charge of this is called print, and its declaration is:

public string print(new_object obj, BeginMode mode, bool text,

double scale)

{

string str = "";

The print function returns a string, and its input parameters are:

• The model contained in a new object structure

• The OpenGL printing mode (BeginMode.Polygon draws a polygon, BeginMode.Lines draws only
the edges of the faces, BeginMode.Points draws only dots)

• A bool value, if false the function will return an empty string but will execute the OpenGL instruc-
tions to draw the model, if true the function will return a string containing the functions but it will
not execute any OpenGL instructions.

• And finally, if necessary, a double value used to scale the model (but not the normal vectors), being
1 the default size of the model, 2 the double, and 0.5 the half.

The first section of the function is to declare the drawing mode that OpenGL must use:

if (text)

str += "\r\nGL.Begin(BeginMode." + mode.ToString() + ");";

else

GL.Begin(mode);

Now it’s time to draw the polygons. First, remember that the faces were saved in a string format in the
next sequence: f=vn1,v1,vn2,v2,vn3,v3...,vnk,vk,where vn1 is the index of the normal vector and v1 is the
index of the position of the first corner.

The program reads every enter of the obj.faces array, after reading it, the function splits this string in
every coma, and runs a loop with an increment of two to read the pairs of objects in the array. Then
selects the normal from the obj.normals and the position from the obj.vertex.

for (int j = 0; j < segment.Length - 1; j += 2)

{

int num_normal = int.Parse(segment[j]);

int num_vertex = int.Parse(segment[j + 1]);

num_normal--;

41

3 METHODOLOGY 3.3 Joystick functions

num_vertex--;

if (text)

str += "\r\nv=new Vector3d " + obj.normals[num_normal].ToString()

+";\r\nGL.Normal3(v);";

else

GL.Normal3((Vector3d)obj.normals[num_normal]);

v = (Vector3d)obj.vertex[num_vertex];

v *= scale;

if (text)

str += "\r\nv=new Vector3d " + v + ";\r\nGL.Vertex3(v);";

else

GL.Vertex3(v);

}

The last part is the closing of the drawing functions of OpenGL.

if (text)

str += "\r\nGL.End();\r\n";

else

GL.End();

}

return str;

To create an instance of the decoder and printer function with the name loader, the following code must
be added:

load_obj loader = new load_obj();

Here is an implementation of this class used to load the models of the ROV inside the program:

//Creates an OpenGL List

//This is useful when certain polygons

//require a lot of operations to calculate the vertices

//with the list these calculations

//are only made once

GL.NewList(rov_model, ListMode.Compile);

rov = loader.decoder("models/rov_p1.obj");

GL.Color3(Color.Yellow);

loader.print(rov, BeginMode.Polygon, false, 1);

rov = loader.decoder("models/rov_p2.obj");

GL.Color3(Color.Black);

loader.print(rov, BeginMode.Polygon, false, 1);

GL.EndList();

3.3 Joystick functions

To control the KAXAN ROV two different input devices exist: the first one is a SONY Dualshock 3
Sintaxis joystick (Fig. 3.11), and the second one is a joystick designed in CIDESI specially for the ROV.
In this project the Sintaxis joystick was selected because it is more portable than the custom-made joystick

42

3 METHODOLOGY 3.3 Joystick functions

and it offers more plugging options (USB cable or wireless via Bluetooth). The driver used in this project
was downloaded from the MotioninJoy website[10], with this driver it is possible to connect the Sintaxis
joystick with a windows operating system using USB or Bluetooth. Using this driver it is possible to
configure the joystick in 3 different options: Playstation control, Xbox 360 control, or custom. In this
implementation the joystick was configured as an Xbox 360 control, in the case of not having a Sintaxis
joystick it can be replaced with a Xbox 360 control. With this configuration the joystick has: 16 Buttons,
5 Axes and a Hat switch (POV).

Figure 3.11: Dualshock 3 Sintaxis Joystick

As said before in the considerations section (3.1) the TaoFramework library is used to retrieve information
about the joystick, there are two main ways to achieve this purpose. The first one consists in having a
thread in our program which is constantly reading the flags of the joystick. These flags are activated
when a button is pressed or an axis is moved. The second way to retrieve the information of the joystick
is to read the input information at request, not in a continue way as in the first option. The second
option was selected because it reduces complexity in the program and because it was not necessary to
read continuously the state of the joystick, it can be read every time the scene is redrawn (every 0.16
milliseconds).

First the program initiates the joystick invocations, and then searches all the joysticks connected to the
computer, if at least one is connected the program selects the first one.

Sdl.SDL_Init(Sdl.SDL_INIT_JOYSTICK);

int num_joysticks = Sdl.SDL_NumJoysticks();

IntPtr Joystick;

if (num_joysticks > 0)

{

Joystick = Sdl.SDL_JoystickOpen(0);

}

A joystick structure was created to save the characteristics of the joystick, for example, the returned value
by the joystick at its maximum axis position and also at its minimum axis position (Appendix C.1).

To read the current information of the joystick an update is invoked, then each value of interest is taken
and processed. The x axis controls the thruster that moves the ROV sideways and also is the one that
makes the KAXAN turn along its Z axis. The y axis of the Joystick controls the voltage in the thrusters
that moves the ROV back and forth, these thrusters are located in the back and inferior sides of the
ROV. The z axis changes the desired Z. The depth control is the one in charge of supplying the necessary
voltage to move the ROV to this position. This desired Z cannot be less than 0 so software constraint

43

3 METHODOLOGY 3.4 Solution of equations (Mass-Spring-Damper)

Y2+

Y2-

X2-
X2+

Y+

Y-

X-
X+

Z+Z-

Reset
the

Camera

On/O�
Orientation
Controller

Figure 3.12: Axes labels

was included. The x2 axis rotates the camera along the center of the object, this rotation has a radius
of 3m from the center of the model. and finally the y2 axis moves the camera along the Z axis of the
environment. The cross button of the joystick is used to reset the camera to its initial position from the
center of the object and the circle button is used to enable and disable the direction control. It worth
mentioning that the camera on the Orthogonal view is controlled by x2 and y2 axis, but not the camera
on the Perspective view. The code can be seen in appendix C.2.

At the end of the program is important to close the use of the joystick, it is just necessary to add this
line:

Sdl.SDL_JoystickClose(Joystick);

3.4 Solution of equations (Mass-Spring-Damper)

The dynamic behaviour of the ROV can be described with the equation:

Mν̇ + C(ν)ν +D(ν)ν + g(η) = τ

If we want to know the η vector is necessary to clear the ν̇ vector from 2.10 and solve the differential
equation, make the corresponding transformations to earth fixed coordinates and we will obtain η vector.

ν̇ = M−1(τ − (C(ν)ν +D(ν)ν + g(η))) (3.1)

η̇ = J(η2) ν

η =

∫
η̇ dt

The main problem is, that the solution of the differential equation 3.1 is really complex (let’s remember
than M , C and D are matrices of 6×6), therefore solving this equation on real time for every change in
the ROV’s environment (like sea currents) is not a practical option. Therefore other methods to solve
this equation must be used.

Instead of searching for the solution to this problem, we can try looking for the solution of a simpler but
similar problem, for example a Mass Spring Damper system.

44

3 METHODOLOGY 3.4 Solution of equations (Mass-Spring-Damper)

The Mass Spring Damper system behaves as the following equation:

mẍ(t) + cẋ(t) + kx(t) = f(t) (3.2)

Now let’s solve the equation:

ẍ(t) =
f(t)− cẋ(t)− kx(t)

m
(3.3)

Let’s assume that the object starts moving from rest, therefore x(0)=0, ẋ(0)=0 and let’s give values to

m = 1Kg , c = 10
Ns

m
, k = 20

N

m
and f = 50N , then

ẍ(t0) =
f(0)− cẋ(0)− kx(0)

m

ẍ(t0) =
50− 10 ∗ 0− 20 ∗ 0

1
ẍ(t0) = 50

Now we want to know the position at 0.01s:

t0 = 0

t1 = 0.01

ẍ(t1) ≈ f(t)− cẋ(t0)− kx(t0)

m

≈ 50− 10 ∗ 0− 20 ∗ 0

1
≈ 50

ẋ(t1) =

∫ t1

t0

ẍ(t)dt ≈ 0.5

x(t1) =

∫ t1

t0

ẋ(t)dt ≈ 0.0025

The obtained ẍ(t1) value is just an approximation, because to get the real value (or at least a very similar
one) is necessary to solve the equation 3.3 with the values of ẋ(t1) and x(t1), but to get ẋ(t1) and x(t1)
it’s necessary the value of ẍ(t1), therefore the proposal is to make a recursive algorithm that recalculates
the value of ẍ(t1), ẋ(t1) and x(t1) until they converge to a similar value or a certain number of loops has
been reached.

For example if ẍ(t1) is recalculated with the values obtained by the first run, a new set of numbers will
be returned:

ẍ(t1) ≈ f(t)− cẋ(t1)− kx(t1)

m

≈ 50− 10 ∗ .5− 20 ∗ .0025

1
≈ 44.95

ẋ(t1) =

∫ t1

t0

ẍ(t)dt ≈ 0.4748

x(t1) =

∫ t1

t0

ẋ(t)dt ≈ 0.0024

45

3 METHODOLOGY 3.4 Solution of equations (Mass-Spring-Damper)

If this process is repeated a few more times a set of converged values are obtained:

ẍ(t1) = 45.1928

ẋ(t1) = 0.4746

x(t1) = 0.0024

The intention is to create a simulator on C# to calculate the ROV’s movement, then a program in C#
to calculate the Mass Spring Damper behaviour must be also created (Fig. 3.14). To compare the results
a Matlab Simulink model was also created (Fig. 3.13).

Figure 3.13: Mass Spring Damper model in Matlab

Figure 3.14: Mass Spring Damper model in C#

In Matlab is not required to include the recursive algorithm since Matlab does it automatically. Another
characteristic of Matlab is that it can simulate as continue mode or as discrete mode, the discrete mode
has been selected so the C# application can be modified to match the Matlab’s model.

To solve the equations it is necessary to integrate and to differentiate (differentiation is necessary for the
PID controller) and since we are working with a discrete process, numerical methods are needed to do
both operations.

There are several types of numerical methods to integrate, here two of the more common methods are
going to be explained. The first one is the trapezoidal method where:∫ b

a

f(x)dx ≈ (b− a) ∗ f(a) + f(b)

2

46

3 METHODOLOGY 3.4 Solution of equations (Mass-Spring-Damper)

The advantages of this method is that only two points are needed to know the value of the integral and
if the step of time is very short then a very good approximation is obtained. For big periods of time, a
property of the define integral can be used:∫ a2

0

f(x)dx =

∫ a1

0

f(x)dx+

∫ a2

a1

f(x)dx ∴

if A1 =

∫ a1

0

f(x)dx

A2 =

∫ a2

0

f(x)dx = A1 +

∫ a2

a1

f(x)dx

...

An =

∫ an

0

f(x)dx = An−1 +

∫ an

an−1

f(x)dx

The second method is the Simpson’s rule, where the function f(x) is approximated by a quadratic poly-
nomial in the interval [a, b].∫ b

a

f(x)dx ≈
∫ b

a

P (x)dx =
b− a

6

[
f(a) + 4f

(
a+ b

2

)
+ f(b)

]
The problem with the Simpson’s rule is that the function’s value at the middle point f(a+b2) is needed.

The first method was selected because it contains fewer operations and it is easier to calculate, the results
(shown later in this section) proved that this method is accurate enough for the problem’s needs.

The code of the numerical method is shown below:

private double integration(ref ArrayList func,ref ArrayList func1, double time)

{

double integrate = 0;

double f0, f1;

int count = func.Count;

if (count != 1)

{

f0 = (double)func[count - 2];

f1 = (double)func[count - 1];

//Trapezoidal Method (f1+f0)*dt/2

integrate = (time) * (f1 + f0) / 2;

//Add the value of the integral to the old values,

//this is equal to the integration from 0 to the current value

integrate += (double)func1[count - 2];

}

else

//If there is only one value on the array,

//the result of the integration is f(0)*dt/2

return (double)func[0]*time/2;

return integrate;

}

47

3 METHODOLOGY 3.4 Solution of equations (Mass-Spring-Damper)

To continue with the numerical methods let’s take a look to the differentiation method. Let’s say that

f(x) = pn(x) +Rn(x)

where p is a Newton’s polynomial of degree n, then the first approximation of the differentiation is:

df(x)

dx
≈ dpn(x)

dx

or in general
dnf(x)

dnx
≈ dnpn(x)

dnx

where the error is defined as:
dnRn(x)

dnx

With a polynomial of degree 1 the result is:

f(x) ≈ p1(x) = f [x0] + (x− x0)f [x0, x1] = f(x0) + (x− x0)
f(x1)− f(x0)

x1 − x0

df(x)

dx
≈ dp1(x)

dx
=
f(x1)− f(x0)

x1 − x0
(3.4)

This equation 3.4 is the most used numerical differentiation method.

Now let’s use a second degree polynomial:

f(x) ≈ p2(x) = f [x0] + (x− x0)f [x0, x1] + (x− x0)(x− x1)f [x0, x1, x2]

df(x)

dx
≈ dp2(x)

dx
= f [x0, x1] + (2x− x0 − x1)f [x0, x1, x2]

=
f(x1)− f(x0)

x1 − x0
+ (2x− x0 − x1)

f(x2)− f(x1)

x2 − x1
− f(x1)− f(x0)

x1 − x0
(x2 − x0)

=
f(x1)− f(x0)

x1 − x0

+ (2x− x0 − x1)
(x1 − x0)(f(x2)− f(x1))− (x2 − x1)(f(x1)− f(x0))

(x2 − x0)(x2 − x1)(x1 − x0)

=
f(x1)− f(x0)

x1 − x0

+ (2x− x0 − x1)
(x1 − x0)f(x2)− (x2 − x0)f(x1) + (x2 − x1)f(x0)

(x2 − x0)(x2 − x1)(x1 − x0)

=
((2x− x0 − x1)− (x2 − x0)f(x0)

(x2 − x0)(x1 − x0)

+
(−(2x− x0 − x1) + (x2 − x1)f(x1)

(x2 − x1)(x1 − x0)

+
(2x− x0 − x1)f(x2)

(x2 − x0)(x2 − x1)

∴
df(x)

dx
≈ (2x− x1 − x2)f(x0)

(x0 − x1)(x0 − x2)
+

(2x− x0 − x2)f(x1)

(x1 − x0)(x1 − x2)
+

(2x− x0 − x1)f(x2)

(x2 − x0)(x2 − x1)
(3.5)

If x = x2 is substituted in 3.5 the function changes to:

48

3 METHODOLOGY 3.4 Solution of equations (Mass-Spring-Damper)

f ′(x2) ≈ (x2 − x1)f(x0)

(x0 − x1)(x0 − x2)
+

(x2 − x0)f(x1)

(x1 − x0)(x1 − x2)
+

(2x2 − x0 − x1)f(x2)

(x2 − x0)(x2 − x1)
(3.6)

This is the representation of equation 3.6 in C# code:

private double diff(ref ArrayList func, ref ArrayList time, double d_time)

{

double diff = 0;

int count = func.Count;

double t0,t1,t2,f0,f1,f2;

if (count == 1)

{

//This function is the same as the function in Matlab

/*

f0 = (double)func[0];

diff = f0 / d_time;

return diff;

/* */

//But when there is only one element we cannot be sure of the Derivate to

return 0;

}

//If only two elements are present, the polynomial of 1 degree is used

else if (count <= 2)

{

f0= (double)func[0];

f1= (double)func[1];

diff = (f1 - f0) / (d_time);

}

//If more than two elements are present, the polynomial of 2 degrees is used

else

{

t0 = (double)time[count - 3];

t1 = (double)time[count - 2];

t2 = (double)time[count - 1];

f0 = (double)func[count - 3];

f1 = (double)func[count - 2];

f2 = (double)func[count - 1];

double p1 =((t2 - t1) * (f0) / ((t0 - t1) * (t0 - t2)));

double p2=((t2 - t0) * (f1) / ((t1 - t0) * (t1 - t2)));

double p3=(((2 * t2) - t1 - t0) * (f2) / ((t2 - t1) * (t2 - t0)));

diff = p1 + p2 + p3;

}

return diff;

}

3.4.1 Matlab vs C# vs Real

It’s important to remark that the C# solution’s model works in discrete mode, with a given 4t equals to
a step given by the user (default value of 0.01 seconds), therefore to make a good comparison with the
Matlab’s model, this must be configured to work in discrete mode with the same step time and and using

49

3 METHODOLOGY 3.4 Solution of equations (Mass-Spring-Damper)

the same integration method. Unfortunately Matlab uses different methods to differentiate than the one
used in the C#’s model.

Because 3.2 is not a big and complex model, the solution of the differential equation 3.3 (using the given
values of the constants) can be found:

ẍ(t) =
50− 10ẋ(t)− 20x(t)

1

x(t) =
5

2
− 51/2(51/2 − 5)

4et(51/2+5)
− 51/2et(5

1/2−5)(51/2 + 5)

4
(3.7)

ẋ(t) =
51/2(51/2 − 5)(51/2 + 5)

4et(51/2+5)
− 51/2et(5

1/2−5)(51/2 − 5)(51/2 + 5)

4
(3.8)

ẍ(t) = −51/2(51/2 − 5)(51/2 + 5)2

4et(51/2+5)
− 51/2et(5

1/2−5)(51/2 − 5)2(51/2 + 5)

4
(3.9)

Now with equations 3.7, 3.8 and 3.9 the results from Matlab and C# can be compared to the equation
model in continues mode instead of discrete behaviour.

0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

2

2.5

Position

Simulink

C#

Real

Seconds

M
e
te
rs

Figure 3.15: Position

Time Simulink C# Real
0 0 0 0

0.01 0.00238 0.00238 0.002418
0.02 0.009288 0.009288 0.009359
0.03 0.020281 0.020281 0.020379
0.04 0.034948 0.034948 0.035069
0.05 0.052912 0.052912 0.053051
0.06 0.073825 0.073825 0.073979
0.07 0.097367 0.097367 0.097532
0.08 0.12324 0.12324 0.12341
0.09 0.15118 0.15118 0.15136
0.1 0.18093 0.18093 0.18111

Table 3.1: Position

As it can be seen in figures: 3.15, 3.16 and 3.17, the 3 graphics are very similar between each other, and
comparing the results between 0 and 0.1 seconds on tables: 3.1, 3.2 and 3.3 the values of Simulink and

50

3 METHODOLOGY 3.4 Solution of equations (Mass-Spring-Damper)

C# are the same, there is only a little difference no bigger than 1% between Simulink/C# and the Real
value.

As it was defined in the problem’s objectives a PID controller must be included in the simulator, therefore

0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

2

2.5

3

3.5

4
Velocity

Simulink

C#

Real

Seconds

M
e
te
r/
S
e
c

Figure 3.16: Velocity

Time Simulink C# Real
0 0 0 0

0.01 0.47596 0.47596 0.47565
0.02 0.90571 0.90571 0.90514
0.03 1.2928 1.2928 1.292
0.04 1.6406 1.6406 1.6396
0.05 1.9522 1.9522 1.9511
0.06 2.2304 2.2304 2.2291
0.07 2.4779 2.4779 2.4765
0.08 2.6971 2.6971 2.6956
0.09 2.8903 2.8903 2.8887
0.1 3.0596 3.0596 3.058

Table 3.2: Velocity

0 0.5 1 1.5 2 2.5 3
−10

0

10

20

30

40

50

Acceleration

Simulink

C#

Real

Seconds

M
e
te
r/
S
e
c
2

Figure 3.17: Acceleration

51

3 METHODOLOGY 3.4 Solution of equations (Mass-Spring-Damper)

Time Simulink C# Real
0 50 50 50

0.01 45.193 45.193 45.195
0.02 40.757 40.757 40.761
0.03 36.666 36.666 36.672
0.04 32.895 32.895 32.902
0.05 29.42 29.42 29.428
0.06 26.219 26.219 26.229
0.07 23.274 23.274 23.284
0.08 20.565 20.565 20.576
0.09 18.074 18.074 18.086
0.1 15.786 15.786 15.798

Table 3.3: Acceleration

a PID controller was implemented in this test. The first step was to program a proportional (P) controller.

Figure 3.18: Matlab’s control model

Figure 3.19: C#’s control model

In figures 3.18 and 3.19 both control models can be seen. This figures represent the P, PI and PID
controller, the only difference between each controller is that for P controller both Ki and Kd equals 0,
and in PI controller Kd equals 0.

Like in section 3.4.1 the differential equations that includes the P, PI and PID controller can be calculated:

F (t) = Kp ∗ ε(t) +Ki

∫
ε(t)dt+Kd

dε(t)

dt
(3.10)

The error is defined as: ε(t) = xd − x(t) (3.11)

52

3 METHODOLOGY 3.4 Solution of equations (Mass-Spring-Damper)

Replacing 3.10 and 3.11 in 3.3 results in:

ẍ(t) =

(
Kp(xd − x(t)) +Ki

∫
(xd − x(t))dt+Kd

d(xd − x(t))

dt

)
− cẋ(t)− kx(t)

m
(3.12)

The solution of 3.12 results in a very long equation that is not worth writing in this paper.

In the next sections the results of each type or controller (P, PI and PID) are going to be explained, but
before continuing the initial conditions must be established:

xd = 1

Kp = 350

Ki = 300

Kd = 50

3.4.2 Results of P Controller

0 0.5 1 1.5 2 2.5
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Position

Simulink

C#

Real

Seconds

M
e
te
rs

Figure 3.20: Position P Controller

Time Simulink C# Real Sim-C# Real-Sim Real-C#
0 0 0 0 0 0 0

0.01 0.0165 0.0165 0.0169 0 0.0004 0.0004
0.02 0.0639 0.0639 0.0648 0 0.0009 0.0009
0.03 0.1377 0.1377 0.139 0 0.0013 0.0013
0.04 0.2327 0.2327 0.2345 0 0.0018 0.0018
0.05 0.3437 0.3437 0.3459 0 0.0022 0.0022
0.06 0.4652 0.4652 0.4678 0 0.0026 0.0026
0.07 0.5921 0.5921 0.5948 0 0.0027 0.0027
0.08 0.7193 0.7193 0.7221 0 0.0028 0.0028
0.09 0.8424 0.8424 0.8451 0 0.0027 0.0027
0.1 0.9576 0.9576 0.96 0 0.0024 0.0024

Table 3.4: Position P Controller

The results of the P controller show very similar values between the models of Simulink and C#, and just
a little difference between them and the value of the real equations.

53

3 METHODOLOGY 3.4 Solution of equations (Mass-Spring-Damper)

0 0.5 1 1.5 2 2.5
−6

−4

−2

0

2

4

6

8

10

12

14
Velocity

Simulink

C#

Real

Seconds

M
e
te
r/
S
e
c

Figure 3.21: Velocity P Controller

Time Simulink C# Real Sim-C# Real-Sim Real-C#
0 0 0 0 0 0 0

0.01 3.3042 3.3042 3.3102 0 0.006 0.006
0.02 6.1811 6.1811 6.1892 0 0.0081 0.0081
0.03 8.5705 8.5705 8.577 0 0.0065 0.0065
0.04 10.4349 10.4349 10.4364 0 0.0015 0.0015
0.05 11.7588 11.7588 11.7526 0 -0.0062 -0.0062
0.06 12.547 12.547 12.531 0 -0.016 -0.016
0.07 12.8225 12.8225 12.7955 0 -0.027 -0.027
0.08 12.6241 12.6241 12.5856 0 -0.0385 -0.0385
0.09 12.0035 12.0035 11.954 0 -0.0495 -0.0495
0.1 11.0221 11.0221 10.9628 0 -0.0593 -0.0593

Table 3.5: Velocity P Controller

0 0.5 1 1.5 2 2.5
−200

−100

0

100

200

300

400

Aceleration

Simulink

C#

Real

Seconds

M
e
te
r/
S
e
c
2

Figure 3.22: Acceleration P Controller

54

3 METHODOLOGY 3.4 Solution of equations (Mass-Spring-Damper)

Time Simulink C# Real Sim-C# Real-Sim Real-C#
0 350 350 350 0 0 0

0.01 310.845 310.845 310.653 0 -0.1921 -0.1921
0.02 264.528 264.528 264.146 0 -0.3829 -0.3829
0.03 213.344 213.344 212.792 0 -0.5524 -0.5524
0.04 159.54 159.54 158.856 0 -0.6843 -0.6843
0.05 105.243 105.243 104.477 0 -0.7662 -0.7662
0.06 52.3953 52.3953 51.6049 0 -0.7904 -0.7904
0.07 2.7066 2.7066 1.953 0 -0.7536 -0.7536
0.08 -42.3856 -42.3856 -43.0423 0 -0.6567 -0.6567
0.09 -81.7403 -81.7403 -82.245 0 -0.5047 -0.5047
0.1 -114.525 -114.525 -114.83 0 -0.3055 -0.3055

Table 3.6: Acceleration P Controller

0 0.5 1 1.5 2 2.5
−150

−100

−50

0

50

100

150

200

250

300

350

Force

Simulink

C#

Real

Seconds

N
e
w
to
n

Figure 3.23: Force P Controller

Time Simulink C# Real Sim-C# Real-Sim Real-C#
0 350 350 350 0 0 0

0.01 344.218 344.218 344.092 0 -0.1253 -0.1253
0.02 327.618 327.618 327.333 0 -0.2857 -0.2857
0.03 301.803 301.803 301.342 0 -0.4611 -0.4611
0.04 268.544 268.544 267.911 0 -0.6327 -0.6327
0.05 229.705 229.705 228.922 0 -0.7832 -0.7832
0.06 187.17 187.17 186.271 0 -0.8987 -0.8987
0.07 142.773 142.773 141.805 0 -0.9684 -0.9684
0.08 98.2416 98.2416 97.2565 0 -0.9851 -0.9851
0.09 55.1433 55.1433 54.1978 0 -0.9455 -0.9455
0.1 14.8485 14.8485 13.9983 0 -0.8502 -0.8502

Table 3.7: Force P Controller

55

3 METHODOLOGY 3.4 Solution of equations (Mass-Spring-Damper)

3.4.3 Results of PI Controller

The results of the PI controller are now showing a small (less than 1%) but notable difference. Let’s see
the results of the position (Table 3.8) here the Simulink’s model is closer to the Real model than the C#’s
model, at least on the first ten results, but if we take a look to the table 3.11 it can be appreciated that
the first value of the force in the Simulink’s model is 1.5 Newtons higher than the other two values, in
this table all the values from the C#’s model are closer to the real model than the Simulink’s model.

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.5

1

1.5

Position

Simulink

C#

Real

Seconds

M
e
te
rs

Figure 3.24: Position PI Controller

Time Simulink C# Real Sim-C# Real-Sim Real-C#
0 0 0 0 0 0 0

0.01 0.01666 0.01659 0.01693 7.1E-05 0.00027 0.00034
0.02 0.06463 0.06436 0.06514 0.00027 0.00051 0.00078
0.03 0.13955 0.13896 0.14024 0.00059 0.00069 0.00128
0.04 0.2365 0.2355 0.23728 0.001 0.00078 0.00178
0.05 0.35025 0.34878 0.35101 0.00147 0.00076 0.00223
0.06 0.47544 0.47345 0.47605 0.00199 0.00061 0.0026
0.07 0.60679 0.60425 0.60709 0.00254 0.0003 0.00284
0.08 0.73924 0.73617 0.73909 0.00307 -0.00015 0.00292
0.09 0.86817 0.86458 0.86743 0.00359 -0.00074 0.00285
0.1 0.98946 0.98538 0.988 0.00408 -0.00146 0.00262

Table 3.8: Position PI Controller

56

3 METHODOLOGY 3.4 Solution of equations (Mass-Spring-Damper)

0 0.5 1 1.5 2 2.5 3 3.5 4
−10

−5

0

5

10

15
Velocity

Simulink

C#

Real

Seconds

M
e
te
r/
S
e
c

Figure 3.25: Velocity PI Controller

Time Simulink C# Real Sim-C# Real-Sim Real-C#
0 0 0 0 0 0 0

0.01 3.3324 3.3183 3.3246 0.0141 -0.0078 0.0063
0.02 6.2615 6.235 6.2441 0.0265 -0.0174 0.0091
0.03 8.7216 8.6849 8.693 0.0367 -0.0286 0.0081
0.04 10.669 10.624 10.628 0.045 -0.041 0.004
0.05 12.081 12.031 12.028 0.05 -0.053 -0.003
0.06 12.957 12.903 12.89 0.054 -0.067 -0.013
0.07 13.312 13.257 13.233 0.055 -0.079 -0.024
0.08 13.179 13.126 13.09 0.053 -0.089 -0.036
0.09 12.607 12.556 12.509 0.051 -0.098 -0.047
0.1 11.651 11.605 11.547 0.046 -0.104 -0.058

Table 3.9: Velocity PI Controller

0 0.5 1 1.5 2 2.5 3 3.5 4
−200

−100

0

100

200

300

400

Aceleration

Simulink

C#

Real

Seconds

M
e
te
r/
S
e
c
2

Figure 3.26: Acceleration PI Controller

57

3 METHODOLOGY 3.4 Solution of equations (Mass-Spring-Damper)

Time Simulink C# Real Sim-C# Real-Sim Real-C#
0 351.5 350 350 1.5 -1.5 0

0.01 314.99 313.65 313.47 1.34 -1.52 -0.18
0.02 270.82 269.69 269.33 1.13 -1.49 -0.36
0.03 221.2 220.29 219.75 0.91 -1.45 -0.54
0.04 168.29 167.61 166.93 0.68 -1.36 -0.68
0.05 114.19 113.75 112.97 0.44 -1.22 -0.78
0.06 60.882 60.668 59.844 0.214 -1.038 -0.824
0.07 10.112 10.115 9.3065 -0.003 -0.8055 -0.8085
0.08 -36.592 -36.39 -37.124 -0.202 -0.532 -0.734
0.09 -77.978 -77.602 -78.205 -0.376 -0.227 -0.603
0.1 -113.09 -112.57 -112.99 -0.52 0.1 -0.42

Table 3.10: Acceleration PI Controller

0 0.5 1 1.5 2 2.5 3 3.5 4
−200

−100

0

100

200

300

400

Force

Simulink

C#

Real

Seconds

N
e
w
to
n

Figure 3.27: Force PI Controller

Time Simulink C# Real Sim-C# Real-Sim Real-C#
0 351.5 350 350 1.5 -1.5 0

0.01 348.64 347.17 347.06 1.47 -1.58 -0.11
0.02 334.73 333.33 333.07 1.4 -1.66 -0.26
0.03 311.21 309.91 309.48 1.3 -1.73 -0.43
0.04 279.71 278.56 277.95 1.15 -1.76 -0.61
0.05 242.01 241.04 240.27 0.97 -1.74 -0.77
0.06 199.96 199.17 198.27 0.79 -1.69 -0.9
0.07 155.37 154.77 153.78 0.6 -1.59 -0.99
0.08 109.99 109.59 108.56 0.4 -1.43 -1.03
0.09 65.45 65.247 64.231 0.203 -1.219 -1.016
0.1 23.213 23.191 22.246 0.022 -0.967 -0.945

Table 3.11: Force PI Controller

58

3 METHODOLOGY 3.4 Solution of equations (Mass-Spring-Damper)

3.4.4 Results of PID Controller

The PID controller presents very notable and important differences, but if we take a good look to the
plots, the big difference occurs in the Simulink’s model, this is caused by the D component. If we have
a discrete model the first value of the differentiation cannot be calculated with just one point, because
there is no tendency on the data, therefore in C#’s model the first differentiation is replaced by a 0, but

Simulink does something different, it calculates the first differentiation using: f ′(x0) = f(x0)
h . Taking a

look on the position plot (Fig. 3.28), after 4 seconds all the values stabilized to the desired xd.

0 1 2 3 4 5 6
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

Position

Simulink

C#

Real

Seconds

M
e
te
rs

Figure 3.28: Position PID Controller

Time Simulink C# Real Sim-C# Real-Sim Real-C#
0 0 0 0 0 0 0

0.01 0.11269 0.01484 0.01447 0.09785 -0.09822 -0.00037
0.02 0.34513 0.0519 0.04848 0.29323 -0.29665 -0.00342
0.03 0.54935 0.09812 0.09249 0.45123 -0.45686 -0.00563
0.04 0.67901 0.14684 0.14098 0.53217 -0.53803 -0.00586
0.05 0.74191 0.19627 0.19078 0.54564 -0.55113 -0.00549
0.06 0.7636 0.24513 0.2401 0.51847 -0.5235 -0.00503
0.07 0.76752 0.29254 0.28797 0.47498 -0.47955 -0.00457
0.08 0.76833 0.33801 0.33388 0.43032 -0.43445 -0.00413
0.09 0.77232 0.38134 0.37759 0.39098 -0.39473 -0.00375
0.1 0.78053 0.42246 0.41903 0.35807 -0.3615 -0.00343

Table 3.12: Position PID Controller

59

3 METHODOLOGY 3.4 Solution of equations (Mass-Spring-Damper)

0 1 2 3 4 5 6
−5

0

5

10

15

20

25
Velocity

Simulink

C#

Real

Seconds

M
e
te
r/
S
e
c

Figure 3.29: Velocity PID Controller

Time Simulink C# Real Sim-C# Real-Sim Real-C#
0 0 0 0 0 0 0

0.01 22.538 2.968 2.6282 19.57 -19.9098 -0.3398
0.02 23.951 4.4432 4.0197 19.5078 -19.9313 -0.4235
0.03 16.894 4.8017 4.6933 12.0923 -12.2007 -0.1084
0.04 9.0373 4.9418 4.9531 4.0955 -4.0842 0.0113
0.05 3.5438 4.9442 4.9775 -1.4004 1.4337 0.0333
0.06 0.79389 4.8291 4.871 -4.03521 4.07711 0.0419
0.07 -0.00887 4.6511 4.6945 -4.65997 4.70337 0.0434
0.08 0.16918 4.4437 4.4834 -4.27452 4.31422 0.0397
0.09 0.62936 4.2233 4.2581 -3.59394 3.62874 0.0348
0.1 1.0133 4 4.0303 -2.9867 3.017 0.0303

Table 3.13: Velocity PID Controller

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

50

100

150

200

250

300

350

Aceleration

Simulink

C#

Real

Seconds

M
e
te
r/
S
e
c
2

Figure 3.30: Acceleration PID Controller

60

3 METHODOLOGY 3.4 Solution of equations (Mass-Spring-Damper)

Time Simulink C# Real Sim-C# Real-Sim Real-C#
0 3684.8 350 350 3334.8 -3334.8 0

0.01 822.74 243.61 189.94 579.13 -632.8 -53.67
0.02 -540.21 51.424 96.773 -591.634 636.983 45.349
0.03 -871.18 20.286 42.866 -891.466 914.046 22.58
0.04 -700.09 7.718 11.987 -707.808 712.077 4.269
0.05 -398.61 -7.2221 -5.4034 -391.388 393.207 1.8187
0.06 -151.36 -15.807 -14.909 -135.553 136.451 0.898
0.07 -9.1921 -19.788 -19.822 10.5959 -10.6299 -0.034
0.08 44.802 -21.697 -22.073 66.499 -66.875 -0.376
0.09 47.233 -22.38 -22.797 69.613 -70.03 -0.417
0.1 29.563 -22.276 -22.658 51.839 -52.221 -0.382

Table 3.14: Acceleration PID Controller

0 0.2 0.4 0.6 0.8 1

0

50

100

150

200

250

300

350

Force

Simulink

C#

Real

Seconds

N
e
w
to
n

Figure 3.31: Force PID Controller

Time Simulink C# Real Sim-C# Real-Sim Real-C#
0 3684.8 350 350 3334.8 -3334.8 0

0.01 1050.4 273.58 216.51 776.82 -833.89 -57.07
0.02 -293.8 96.894 137.94 -390.694 431.74 41.046
0.03 -691.25 70.266 91.648 -761.516 782.898 21.382
0.04 -596.13 60.072 64.337 -656.202 660.467 4.265
0.05 -348.34 46.146 48.188 -394.486 396.528 2.042
0.06 -128.15 37.386 38.603 -165.536 166.753 1.217
0.07 6.0697 32.573 32.883 -26.5033 26.8133 0.31
0.08 61.861 29.5 29.438 32.361 -32.423 -0.062
0.09 68.973 27.479 27.335 41.494 -41.638 -0.144
0.1 55.307 26.173 26.026 29.134 -29.281 -0.147

Table 3.15: Force PID Controller

61

3 METHODOLOGY 3.5 Thrusters

3.4.5 Conclusions of the Mass-Spring-Damper’s equations

The solution of the Mass-Spring-Damper’s equations using C# produced very satisfactory approximation
to the differential equation’s model, this similitude between the models can be appreciate in both figures
and tables of 3.4.1, therefore applying the same methods to the ROV’s equations, should provide us a
very good approximation to the real behaviour of the ROV.

3.5 Thrusters

The KAXAN ROV is provided with 4 thrusters, two placed in the back to provide back and forth move-
ment, one on the side to provide orientation and the last one on vertical position to control the depth of
the ROV, the location of these thrusters can be seen in figure 2.2.

The thrusters selected to move the ROV correspond with two different models, both thrusters on the back
are 520 DC Brushless thrusters and the remaining two are 540 DC Brushless thrusters, the four thrusters
are from the Tecnadyne company.

To include the dynamic of the thrusters in the program they must be modelled, taking a look at the
datasheets (Appendix B) their behavior is not linear in both forward and backward mode. A linearization
or other methods should be applied to obtain a mathematical model of the thruster.

3.5.1 Thruster 520

Let’s take a look at the datasheet of the thruster’s model 520 (B.1), first notice that the control opera-
tion voltage is ±5v, now the graphic Thrust, lbs vs Control Voltage shows both forward and backward
behaviour, the forward mode presents a fairly incremental tendency during the range 0.75v to 4.75v, the
table 3.16 was filled with the measurements taken of this plot, these values were analysed in Matlab to
obtain an interpolation polynomial.

V Lbf N
0.75 0 0

1 0.149664 0.665739
1.5 0.348198 1.548862

2 0.723885 3.220002
2.25 1.533293 6.820426
2.5 2.669517 11.87461

2.75 3.955406 17.59453
3 5.189371 23.08347

3.25 6.585217 29.29251
3.5 8.124618 36.14011

3.75 10.07636 44.82188
4 12.08002 53.73463

4.25 14.22419 63.27236
4.5 16.63103 73.97852

4.75 19.60904 87.22537
4.86 21.07208 93.7333

Table 3.16: Graphic’s values from the 520 forward mode

Using the function polyfit(X,Y,N) where X is the vector of the x−values in this case the voltage control,
Y is the vector of the y − values in this case the force, a polynomial interpolation of N degree can be

62

3 METHODOLOGY 3.5 Thrusters

0 1 2 3 4 5
−50

0

50

100

520
F

 N:1 Error:41.37

0 1 2 3 4 5
−50

0

50

100

520
F

 N:2 Error:3.2578

0 1 2 3 4 5
−50

0

50

100

150

520
F

 N:3 Error:3.0258

0 1 2 3 4 5
−50

0

50

100

150

520
F

 N:4 Error:2.9103

Seconds

N
e
w
to
n

Seconds

N
e
w
to
n

Seconds

N
e
w
to
n

Seconds

N
e
w
to
n

Figure 3.32: 1 to 4 degrees polynomial (Forward mode 520)

0 1 2 3 4 5
0

50

100

150

520
F

 N:5 Error:1.7552

0 1 2 3 4 5
−50

0

50

100

150

520
F

 N:6 Error:1.5932

0 1 2 3 4 5
−50

0

50

100

150

520
F

 N:7 Error:1.5885

0 1 2 3 4 5
−50

0

50

100

150

520
F

 N:8 Error:1.0322

Seconds

N
e
w
to
n

Seconds

N
e
w
to
n

Seconds

N
e
w
to
n

Seconds

N
e
w
to
n

Figure 3.33: 5 to 8 degrees polynomial (Forward mode 520)

calculated. In figures 3.32 and 3.33 both the original polygon and the interpolated polynomial are plotted,

each plot displays an error which is given by the formula: error =

√
k∑
i=0

[f(ai)− pN (ai)]
2
. Polynomials of

higher degrees were not shown because Matlab showed a warning of badly conditioned polynomial, when
proving these degrees, instead of getting a more accurate polynomial, a worse fit was obtained.

The polynomial of degree 5 was selected because the improvement between a degree 4 polynomial and a
degree 5 is approximately 1.2 units (Table 3.17), which is a very good improvement, but the higher levels
do not present a greater improvement and do require more computing effort. The equation of the selected
interpolated polynomial is:

63

3 METHODOLOGY 3.5 Thrusters

p5(x) = 0.3529x5 − 4.8631x4 + 25.1635x3 − 53.5595x2 + 50.0067x− 16.4616 (3.13)

N Error
1 41.37
2 3.2578
3 3.0258
4 2.9103
5 1.7552
6 1.5932
7 1.5885
8 1.0322

Table 3.17: Errors in n− degree polynomials

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

20

40

60

80

100

120

520
F

 N:5

Fit

Original

Seconds

N
e
w
to
n

Figure 3.34: Modelled function for the 520 forward mode

Taking a look to the backward mode of the 520 thruster, it can be appreciated that the function is not
continuously growing, instead there are certain parts where the function is horizontal. Even though the
same procedure of the forward model was used, the results can be seen on table 3.18 and figures 3.35 and
3.36.

From the figures 3.35 and 3.36 can be seen that the error is never smaller than 3 points, and if the degree
is big then an exponential grow at the end of the function exists. To model this behaviour a different
approach was used, there are some points in table 3.18 that have the same growing tendency, hence instead
of having just one big polynomial to represent the thruster, several one degree polynomials can be used
to match the behaviour.

64

3 METHODOLOGY 3.5 Thrusters

V Lbf N
-0.75 0 0
-1.00 0.171045 0.76084
-1.50 0.41234 1.83418
-1.77 0.500916 2.22819
-2.00 0.751374 3.34228
-2.14 1.056811 4.70093
-2.39 1.056811 4.70093
-2.50 1.548564 6.88836
-2.75 2.547343 11.33115
-2.87 3.008552 13.38271
-3.12 3.008552 13.38271
-3.25 3.57361 15.89621
-3.50 4.554062 20.25748
-3.75 5.58033 24.82255
-4.00 6.600489 29.36044
-4.25 7.568723 33.66736
-4.36 8.008552 35.62382
-4.50 9.031765 40.17530
-4.62 10 44.48222

Table 3.18: Graphic’s values from the 520 backwards mode

0 1 2 3 4 5
−20

0

20

40

60

520
R

 N:1 Error:19.295

0 1 2 3 4 5
0

20

40

60

520
R

 N:2 Error:4.1203

0 1 2 3 4 5
0

20

40

60

520
R

 N:3 Error:3.9687

0 1 2 3 4 5
0

20

40

60

520
R

 N:4 Error:3.9326

Seconds

N
e
w
to
n

Seconds

N
e
w
to
n

Seconds

N
e
w
to
n

Seconds

N
e
w
to
n

Figure 3.35: 1 to 4 degrees polynomial (Backward mode 520)

65

3 METHODOLOGY 3.5 Thrusters

0 1 2 3 4 5
−50

0

50

100

520
R

 N:5 Error:3.4964

0 1 2 3 4 5
−50

0

50

100

520
R

 N:6 Error:3.4774

0 1 2 3 4 5
−50

0

50

100

520
R

 N:7 Error:3.4516

0 1 2 3 4 5
−50

0

50

100

520
R

 N:8 Error:3.1594

Seconds

N
e
w
to
n

Seconds

N
e
w
to
n

Seconds

N
e
w
to
n

Seconds

N
e
w
to
n

Figure 3.36: 5 to 8 degrees polynomial (Backward mode 520)

Figure 3.37 represents the behaviour of the modelled function. Next is the Matlab’s code to represent
this backwards mode:

v_control = -v_control;

if (v_control<1.77)

sal=2.17783*(v_control-.75);

elseif(v_control<2)

sal=4.91053*(v_control-1.77)+2.22819;

elseif(v_control<2.14)

sal=9.99579*(v_control-2)+3.34228;

elseif(v_control<=2.39)

sal=4.70093;

elseif(v_control<2.87)

sal=18.05209*(v_control-2.39)+4.70093;

elseif(v_control<=3.12)

sal=13.38271;

elseif(v_control<4.36)

sal=17.89215*(v_control-3.12)+13.38271;

else

sal=34.29212*(v_control-4.36)+35.62382;

end

sal=-sal;

66

3 METHODOLOGY 3.5 Thrusters

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

10

20

30

40

50

60

520
R

Fit

Original

Seconds

N
e
w
to
n

Figure 3.37: Modelled function for the 520 backward mode

3.5.2 Thruster 540

Now that the thruster 520 has been modelled, we must continue with thruster 540. Analysing the datasheet
(Appendix B.2) it can be noticed that both forward and backward mode of the 540 model have the same
inconstant growing behaviour as the 520 backward mode. Then the same approach was used in both of
these modes.

V Lbf N
0.75 0 0
1.00 0.211591 0.94120
1.50 0.733722 3.26376
2.00 1.532379 6.81636
2.25 2.548812 11.33768
2.50 3.581588 15.93170
2.75 4.554731 20.26045
3.00 5.512413 24.52044
3.14 6.070766 27.00411
3.25 7.082781 31.50578
3.37 8.112024 36.08408
3.50 8.636805 38.41843
3.62 9.146568 40.68596
3.75 10 44.48222
3.89 11.30047 50.26699
4.00 12.66366 56.33078
4.12 14.16821 63.02336
4.25 14.67091 65.25945
4.38 15 66.72333
4.50 16.65562 74.08791
4.75 19.70536 87.65383
4.87 21.19268 94.26977

Table 3.19: Graphic’s values from the 540 forward mode

Here is the Matlab’s code for the forward mode:

if (v_control<1.5)

67

3 METHODOLOGY 3.5 Thrusters

sal= 4.35168 *(v_control-.75);

elseif(v_control<2)

sal=7.10521*(v_control-1.5)+3.26376;

elseif(v_control<3.14)

sal=17.75749*(v_control-2)+6.81636;

elseif(v_control<3.37)

sal=38.63767*(v_control-3.14)+27.00411;

elseif(v_control<3.62)

sal=18.29152*(v_control-3.37)+36.08408;

elseif(v_control<3.75)

sal=29.99730*(v_control-3.62)+40.68596;

elseif(v_control<3.89)

sal=41.16006*(v_control-3.75)+44.48222;

elseif(v_control<4.12)

sal=54.51030*(v_control-3.89)+50.26699;

elseif(v_control<4.25)

sal=17.82614*(v_control-4.12)+63.02336;

elseif(v_control<4.38)

sal=11.42990*(v_control-4.25)+65.25945;

else

sal=56.22027*(v_control-4.38)+66.72333;

end

Here is the Matlab’s code for the backward mode:

v_control=-v_control;

if (v_control<1.74)

sal= 4.69764 *(v_control-.75);

elseif(v_control<2)

sal=8.58034*(v_control-1.74)+4.66995;

elseif(v_control<2.13)

sal=17.29162*(v_control-2)+6.86561;

elseif(v_control<2.63)

sal=9.23392*(v_control-2.13)+9.16918;

elseif(v_control<2.87)

sal=18.84497*(v_control-2.63)+13.76064;

elseif(v_control<3.88)

sal=35.60973*(v_control-2.87)+18.33641;

elseif(v_control<4.13)

sal=50.75553*(v_control-3.88)+54.23024;

elseif(v_control<4.38)

sal=21.64278*(v_control-4.13)+66.72333;

elseif(v_control<4.64)

sal=52.36117*(v_control-4.38)+72.13497;

else

sal=13.96002*(v_control-4.64)+85.69352;

end

sal=-sal;

As one can appreciate in figure 3.38, a really good fit between the model and the real behaviour exists.

Whit this last set of equations, both thrusters, 520 and 540, have been modelled for their use in the

68

3 METHODOLOGY 3.6 Training platform (The simulator)

simulator. As it can be seen, all of the equations have a very good fit with respect to the real thrusters’
behaviours.

V Lbf N
0.75 0 0
1.00 0.223644 0.99482
1.50 0.75386 3.35334
1.74 1.049846 4.66995
2.00 1.543449 6.86561
2.13 2.061315 9.16918
2.25 2.258491 10.04627
2.50 2.791795 12.41853
2.63 3.093516 13.76064
2.75 3.585796 15.95042
2.87 4.122188 18.33641
3.00 5 22.24111
3.25 7.052933 31.37301
3.50 9.127922 40.60303
3.75 11.14071 49.55637
3.88 12.19144 54.23024
4.00 13.69872 60.93495
4.13 15 66.72333
4.25 15.69166 69.80000
4.38 16.21659 72.13497
4.50 17.68372 78.66113
4.64 19.26467 85.69352
4.75 19.78077 87.98925
4.87 20 88.96444

Table 3.20: Graphic’s values from the 540 backward mode

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

20

40

60

80

100

120

540
F

Fit

Original

Seconds

N
e
w
to
n

(a) 540 forward mode

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

10

20

30

40

50

60

70

80

90

100

540
R

Fit

Original

Seconds

N
e
w
to
n

(b) 540 backward mode

Figure 3.38: Modelled functions for the 540

3.6 Training platform (The simulator)

The final product of this project is the simulator or the training platform. In this section the specifics
about the program are discussed, for example; how the program looks, what special functions were needed
to make it work, how the ROV’s equation system was solved.

69

3 METHODOLOGY 3.6 Training platform (The simulator)

3.6.1 GUI - Graphical user interface

The GUI of the training platform (Fig. 3.39) was designed to provide the operator with all the required
information for his training. In it one can read the position of the ROV on the simulator, one can stablish
the parameters for an ocean current, the gains on the controllers, the position of the camera, the voltage
control of the thrusters, and more.

Figure 3.39: Training platform’s GUI

In the figure 3.40 both graphical visualizations can be seen, the orthogonal view (Fig. 3.40a) gives us the
chance to move the camera around the object to select the desired view, in this option the perspective
does not influence in the visualization, every object has the same size no matter were they are placed,
this kind of view is good for technical works, is mainly used in CAD software. The second screen (Fig.
3.40b) is the perspective view, here the objects’ size change according to the distance between the object
and the camera. This is a more realistic perspective and in fact it represents how the operator would see
the ocean from the ROV’s camera point of view. In the perspective view the movement of the camera is
not configured, it moves when the ROV is moving.

(a) Orthogonal view (b) Perspective view

Figure 3.40: Model area

In this trainings platform a single sea current can be configured, the figure 3.41 shows the interface to set

70

3 METHODOLOGY 3.6 Training platform (The simulator)

the angles α and β of the current, and its velocity. The velocity is given in m
s and the angles must be

written in radians.

Figure 3.41: Sea current area

In the Depth PID area (Fig. 3.42) the gains for the controller can be set. The default values are:
Kp = 65Ki = 0 and Kd = 30.

Figure 3.42: Depth PID area

The ψ PID controller also includes an area to write the controller gains (Fig. 3.43a) and a LED (Fig.
3.43b) that shows the status of the controller if the PID is on, its color is green, if the PID is off, its color
is red. The default gains are: Kp = 250Ki = 300 and Kd = 50.

(a) Gains of PID controller (b) On/Off LED

Figure 3.43: ψ PID area

In Buildings area one can select the environment in which the ROV is moving (Fig. 3.44), the default
option is not to see anything, and the second is a representation of an oil platform (Fig. 3.3).

In the status area of the GUI, as it can be seen on figure 3.45 the user can read the current position and
rotations of the ROV as well as the desired Z (Zd) and the desired ψ (ψd). The rotations are given in
degrees and the position in meters.

The voltage control for the thrusters is also updated every 16ms, and the units shown are volts (v).

71

3 METHODOLOGY 3.6 Training platform (The simulator)

Figure 3.44: Visual environment selection

The eye position section shows the coordinates in which the camera is positioned for the orthogonal view
(Fig. 3.40a). The camera is always

√
18 ≈ 4.2426 units separated in the XY coordinate plane from the

center of mass of the ROV, and the angle is the rotation used to calculate this x and y coordinates.

Figure 3.45: Status area

In the last area (Fig. 3.46) of the GUI, the training platform can be initialized or stopped. Checking the
checkbox Test the user can access to the test mode operation of the simulator, and using the textbox at
its left, the user can set how much time (in seconds) he wants the test to run.

Figure 3.46: Start/Stop area

3.6.2 Matrices’ functions class

The KAXAN’s mathematical model is formed by matrices’ multiplications and additions, normally there
are no native functions to do these matrix operations, hence a new class was created for this project (and
others) to cover this necessity. The new class contains functions to do:

• Addition and subtraction of matrices

• Multiplication of matrices

72

3 METHODOLOGY 3.6 Training platform (The simulator)

• Multiplication of a matrix times a constant

• Inverse of a matrix, using Gauss-Jordan Elimination

• Transpose of a matrix

• Integration of matrices

• Integration of variables

• Derivation of variables

• Printing function to show the matrix as a text

• Printing to file function to save the matrix in a text file

• Reading function to load a matrix from a text file

Every matrix that is used as an input parameter for these functions, must be a 2 dimensions array of
double type, they can be declared as follows:

double[,] m1;

m1= new double[2,2] {{1, 2},{3,4}};

these instructions produce a matrix: m1 =

[
1 2
3 4

]
, also the output of these functions is a 2 dimensions

array.

The code of these functions can be found on appendix D.

The addition/subtraction function works when its input parameters are of the same dimension, in case
they are not a matrix 1× 1 with value 0 is returned. The function has an input parameter called sum, if
true then the returned value is an addition, if false it is a subtraction of the m1 −m2 begin m1 the first
input parameter and m2 the second.

The multiplication function must be fed with 2 matrices of dimensions m × n and n × l, in case this
condition is satisfied the resulting matrix of dimension m × l product of m1 and m2, if the condition is
not satisfied then the result is a matrix of dimension m× l full of zeros but with a diagonal of ones.

The matrix times constant function returns a k×m1 matrix. The first value must be the array discussed
before and the second a double value k.

The inverse function uses the Gauss-Jordan elimination to obtain the inverse matrix. In case the m1

matrix is not square or it is a singular matrix, the function’s output is the same m1 matrix.

The transpose function transforms m1 of dimension m × n in a matrix m2 of dimension n × m where
m2 = mT

1 .

The integration and derivation of variables’ function was already defined in section 3.4, the same code
was used here to solve the integrations and derivations in this system.

The integration of matrix is a modified version of the variable integration function. As in the original
function it’s required to save the matrix into an Arraylist. When a matrix is being integrated, the first
element of the matrix, is integrated with all the first elements of the other matrices.

73

3 METHODOLOGY 3.6 Training platform (The simulator)

The matrix printing function returns a string containing the given matrix. For example with the matrix

m1 =

[
1 2
3 4

]
, the output of the function is: 1 \t 2 \n 3 \t 4, which is show in a C#’s textbox as

1 2
3 4

.

The second input parameter format specifies the number’s format desired.

The matrix printing to file function does something very similar to the past function with the difference
that the matrix is saved in a text file. The function does not return any value, and in the second input
parameter the name of the file must be specified. The matrix is saved in the file with a Matlab compatible
format.

The reading matrix from file function is able to read a matrix from a text file with a format similar to
Matlab, where the matrix is enclosed by square brackets [,], the columns are divided by a coma (,) and
the rows divided by a semicolon (;). In case the file specified in name is not found a matrix 1× 1 with a
value of zero is returned.

3.6.3 Equation’s solution

The ROV’s dynamics follow the equation 2.10:

Mν̇ + C(ν)ν +D(ν)ν + g(η) = τ

where ν̇ is the acceleration of the system and ν is the velocity of the system. Clearing ν̇ the equation 3.1:

ν̇ = M−1[τ − (C(ν)ν +D(ν)ν + g(η))]

To obtain the value of ν it’s necessary to integrate ν̇:

ν =

∫
ν̇ dt (3.14)

2.7 Integrating ν has no physical interpretation because ν is the vector of velocity referred to the body-
fixed coordinate system. Therefore ν must be transformed to refer the velocity vector with the earth-fixed
frame, using equation 3.1 the transformation is achieved:

η̇ = J(η2) ν

Now, η̇ is the velocity vector referred to the earth-fixed frame, after its integration the vector η is obtained,
which is the position vector of the ROV in earth coordinates:

η =

∫
η̇ dt (3.15)

In section 3.4 was proved that, with the use of numerical methods it’s possible to obtain a really good
result in a Newtonian system. This same approach was used to solve the ROV’s equation system.

Because of the use of a sea current in this project, instead of using the equation 2.10 the equation 2.18
must be used:

Mν̇ + CRB(ν)ν + CA(νr)νr +D(νr)νr + g(η) = τ

ν̇ = M−1[τ − (CRB(ν)ν + CA(νr)νr +D(νr)νr + g(η))] (3.16)

where νr = ν − νc (see equation 2.19).

The logical course of action has been set, now it’s time implement this solution on C#. The first step
is to declare the matrices. the easiest matrix to declare is matrix M , because its value doesn’t change
during run time execution.

74

3 METHODOLOGY 3.6 Training platform (The simulator)

matrix_m = new double[6, 6] {{m-Xup, 0, 0, 0, 0, 0},

{0, m-Yvp, 0, 0, 0, 0},

{0, 0, m-Zwp, 0, 0, 0},

{0, 0, 0, Ixx-Kpp, 0, 0},

{0, 0, 0, 0, Iyy-Mqp, 0},

{0, 0, 0, 0, 0, Izz-Nrp}};

Where m is the mass, Ixx, Iyy, Izz are the inertias, and the other values are the hydrodynamic constants
for the matrix of added mass.

Other important and easy matrix to define is matrix B used in equation 2.17 to transform the force vector
of the thrusters to the τ vector.

matrix_f_2_tau = new double[6, 4] {{1,1,0,0},

{0,0,1,0},

{0,0,0,1},

{0,0,-0.07,0.02},

{-0.1,-0.1,0,0.022},

{0.175,-0.2150,0.1350,0}};

The rest of the matrices are not constant matrices since they are in function of the velocity vector ν or
the position vector η. The coding for these matrices can be found in the appendix E.

The solution of equation 3.16 is done with the following function written on appendix E.8.

Similar to the Mass-Spring-Damper system, this solution must be written inside a recursive logarithm to
calculate the values, the condition to leave the recursive loop is being in the loop more than 10 times, or
until the converged value has a difference no bigger than ±0.001 of the new value.

Let’s not forget that to obtain the vector η̇ it’s necessary to apply the transformation J(η), therefore both
the integration 3.14 and the transformation 2.9 must be inside the recursive loop.

The output signal of both of the PID controllers must be also inside of the recursive loop, this is important
since the error depends on the position that is being updated in every loop.

3.6.4 PID Controllers’ code

In chapters 4 and 5 the theoretical design of the controller is discussed, that means the calculation for
the gains of the controller and the responses of the system. This section is how the controllers were
implemented inside the coding.

First, 6 new Arraylists were created, two of them to store the error of each controller, other two to store
the integrations of theses arrays and the last two to store the differentiations of the error arrays.

The gains of the PID controllers cannot be changed until the system has stopped, when the system it’s
on, it saves the values of the controllers area (figures 3.42 and 3.43) into the constants Kp, Ki andKd of
each controller.

Then we run the equation 3.10, which in the case of the depth controller is:

ε(t) = Zd − Z, Z = Third element of η

75

3 METHODOLOGY 3.6 Training platform (The simulator)

or in the case of the orientation controller:

ε(t) = ψd − ψ, ψ = Sixth element of η

The orientation controller, can be turned on and off by pressing the joystick’s circle button, when it is
on, the thruster number 3 (Fig. 2.2) cannot be controlled with the joystick, because the control voltage
of this thruster is given by the orientation controller. When it is off then the thruster is controlled by the
joystick.

By default the value of the desired ψ is 0, and the orientation controller is on, when the user wants to
change this value it’s necessary to turn off the controller, move the ROV to the desired angle and then
turn on again the controller.

3.6.5 Normal mode and Test mode

There are two operation modes for the training platform: Normal mode and Test mode.

In normal mode (Test box, unchecked), after the button Start is pressed the simulation will stop when the
user presses the button Stop. If the joystick is not connected to the computer or if during the simulation
in normal mode the Test box is checked, then the value of the force voltage control for the first, the second
and the third thruster is 2.5v, but of course the voltage of the third thruster is subject to whether or not
the orientation controller is enabled or disabled.

The text mode (Test box, checked), calculates the system with a sample frequency of 100Hz, during the
specified time on the textbox located at the left of the Test box. The test is initialized with the Start
button, and if its required it can be stopped with the Stop button. During test mode the desired depth
is always 5, the desired orientation is 0◦ and the voltage on thruster 1 and 2 is 2.5v.

At the end of both modes, the vectors η, ν, ν̇, and τ are saved into text files as well as a record of the
time and the values of the desired depth and orientation (Zd and ψd). This files are used by Matlab to
do the comparison between Matlab’s results and C#’s results.

3.6.6 Matlab’s results vs C#’s

To check the results of C# some Matlab Simulink models were created.

Figure 3.47: Simulink model for a constant control voltage

76

3 METHODOLOGY 3.6 Training platform (The simulator)

The figure 3.47 represents the model used to simulate the behaviour of the ROV, with a constant voltage
control. The Matlab models are configured as:

• Matlab configured in Variable-Step mode

• Max step size, min step size and initial step size in automatic mode

• The Dormand-Prince algorithm is used as integrator, (Matlab’s default)

Constant force

The figures 3.48, 3.49 and 3.50 represents the responses of both systems (Matlab and C#) at a constant
force. As it can be seen both responses are very similar between each other, which is a good validation
for the C#’s results.

0 5 10 15 20 25
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

Simulink

X

Y

Z

φ

θ

ψ

0 5 10 15 20 25
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

C#

Seconds Seconds

Figure 3.48: Acceleration at constant force

0 5 10 15 20 25
−0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Simulink

X

Y

Z

φ

θ

ψ

0 5 10 15 20 25
−0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

C#

Seconds Seconds

Figure 3.49: Velocity at constant force

77

3 METHODOLOGY 3.6 Training platform (The simulator)

0 5 10 15 20 25
−1

0

1

2

3

4

5

6

7

8

Simulink

X

Y

Z

φ

θ

ψ

0 5 10 15 20 25
−1

0

1

2

3

4

5

6

7

8

C#

Seconds Seconds

Figure 3.50: Position at constant force

Depth controller

Figure 3.51: Simulink model for the Depth controller

0 5 10 15 20 25
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

Simulink

X

Y

Z

φ

θ

ψ

0 5 10 15 20 25
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

C#

Seconds Seconds

Figure 3.52: Acceleration using the Depth controller

The initial conditions for this test were:

78

3 METHODOLOGY 3.6 Training platform (The simulator)

0 5 10 15 20 25
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

Simulink

X

Y

Z

φ

θ

ψ

0 5 10 15 20 25
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

C#

Seconds Seconds

Figure 3.53: Velocity using the Depth controller

0 5 10 15 20 25
−2

−1

0

1

2

3

4

5

6

7

8

Simulink

X

Y

Z

φ

θ

ψ

0 5 10 15 20 25
−2

−1

0

1

2

3

4

5

6

7

8

C#

Seconds Seconds

Figure 3.54: Position using the Depth controller

• Desired depth, Zd = 5

• Thruster 1 and 2 controlled with a voltage of 2.5v

• Thruster 3 controlled with a voltage of 0v

• The ψ controller was disabled

As it can be seen on the figures 3.52, 3.53 and 3.54 both Simulink’s and C#’s responses are once more
very similar to each other.

Orientation controller

The initial conditions for this test were:

• Desired depth, Zd = 5

• Desired orientation, ψd = 10◦

• Thruster 1 and 2 controlled with a voltage of 2.5v

79

3 METHODOLOGY 3.6 Training platform (The simulator)

Figure 3.55: Simulink model for the Orientation controller

0 5 10 15 20 25
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

Simulink

X

Y

Z

φ

θ

ψ

0 5 10 15 20 25
−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

C#

Seconds Seconds

Figure 3.56: Acceleration using the Orientation controller

0 5 10 15 20 25
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

Simulink

X

Y

Z

φ

θ

ψ

0 5 10 15 20 25
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

C#

Seconds Seconds

Figure 3.57: Velocity using the Orientation controller

In general the figure 3.58 presents a very similar response between both systems, but the acceleration
figure (Fig. 3.56) shows some peaks, in this case C# works with a smaller step size as Matlab, therefore
in some points Matlab calculates that the acceleration goes up instead of maintaining the tendency, but

80

3 METHODOLOGY 3.6 Training platform (The simulator)

0 5 10 15 20 25
−1

0

1

2

3

4

5

6

7

8

Simulink

X

Y

Z

φ

θ

ψ

0 5 10 15 20 25
−1

0

1

2

3

4

5

6

7

8

C#

Seconds Seconds

Figure 3.58: Position using the Orientation controller

after a peak is produced immediately this value is brought back by the same controller, which is why the
peaks doesn’t last long.

Normal mode operation

0 5 10 15 20 25
−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

Simulink

X

Y

Z

φ

θ

ψ

0 5 10 15 20 25
−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

C#

Seconds Seconds

Figure 3.59: Acceleration on Normal mode

The initial conditions for this test were:

• Desired depth, Zd = 0

• Desired orientation, ψd = 0◦

• Thruster 1 and 2 controlled with a voltage of 2.5v

The important difference between the normal mode and the test is that the normal mode works with a
step size of 0.016 seconds and the test mode with a step size of 0.01. This last test was made to prove
the accuracy of the normal mode against the Matlab model.

As it can be seen on the figures 3.61, 3.60 and 3.59 the behaviour between the two systems is very similar,
with the exception of little undulations produced on Matlab’s model.

81

3 METHODOLOGY 3.6 Training platform (The simulator)

0 5 10 15 20 25
−0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Simulink

X

Y

Z

φ

θ

ψ

0 5 10 15 20 25
−0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

C#

Seconds Seconds

Figure 3.60: Velocity on Normal mode

0 5 10 15 20 25
−1

0

1

2

3

4

5

6

7

8

Simulink

X

Y

Z

φ

θ

ψ

0 5 10 15 20 25
−1

0

1

2

3

4

5

6

7

8

C#

Seconds Seconds

Figure 3.61: Position on Normal mode

82

4 DEPTH PID CONTROLLER

4 Depth PID controller

In the master thesis Control de un robot submarino (Control of an underwater robot)[12] there is a proposal
for the PID controller’s gains, as part of this project a new set of gains must be calculated to improve the
functioning of the PID controller, it exists also the possible scenario where the same past PID’s gains are
found.

The gains of the PID controller were calculated using an heuristic method, the main reason is the huge
non-linearities of the system, where the linearization methods discard several factors which were of great
importance to the system.

The initial considerations were the following:

• For tuning purposes, the desired depth was 5m

• The output signal of the controller was limited to ±5v, because that is the range of the thruster’s
voltage control

• The training platform was used to calculate the response of the PID controller

• The sampling time was from 0 to 25 seconds in almost all the cases

• The sampling frequency was 1kHz (0.001 seconds)

• Here the settling time is defined as the moment when the response is contained inside an error band
of ±5% of the desired value.

• A small overshot and a fast stabilization of the system are the desired properties of the PID controller

4.1 Selecting Kp

The first step with the heuristic method is to calculate the Kp gain, the table 4.1 shows the obtained
values for rise time, settling time and overshot.

Kp Rise Time Settlling Time Overshot
5 6.74 10.87 14.52
10 6.65 12.62 13.36
20 6.63 11.37 13.24
30 6.63 11.18 13.26
40 6.62 11.09 13.28
50 6.62 11.04 13.3
60 6.62 10.98 13.3
65 6.62 9.59 13.31
70 6.62 9.59 13.31
80 6.62 9.59 13.32
90 6.62 9.59 13.33
100 6.62 9.59 13.33
150 6.62 9.59 13.35
200 6.62 9.59 13.35

Table 4.1: Responses for the P controller

83

4 DEPTH PID CONTROLLER 4.1 Selecting Kp

0 50 100 150 200

6.62

6.64

6.66

6.68

6.7

6.72

6.74

Kp

T
im

e

(a) Kp Rise time

0 50 100 150 200

10

11

12

Kp

T
im

e

(b) Kp Settling time

0 50 100 150 200

13.5

14

14.5

Kp

P
er

ce
n
ta

ge

(c) Kp Overshot (%)

Figure 4.1: Kp Rise time, Settling time & Overshot

As one can see in the figure 4.1c, with the value of Kp = 20 the smallest overshot is reached, after this
value the overshot increments, but as it can be seen this increment is not very pronounced and it shows
an almost horizontal line.

In the figure 4.1b it can be appreciated that a significant improvement exists between Kp = 60 and
Kp = 65. Between Kp = 65 and Kp = 200 this value doesn’t change a lot, this is mainly due to the
sampling frequency.

The value of Kp = 65 was chosen because it has a low overshot value and the smallest settling time of the
following values.

84

4 DEPTH PID CONTROLLER 4.2 Selecting Kd

0 10 20 30
0

1

2

3

4

5

6

7

Z
d
 & Z

r

¯ Max: 5.6655 Overshot: 13.3099%

¬ Settling time: 9.587seg 5.2498m

¬ Rise time: 6.623seg 5.0001m

Z
d

Z
r

M
e
te
rs

Seconds

Figure 4.2: Kp = 65

4.2 Selecting Kd

Kd Rise Time Settling Time Overshot
0 6.62 9.59 13.31
5 6.63 9.35 11.74
10 6.64 9.09 10.17
20 6.68 8.5 7.07
25 6.73 8.07 5.54
30 6.79 6.41 4.01
35 6.89 6.43 2.5
40 7.05 6.47 1
50 8.3 6.6 0.18
70 10.59 7.01 1.78 · 10−2

80 16.2 7.25 1.32 · 10−5

100 25.1 7.78 −2.33 · 10−5

Table 4.2: Responses for the PD controller

As it can be seen on figure 4.3c, while the value of Kd increments the overshot decreases until it becomes
almost 0, this is exactly the desired operation of the system.

But as Kd increments also the rise time increments (Fig. 4.3a), having Kd = 0 and Kd = 40 an almost
horizontal behaviour.

The settling time was the definitive factor in choosing the value of Kd, here there is a significant change
between the values of Kd = 25 and Kd = 30 (Fig. 4.3b). With Kd = 30 there is an improvement of more
than one and a half seconds in settling time, besides the rising time is ±0.1sec different in comparison
with its immediate neighbour values, and its overshot is just of 4%.

85

4 DEPTH PID CONTROLLER 4.2 Selecting Kd

0 20 40 60 80 100
5

10

15

20

25

Kd

T
im

e

(a) Kd Rise time

0 20 40 60 80 100

7

8

9

Kd

T
im

e

(b) Kd Settling time

0 20 40 60 80 100

0

5

10

Kd

P
er

ce
n
ta

ge

(c) Kd Overshot (%)

Figure 4.3: Kd Rise time, Settling time & Overshot

0 10 20 30
0

1

2

3

4

5

6

Z
d
 & Z

r

¯ Max: 5.2005 Overshot: 4.0101%

¬ Settling time: 6.405seg 4.7502m

¬ Rise time: 6.789seg 5.0002m

Z
d

Z
r

M
e
te
rs

Seconds

Figure 4.4: Kp = 65, Kd = 30

86

4 DEPTH PID CONTROLLER 4.3 Selecting Ki

4.3 Selecting Ki

Ki Rise Time Settling Time Overshot
0 6.79 6.41 4.01

0.1 6.76 6.4 4.62
0.2 6.74 7.94 5.24
0.5 6.68 8.53 7.09
1 6.64 19.44 10.17
5 6.62 25.1 33.94

Table 4.3: Responses for the PID controller

0 2 4

6.65

6.7

6.75

6.8

Ki

T
im

e

(a) Ki Rise time

0 2 4
5

10

15

20

25

Ki

T
im

e

(b) Ki Settling time

0 2 4

10

20

30

Ki

P
er

ce
n
ta

g
e

(c) Ki Overshot (%)

Figure 4.5: Ki Rise time, Settling time & Overshot

To select the correct value of Ki it’s important to look at figures 4.6a and 4.6b and the table 4.3. For big
values of Ki it corresponds a big value of the overshot, a big settling time and there is not a significant
gain on the rise time.

For very small values of the gain (Ki < 1) it exists also a great increment on the overshot, settling time
and the error in steady state, which is not present when Ki = 0.

Finally instead of using a PID controller a PD controller was chosen, the shape of the response of this
controller presents a small overshot in comparison with other options, a small settling time and by special

87

4 DEPTH PID CONTROLLER 4.4 New controller vs. Old controller

0 10 20 30
0

1

2

3

4

5

6

Z
d
 & Z

r

¯ Max: 5.3544 Overshot: 7.0872%

¬ Settling time: 8.528seg 5.25m

¬ Rise time: 6.684seg 5.0007m

Z
d

Z
r

M
e
te
rs

Seconds

(a) Kp = 65, Ki = 0.5 Kd = 30

0 10 20 30
0

1

2

3

4

5

6

7

Z
d
 & Z

r

¯ Max: 5.5085 Overshot: 10.1709%

¬ Settling time: 19.441seg 5.25m

¬ Rise time: 6.637seg 5m

Z
d

Z
r

M
e
te
rs

Seconds

(b) Kp = 65, Ki = 1 Kd = 30

Figure 4.6: Ki = 0.5 & Ki = 1

reasons of the system it does not presents a steady error state. The figure 4.4 shows the behaviour of the
selected controller.

4.4 New controller vs. Old controller

Controller Zd Rise Time Settling time Overshot
Old 1 2.32 5.6 29.34
Kp=100 3 4.63 7.27 16.57
Ki=0 5 6.63 9.27 11.27
Kd=10 10 11.38 13.47 6

20 20.74 19.8 3.02

New 1 2.6 2.4 3.74
Kp=65 3 4.81 5.71 5.16
Ki=0 5 6.79 6.41 4.01
Kd=30 10 11.53 10.9 2.27

20 20.89 19.8 1.15

Table 4.4: Old controller vs. New controller

The experiment was performed with different values for the desired depth (Zd = [1, 3, 5, 10, 20]), as it can
be seen in the figure 4.7 the rise time is lightly bigger (max 0.3 seconds bigger) in the new controller, but
as figures 4.8 and 4.9 show, both overshot and settling time are considerable smaller in the new controller
rather than in the old one.

88

4 DEPTH PID CONTROLLER 4.4 New controller vs. Old controller

1 3 5 10 20

0

5

10

15

20

2.
6

4.
81

6.
79

11
.5
3

20
.8
9

2.
32

4.
63

6.
63

11
.3
8

20
.7
4

Zd

T
im

e

New Old

Figure 4.7: New vs. Old, Rise time

1 3 5 10 20

0

5

10

15

20

2.
4

5.
71 6.

41

10
.9

19
.8

5.
6

7.
27

9.
27

13
.4
7

19
.8

Zd

T
im

e

New Old

Figure 4.8: New vs. Old, Settling time

89

4 DEPTH PID CONTROLLER 4.4 New controller vs. Old controller

1 3 5 10 20

0

5

10

15

20

25

30

3.
74 5.

16

4.
01

2.
27

1.
15

29
.3
4

16
.5
7

11
.2
7

6

3.
02

Zd

P
er

ce
n
ta

g
e

New Old

Figure 4.9: New vs. Old, Overshot

0 10 20 30
0

1

2

3

4

5

6

7

Z
d
 & Z

r

¯ Max: 5.5635 Overshot: 11.2704%

¬ Settling time: 9.271seg 5.25m

¬ Rise time: 6.629seg 5.0009m

Z
d

Z
r

M
e
te
rs

Seconds

Figure 4.10: Old controller, Kp = 100Ki = 0Kd = 10

90

5 ORIENTATION PID CONTROLLER

5 Orientation PID controller

The gains of this orientation PID controller were also calculated using an heuristic method, because of
the non-linearities of the system.

The main difference between this PID controller and the one on chapter 4 is that, in this case the main
purpose of the controller is not to reach the desired position but to keep it. As it was explained on section
3.6.4 to set a new desired orientation the controller must be disabled, then the ROV must be turned to
the desired orientation and then the controller must be enabled again, therefore at the beginning of the
controller operation, the desired position is already reached so the idea is to continue in that orientation.

The initial considerations were the following:

• For tuning purposes, the desired angle was 5◦

• The initial ψ angle is 5◦

• The output signal of the controller was limited to ±5v, because that is the range of the thruster’s
control voltage

• The depth controller was disabled during the experimentations

• Thrusters 1 and 2 work with a control voltage of 2.5v

• The thrusters push the ROV to a negative turn of ψ, then an Undershot parameter was also taken
in consideration.

• The training platform was used to calculate the response of the PID controller

• The sampling time was from 0 to 25 seconds

• The sampling frequency was 1kHz (0.001 seconds)

• Here the settling time is defined as the moment when the response is contained inside an error band
of ±5% of the desired value.

• The mean between the last 100 values of the response and the desired value was taken as Stationary
Error

• The No Error parameter was taken when the response during the rest of the sample is contained
inside an error band of ±0.005◦ of the desired value.

• The fastest stabilization (No Error parameter) is desired

5.1 Selection Kp - Orientation controller

First the gain Kp was calculated, on table 5.1 are the results obtained by the system.

The values of settling time, overshot and no-error were not included, because settling time and overshot
were 0 for all the cases, and the no-error parameter was never reached, that means that the stationary
error was never less than 0.005, as it can be seen on figure 5.1b.

In general the value of Ki is in charge of reducing the stationary error, then incrementing the value Kp

wasn’t going to help to reduce this value.

91

5 ORIENTATION PID CONTROLLER 5.1 Selection Kp - Orientation controller

Kp Undershot Stationary Error
100 −8.9978 −0.4542
200 −4.8532 −0.2271
250 −4.0088 −0.1817
300 −3.4311 −0.1514
400 −2.6836 −0.1135
500 −2.216 −0.0908
800 −1.4745 −0.0568

1,000 −1.212 −0.0454

Table 5.1: Responses for the P controller

200 400 600 800 1,000

−8

−6

−4

−2

Kp

%

(a) Kp Undershot

200 400 600 800 1,000

−0.4

−0.2

Kp

D
eg

re
es

(b) Kp Stationary error

Figure 5.1: Kp Undershot & Stationary error

0 5 10 15 20 25 30
4.75

4.8

4.85

4.9

4.95

5

5.05

ψ
d
 & ψ

r

¯ Max: 5 Overshot: 0%

−Min: 4.7996 Undershot: −4.0088%

¬ Settling time: 0seg 5°

Stationary error: −0.18166°

Final value: 4.8201°

D
e
g
re
e
s

Seconds

Figure 5.2: Kp = 250

The selected Kp value was Kp = 250 because with values higher than 200, the settling time is 0, and there
is an improvement of .8% in undershot between Kp = 200 and Kp = 250, if we increment the value of Kp

this improvement is not as big as with these 2 values.

92

5 ORIENTATION PID CONTROLLER 5.2 Selection Ki - Orientation controller

5.2 Selection Ki - Orientation controller

Ki Undershot Overshot Stationary Error No error (Sec) Last
0 −4.0088 0 −0.1817 4.8201
50 −3.869 0 −1.18 · 10−3 17.886 4.9988
100 −3.751 0 −6.21 · 10−6 8.979 5
200 −3.5571 0 −1.38 · 10−8 4.493 5
250 −3.4751 0 −8.39 · 10−9 3.568 5
300 −3.4004 0 −6.03 · 10−9 3.021 5
400 −3.2685 0 −3.86 · 10−9 2.122 5
500 −3.1545 0.38 −2.84 · 10−9 2.068 5

Table 5.2: Responses for the PI controller

0 200 400

−4

−3.8

−3.6

−3.4

−3.2

Ki

%

(a) Ki Undershot

200 400

5

10

15

Ki

T
im

e

(b) Ki No-Error

Figure 5.3: Ki Undershot & No-Error

0 5 10 15 20 25 30

4.85

4.9

4.95

5

5.05

ψ
d
 & ψ

r

¯ Max: 5 Overshot: 0%

−Min: 4.83 Undershot: −3.4004%

¬ Settling time: 0seg 5°

Stationary error: −6.0302e−009°

Final value: 5°

¬ No error:

3.021seg

4.995°

D
e
g
re
e
s

Seconds

(a) Ki = 300

0 5 10 15 20 25 30

4.85

4.9

4.95

5

5.05

ψ
d
 & ψ

r

¯ Max: 5 Overshot: 0%

−Min: 4.8366 Undershot: −3.2685%

¬ Settling time: 0seg 5°

Stationary error: −3.8578e−009°

Final value: 5°

¬ No error:

2.122seg

4.995°

D
e
g
re
e
s

Seconds

(b) Ki = 400

Figure 5.4: Ki responses

With the introduction of Ki to the system, the steady state error has practically erased (Table 5.2)
as expected, the undershot was also reduced and as Ki was incremented. The selected value of Ki is
Ki = 300, because there is an improvement of 0.5 seconds on the No-error parameter with respect to
Ki = 200, and even though there is also and improvement with Ki = 400 the signal response to the
system is more unstable with this value (Fig. 5.4b).

93

5 ORIENTATION PID CONTROLLER 5.3 Selection Kd - Orientation controller

5.3 Selection Kd - Orientation controller

Kd Undershot Overshot Stationary Error No error (Sec) Last
0 −3.4004 0 −6.03 · 10−9 3.021 5
10 −3.1636 0 −5.93 · 10−9 2.846 5
20 −2.9718 0 −5.83 · 10−9 2.721 5
30 −2.8153 0 −5.74 · 10−9 2.551 5
40 −2.687 0 −5.65 · 10−9 2.396 5
50 −2.5809 0.0139 −5.56 · 10−9 2.343 5
60 −2.4918 0.0483 −5.48 · 10−9 2.347 5
80 −2.3498 0.1154 −5.31 · 10−9 3.539 5

Table 5.3: Responses for the PID controller

Finally after adding the Kd value to the controller the orientation controller is finished. The selected
value of Kd is Kd = 50 because with this value the smallest No-error parameter is reached, and although
there is a little overshot (0.01391%) it does not improve with any superior value of Kd. With this PID
controller, it takes the system only 2.343 seconds to establish.

There cannot be a comparison with the old controller because they were designed for different purposes,
in this controller the main task is to maintain the desired value, instead of reaching it.

0 20 40 60 80
−3.5

−3

−2.5

Kd

%

(a) Kd Undershot

0 20 40 60 80

2.5

3

3.5

Kd

T
im

e

(b) Kd No-Error

Figure 5.5: Kd Undershot & No-Error

0 5 10 15 20 25 30
4.86

4.88

4.9

4.92

4.94

4.96

4.98

5

5.02

5.04

ψ
d
 & ψ

r

¯ Max: 5.0007 Overshot: 0.013916%

−Min: 4.871 Undershot: −2.5809%

¬ Settling time: 0.664seg 4.871°

Stationary error: −5.5614e−009°

Final value: 5°

¬ No error:

2.343seg

4.995°

D
e
g
re
e
s

Seconds

Figure 5.6: Kp = 250, Ki = 300, Kd = 50

94

6 CONCLUSIONS & RESULTS

6 Conclusions & Results

6.1 Final results

The specific objectives of the project were accomplished, the final product is the first version of a training
platform capable of simulating in real time the dynamics of the KAXAN ROV from CIDESI.

In test mode a step size of 0.01 seconds proved to give similar results to the ROV’s model in Matlab,
in fact the results obtained by the C#’s model present a better tendency in the data rather than the
Matlab’s model (Fig. 3.56). Normal mode generated very similar results to Matlab’s model as well.

The depth controller showed a really good improvement against the old depth controller, both settling
time and overshot were significantly smaller for different depths than the old controller.

The orientation controller was designed to prevent the ROV of moving away from a given position, the
idea of this controller is not to reach the desired position, but to keep it. With a constant force produced
by a voltage control of 2.5v on the thrusters 1 and 2, the response time of the controller to keep the
desired position after the force’s impulse is about 2.3 seconds.

A lot of the graphical work of the system is done by the graphic card, this keeps the CPU’s resources free
even though the refresh rate of the graphics is about 60hz.

The simulation of the marine current was in fact a success, if no external forces are applied to the ROV
and the current is working then the ROV is driven away in the direction of the current. It is a good
exercise for the operator to try to maintain an static position when the marine current is active.

6.2 Conclusions

Using numerical methods on C# is possible to simulate the dynamic behaviour of the KAXAN ROV in
real time operation.

For the PID tuning, the linearization methods are not a good option because the system is highly non-
linear. The best option in these cases is using the heuristic method.

Given the operational design of this training platform it’s better to design an orientation PID controller
focus on maintaining the desired position, rather than reaching the desired variable.

Working directly with the graphic card reduces the CPU’s resources usage and allows the implementation
of better graphics without losing speed in the simulation.

6.3 Future work

It’s important to remember that the objective of this project is to provide a solid base for the creation of
a complete training platform, therefore here are some key points to improve in further work:

• Adding collision’s algorithms to the system, to prevent the ROV to pass through the buildings and
structures

• Adding the possibility to change the current during the simulation execution, and even the possibility
to add more than one current

95

6 CONCLUSIONS & RESULTS 6.3 Future work

• Improving the graphics is possible if a texture loader capability is added to the Object loader class

• The water surface can have a better look, if Pixel Shaders are programmed

• Adding the capacity to use different interfaces to control the ROV

• Other students at CIDESI are developing intelligent controllers for the ROV, these controllers can
be added easily to the current simulator, this can improve greatly the work and behaviour of the
controllers

• Adding the possibility to save and load different configurations for different tasks

• In future versions of the simulator is recommended to use an specialized computer for virtual envi-
ronments or a server for group access

96

A FLOW CHARTS

A Flow Charts

A.1 Mass-Spring-Damper on C#

PID
Enable

F=kp*(Sd-S)
Yes

Spp=(F-
C*Sp-K*S)/

M

No

i=0.01

Start

Time=i Counter=0
PID

Enable
 e=Sd-S

Yes
 ei=∫e

 ed=d(e)/dt
F=Kp*e+Ki*

ei+Kd*ed

Spp=(F-
C*Sp-K*S)/

M

No

Sp=∫SppS_Old=SS=∫SpCounter++

Counter<15 and |(S-S_Old)|>0.0001S

Yes

i=i+step

No

i<Time_Limit

Yes Save S, Sp,
Spp, F in S.txt,
Sp.txt,Spp.txt,

F.txt
No

End

Initial
Values

Figure A.1: Flow chart of Mass Spring Damper program on C#

97

A FLOW CHARTS A.2 Simulator on C#

A.2 Simulator on C#

Start Initial Values
Load Wavefront

objects

Start Button
Pressed

Simulator’s initial
values Yes

Draw Screen 1

Set perspective of
Screen 1

Set perspective of
Screen 2

Draw Screen 2

Stop button pressed
or Test time reached

Save vectors into
files

Yes End

Calculate next
values

Start Read Joystick

Calculate next
values

Depth Controller’s
Force

If Orientation
controller

Orientation
Controller’s Force

Yes

Calculate
Acceleration vector

Calculate Velocity
Vector

Pos_old=Position
Vector

Calculate Position
Vector

Counter++
Counter >10 or |Pos_old-

Pos_new|<0.001*Pos_new
EndYes

No

No

No

No

Figure A.2: Flow chart of the Trainings Platform

98

B THRUSTERS DATASHEETS

B Thrusters datasheets

B.1 Model 520

�
�

�����
��

	

�

	

��������	
��
������
���

��������
��
���������
�
���
��������������

�

�

	

��	������
�
����

��
������

�!!���!���!����!�
���!�
���
"������		#

�$����!��

$��!�%#
��!�!$������

��
"�&��������
������
��#

#
���

�
���

�

�
	�����
'�
��$���$�
�
	�����
��
��$���

�!��

�
��

�
��

�
�

�

���		�!��(�	#
��!������

��			�!�����		#
�����

�%������������!)���$�
�$��������!$����

���			#
�*
�
���!������!)��%�+��!�!�

,
-
�.
��!
��/���!����������

�0
1
2
�
3
4

�5�
2

�2
3
6
7

�
8

�
�

�
�

�
��

�
	

�

��
�

�

�
�

�
�

�
��

�
�

�

�
�

�
�

7
��
��
�
�$�

�!)
�
��
�
���
9��)

�
��)

�
�!��%

�
��
�
��
�
�$��

�
#
�
�
!��

0��������9��!)�%�!����)����������!�!)����������!��������%��$��
!��)����
������������	������
�:

$!)���������		�%�$!�����$�����
!���%�!�#

�����
�����

$����!)��6
�������	�$��0��������9��#

��!
�%������%��!)�%�!��
�;

����!����%������������!)��6
������<	�

�
)$�)�$���	=

�#
�������$�$��!���������%����(=

�#
����!)�%�!

�
$!)����$��������$���$>�������

�$
)!��!)����
����6
�������	��

$��
������$����������%���$���/$�!$�
����$
�������!)��������������%!%��

0
)���������������!)��6

�������	�$��#
�
��!$��������%�����%�$�
������$
��������!������0��������
�:

$!)�!)$�
���$
�����#

�
��!�������$��!)��)%�����!)������������$����$���������#
�!�)$�
�#

�
��!��������!!��)���!��!)�
��$���#

�!��
�?
����$#

$��!$�
�!)����!�!$�
���$����)��!������)��!�������!)�!����
�������#

�!������������!$#
��

!)��6
�������	���)�$�����/!��#

����)$
)����$��$�$!�
�
��$!$��������!)��#

�
��!$����%��$�
��
$�����!�)�!�$�

������������������!$�
���#
�
����%���������+��!��+�#

#
���$��!)�����������
�

����$����!)���
�!����%��$��!��

��������������$�
�������/!������!��!)�������%���)�%�$�
��!)�������������$������������$����������#
$�%!��

1
#
����$�
���)$
)�;

7
6
�����

�$���!$��@
2
���%�)�����#

�!������%�����!����<�����!$�������!����
�����!��!)��6
����

��	����$�����#
�/$#

%#
����$��$�$!���)$
)����$�$���������)$
)����

���$������/!��#
������#

���!����$
)!�
�$
)!����

�����!��#
�$�!�$�������
�
�

��
�������������������A

��!���>>�����#
�$���!��
$���!)��6

�������	��/!��#
���

)$
)�?
�������!)�%�!�����������

�!������$�$����

B������!)��!��(�	�#
�!�����!)�����

�����������!��������!���$�������)�%�����
$!)$��!)��)��������$>�����%#

$�%#
#
�!������$�
��
���!����$#

��$��$�
�!)��$��!����!$�����������!�$����$�!������
�B
������		�#

�!������!�$�������!���
���!$�������!)�������%���)�%�$�
���������������

$!)�!$!��$%#
����������%������������!)���!$�
��!)������!���$��

����$��!������$������#
�!��������!#

���)����)�%�$�
���$!)���!)���%�!�#
����)�%�$�
���������%���$�����

0��������������!)��!)�%�!���$���$���$��������������%���!��������

0
)��6

�������	�$�����$���������������!$����!����!�
������#
�������!����	�������	�����!���������%���$��

������
������$�!�������!!�������������!$�$��������$�!�����

2
������@

2
����

����%����
��5�����$!$���!��!)��#
�$�

���
����!)��!)�%�!�����C%$����$����!���������$��!�%#

��!�!$������
���������"�&��������
������������$���!$��

���!�����$
���
�
�!����!��������%���������;

-
�������;

-
�'��$��%!����!�������$�����$�������%!�!)$��#

%�!����$��!�����
$������#

�!��������!#
���)����)�%�$�

�7

������������!��!)��0����������
���$!��������!�$����$��!����!$������

$�!�������$��!�%�!$���

0)���!����������!)���!$�
����!)��6
�������	�$��(�	�#

�!����&&���		�#
�!���������%������������!)��������$�����

��!$���
�2
%�!�#

�������$�$����%�����������!�����������������!�$�������!�������!$!��$%#
�)�%�$�
�����

�%�!�#
�#
�%�!$�
��������������$�����

�
�
�
�
����	�

�
�
�

�

�
�
�

�
�

�����<�(�2
�����@

$�
%�����7
3
�?
�/�<(<	'<��;

���)��-
��!��B���2

���	<(��,

-

��4�$��D��
'�'
(�<&�<<	/�	����B�/D��
'�'
(�<&�''	
1
&#
�$�D�!�������E

!��������
��#
���,

;
FD�)!!�D���

�
�

!��������
��#

�0
1
2
�
3
4

�5�
2

�2
3
6
7

�
8

�����

�
�
�
�
����	��

�
��
�
�

�
�
�

��
�
�
�

�
�
�

�
���	

��

���		���	�		�		�		�		�		�		�		�		�		�		�

����������	����		����������	���
����������	����	����������	���
	����������	����		����������	���

�����������	����		������������	���
	������������	����		������������	���
������������	����	������������	���

�
	�!

��"
# 	�$

%
��&

!
	'
�	��
(�	(�)�*	#+	 	�

����,�
$

	�!

��"
# 	�$

%
��$

�
	'
�	��
(�	(� �)*	#+	 	�

����,�
-
	�"

�,�#�
��	,.��/+/��	�# ���#��

����	�����
	��.�*�

����	������
	��.�*�

0
&
1
2
	�#/(+/((��	���

#��	�(����# /�,�

�
�!�D�@

%��!��#
�!���!��������������!�
����C%$���

!����)�$�����!���?
�������!)�%�!����������"�&�=

-
���$�$��!$�����%�+��!�!���)��
���

$!)�%!���!$��

�������
�		��
�

�

�
�����
���3���

�
	
�
�

�
����

��
��

�
�
���

������
�

�������
�����
�

�

������
��3���

������
����
�

�
������
����
�

�
	�����
�����
�

�

������

��

�!�	"�

�
�
�
�����	��

�
��
������

� �	!�
"

�3�

�3�

��3�

��3�

��3�

��3�

�3��
�3��
�3��
�3��
�3��
�3��
�3��
�3��
�3��
�3��
�3��
�3��
�3��
�3��
�3��

�
#
$���

� �	!�
"

������%��&�

4
#((���	5

*��,��	&
	6 	0

.� 	7
����

�6 	0
.� 	7

����
�6 	0

.� 	7
����

�6 	0
.� 	7

����
4
#((���	5

*��,��	1

�
�
�
�����	��

�
��
������

� �	!�
"

�3��

�3��

�3��

�3��

�3��

�3��

�3��

�3���3�

�
�3�

�
�3��
�3�
�3��
�

�3��
�3�
�3��
�

�3��
�3�
�3��

�
�
'
���

��(
�
��)*

�
�#$�

8
�
.,�	&

�
�
�
�����	��

�
��
����� 		+ ,�!�

"

� � �� �� �� �� �����

���

���

���

���

���

���

���

(
�
���

������%��&�

&
#�'

���	4
#((���

1
����,�	4

#((���

�
�
�
�����	��

�
��
������

� �	!�
"

�3�

�3�

��3�

��3�

��3�

��3�

�3�
�

�3�
�

�3��
�3�
�3��

�
�3��
�3�
�3��

�
�3��
�3�
�3��

�
�
'
���

��(
�
��)*

�

������%��&�

4
#((���	5

*��,��	&
4
#((���	5

*��,��	1

99

B THRUSTERS DATASHEETS B.2 Model 540

B.2 Model 540

�
��
�
�
�
�
�
�
�	�

�

��

�
�
�
�
�

�
�

�
�

�
��

�
	

�

��
�

�

�
�

�
�

�
��

�
�

�

�
�

�
�

�
����

��
��������

�
�� ����!�������������"����#

��!����!�$�%����$����������������
&"�������������!����'

����#
����#

���
��
����

��������������#
�����

$����������!�����&�
�!'
����������$'

����
�(
��!�����)����!��

�����$'
��*

���$�������������+�������#
$���$���������������!�����"

�����
���������������$��%��������$��$��$���$����������!$����������

�
�
�
'
��
,��-�

�
�
.
�
/��

$
�
�
�
�
�
�
�
%�

��
�
%�

$
'
�!�

0
�
�
/�

�
���)��!��������$�������������)��)��������������

�����������
'
$1����!$��%�!��)��������1�$�����1��)����!����+%���!�$�%��
�2

�������������1�"�$�'
$1����$��$%����������+

�������)��)����������������+%�$�'
$�!���1�'

$1����$��$%�$��$!�����������������'
����
�*

%����'
��$���1����

���$���1���������$���$�����$�����$�����$��$�#
$%�����'

������$3��������'
�"������

���������$!��������4���'
��%

��1������$+����%
��
�������$��%"�����'

$1����!�!��)���1�#
�����$�!�������������$���"�)��������1��$'

$1��!$����
+%��+5�!���5$'

'
����������)��)�����
��

������!������#
$������+��!$����)��)������+�$���1��$����4����$��������

)��������������1"����%�!$��+���$���%���)�$!�����������$��'
������

�
'
)��%��1�$���1��0

�
�
"���#

�������$�6
�
�+���������'

����"�!��)�������$� 7&��$����)�$���$�%�1�$����"������
����

�������������'
$4�'

�'
�����$+����%"���1������!���!%�$�����1��)�#

������$���4���'
��%�!�'

)$!��"���1��#
��1���$��

�$�%����'
$���$���)$!3$1�

8
�����)�������&"����'

������$����)����$��%�����"����'
�����"�����)�#

����$���!����������!�����!��$���������
#
�����������$���$����-���$��'

���'
�'
�����!$���1"�1��$��%���'

)���%��1���������$��$�����$������!���!$��������$!�

8
���������!�$����)����$���1"��������!�����!��$�������$��������$���'

���"�����$�'
��)�����������1�9����������

!����'
����������1����������))�����+%���!�$�%��:�$����������������������������������)�������������$�!�

�
����

������������$�$��$+��������)��$�����$������$1������'
��;��!����<<���!�9&����!���$��$��:���))����

+%�$�#
��������������+$����%�+$�3"���!�������$�������������

�
����$�6

�
�)�#

�����))�%��	��$���������������'
$��

)�#
��"����������������=������$������$����>

7,���$�$��1��)����$�������!�����!���������1�$��$���&���!
������'

���$�����)�#
��
��

�����$���%"�$������������0
(
�<�����0

(
�;����)���!�������������$�$��$+���#

��!�"����
���������-�"�'

����+������$��������$���'
���"�����$�'

��)�����������1
��
��$������������������!�$�%���#

�+����
�������$���������$��$�����$���������$!��������!�����

�
�����$��$�����)����$���1���������

������������;���'
�����
��"����'

������$���������!�$����)���#
������'

���
����$�'

��)��������!�����!�����$��$�$��$+����)����
�0
�'

�������!�����!���)��������!����������4���'
��%

!�'
)$!����!�$�%���!����������'

����������$�1��"������������+����������������������������
�8
���$))��!$�����

��=�����1��4���'
��%���#

������"���!�$�%����������$���)����$����'
��������$�������
��

����'
����)�!��������+��$

!����!�����$���!$+���"���$�������������������$���'
�������1��$���!����'

�'
������1��$���$����$�$��$+��

�
�
�
�
����	�

�
�
�

�

�
�
�

�
�

�
�

�����
��

	

�

	

�&�+��9?
�31:����#
$��

�&�+��9?
�31:��������

�

�

	

&����!"�<�
�)�#

��
9����#

$����$��$�����$��
����$1��:
&���!"����'

�
�����$���

������'
���$�����)�#

��
>7,���$�$��1��)���
!�'

'
$��

�
���

�

�
��+�9&
?31:����$��
<
��+�9&
�31:����#

$���

�
��

�
��

�
�

�

�";�����9;��'
:���$��$��"

;"������9�"���'
:�$��

������!�$����)���9���
������:��)����$�

9&"���'
��
�1��$������)�����+5�!����

.
(
�@
���
��4)����$))���$�:

���&� �A��
$����6

��1����"��
�
�*
�4� A �; "�0

$�!���(
$��$�8�"��

�
�?�� A"�.

(
�

�����!�B�&
;�;
A� ,? �4&�&���8$4B�&
;�;
A� ,?;;�
�
,'

$��B���!�$���C
��!�$�%��
!�'

���.
0
DB����)B77#

#
#

��!�$�%��
!�'

�
��
�
�
�
�
�
�
�	�

�

��

�
�
�
�
�

�����

�
�
�
�
����	��

�
��
�
�

�
�
�

��
�
�
�

�
�
�

���

���

����

����

����

��������
����
��	�
����
����
����
��	�
����
����
����
��	�
����

�
�
�����

����

���
����

��������

���
����

��������

�
�
�
�����	��

�
��
 ����!

�"�	#�
$

���� ����%

���

���

����

����

����

��������

����

����

��	�

����

��	�

����

��	�

�
�
�
�����	��

�
��
 ����!

�"�	#�
$

���� ����%
�
���

���

���
��

�
�������

���
��

�
�
�
���

��&�
��'(

�

� � �� �� �� �� �� �� ��

���
���

���
���

���
���

���
�	�

���
���

���
���

���

�
���

���

���
��

�
�������

���
��

"�	#�
$��

�
�
�����	��

�
��
 ����!

�")**	#�
$

���� ����%

&
�
��

���

���

����

����

����

������	�
����
����
����
����
����
���	
����
	���
	���
����
����

�
�
�����

����

�
�
�
�����	��

�
��
 ����!

��+#�
$

���� ����%

�
���

���

���
��

�
�������

���
��

��� ����!"����
��� 	���!"��	�

����� �����!"����
���� �����!"����
���� �����!"����
���� �����!"����
����� �����!"����

#

���$

�%
&��'������ ��(��(��(�� ��(�� ��(��(��(��(

)

��*#
+

,

 �+
#
���*#

+
-* ��

.
��

��!
&����/�)�%
�����"

*)
��.

�
0
�)�*+

1
 ��

.
��

��!
&�����)2����/�)�%
�����"

+
)

��.
�
0

�)�*+
1

 �+
#

��
��!
&�����)2����/�)�%

�����"
3

��0
����%

����4�!5/5���!�))�!���"

���������%
���4��"

����������%
���4��"

6
�
�

7
���5��/5�������%

�������!���)5!�"

�
���B�6

������'
����������$�!��"�����$1����=�����

���$!�������$����*
���$����������!$���$�%�>7,�E

(
)�!���!$��������+5�!�����!�$�1��#

�����������!�

-%
4����

*#
+

,

 �+
#
�8

����5)
����!%

"
���	5)
�����!%

"
����5)
�����!%

"

.
0

9
*7

��'�
:
����5)

�����!%
"

:
����5)

���	�!%
"

*#
+

-* ��
.

�0

&��

����5)
������!%

"
-)�5���;

5
%
������/�;

�!�

100

C JOYSTICK PROGRAMMING

C Joystick programming

C.1 Joystick structure code

struct joy_config

{

public int xp, xn, yp, yn, zp, zn, x2p, x2n, y2p, y2n;

public int axis_x, axis_y, axis_z, axis_x2, axis_y2;

}

joy_config joy_param = new joy_config();

//Values read form the Joystick for different positions.

joy_param.xn = -32767;

joy_param.xp = 32767;

joy_param.x2n = -32767;

joy_param.x2p = 32767;

joy_param.yn = 32767;

joy_param.yp = -32767;

joy_param.y2n = 32767;

joy_param.y2p = -32767;

joy_param.zn = 32639;

joy_param.zp = -32639;

joy_param.axis_x = 0;

joy_param.axis_y = 1;

joy_param.axis_z = 2;

joy_param.axis_x2 = 4;

joy_param.axis_y2 = 3;

C.2 Joystick reading code

Sdl.SDL_JoystickUpdate();

int joy_y = Sdl.SDL_JoystickGetAxis(Joystick, joy_param.axis_y);

joy_y++;

//The control voltage of thrusters 1 and 2

//is managed by Joystick’s y-axis

//Maximum and minimum of +/-5 volts

if (joy_y > 0)

{

f1 = (double)joy_y / (double)joy_param.yp;

f1 = 5 * f1;

f2 = f1;

}

else

{

f1 = -5 * (double)joy_y / (double)joy_param.yn;

f2 = f1;

}

//The control voltage of thruster 3

//is managed by Joystick’s x-axis

//Maximum and minimum of +/-5 volts

int joy_x = Sdl.SDL_JoystickGetAxis(Joystick, joy_param.axis_x);

101

C JOYSTICK PROGRAMMING C.2 Joystick reading code

joy_x++;

if (joy_x > 0)

f3 = 5 * (double)joy_x / (double)joy_param.xp;

else

f3 = -5 * (double)joy_x / (double)joy_param.xn;

//The desired depth

//is managed by Joystick’s z-axis

//the increment is constant of 0.6 of the sample time

int joy_z = Sdl.SDL_JoystickGetAxis(Joystick, joy_param.axis_z);

joy_z++;

if (joy_z > 0)

zd += d_time*(.6 * (double)joy_z / (double)joy_param.zp);

else

zd += d_time*(-.6 * (double)joy_z / (double)joy_param.zn);

if (zd < 0) zd = 0;

//Eye

//The rotation of the camera’s position

//is given by the movement of x2-axis

//The increment is a constant of 90*sample time

int joy_x2 = Sdl.SDL_JoystickGetAxis(Joystick, joy_param.axis_x2);

joy_x2++;

if (joy_x2 > 0)

{

eye_angle+= (float)(90*d_time * joy_x2) / joy_param.x2p;

}

else

{

eye_angle-= (float)(90*d_time * joy_x2) / joy_param.x2n;

}

//Relative position of camera on x coordinate

eye_x = -eye_r * (float)(Math.Cos((double)eye_angle*Math.PI/180));

//Relative position of camera on y coordinate

eye_y = eye_r * (float)(Math.Sin((double)eye_angle * Math.PI / 180));

//The Z position of the camera’s position

//is given by the movement of y2-axis

//The increment is a constant of 3*sample time

int joy_y2 = Sdl.SDL_JoystickGetAxis(Joystick, joy_param.axis_y2);

joy_y2++;

if (joy_y2 > 0)

eye_z += (float)((3*d_time * joy_y2) / joy_param.y2p);

else

eye_z -= (float)((3*d_time * joy_y2) / joy_param.y2n);

//X buton on Playstation Joystick

//Returns the camera to its initial relative position

if (Sdl.SDL_JoystickGetButton(Joystick, 0) == 1)

{

eye_x = -3;

eye_y = 3;

eye_z = -3;

102

D MATRIX OPERATIONS CLASS

eye_angle = 45;

}

//O buton on Playstation Joystick

//Turns on and off the psi controller

//only if the button wasn’t press before

if (Sdl.SDL_JoystickGetButton(Joystick, 1) == 1 && !o_button_press)

{

psi_control = !psi_control;

o_button_press = true;

}

else if (Sdl.SDL_JoystickGetButton(Joystick, 1) == 0 && o_button_press)

o_button_press = false;

D Matrix Operations Class

D.1 Addition-Subtraction

public static double[,] sum_m(double[,] m1, double[,] m2, bool sum)

{

double[,] m3 = new double[m1.GetLength(0), m1.GetLength(1)];

//Checks m1 & m2 are of the same size

if ((m1.GetLength(0) == m2.GetLength(0)) && (m1.GetLength(1) == m2.GetLength(1)))

{

for (int i = 0; i < m1.GetLength(0); i++)

{

for (int j = 0; j < m1.GetLength(1); j++)

{

//Is sum is true, then the function realized an addition

//if not then a subtraction m1-m2

if (sum)

{

m3[i, j] = m1[i, j] + m2[i, j];

}

else

{

m3[i, j] = m1[i, j] - m2[i, j];

}

}

}

}

//If m1 and m2 are not of the same size the function return a 0

else

{

m3 = new double[1, 1] { { 0 } };

}

return m3;

}

103

D MATRIX OPERATIONS CLASS D.2 Multiplication of matrices

D.2 Multiplication of matrices

public static double [,] mul_m(double [,] m1, double [,] m2)

{

double [,] m3 =new double[m1.GetLength(0),m2.GetLength(1)];

//For m1 of dimension mxn it can only multiplied witha a matrix

// m2 of dimension nxl

//the result is m3 of dimension mxl

if (m1.GetLength(1) == m2.GetLength(0))

{

for (int i = 0; i < m1.GetLength(0); i++)

{

for (int l = 0; l < m2.GetLength(1); l++)

{

double s = 0;

for (int j = 0; j < m1.GetLength(1); j++)

{

s += m1[i, j] * m2[j, l];

}

m3[i, l] = s;

}

}

}

//if m2 is not nxl, the result is matrix

//m3 of mxl full of zeros with a diagonal equal to 1

else

{

for (int i = 0; i < m1.GetLength(0); i++)

{

for (int j = 0; j < m3.GetLength(1); j++)

{

if (i == j)

{

m3[i, j] = 1;

}

else

{

m3[i, j] = 0;

}

}

}

}

return m3;

}

D.3 Matrix × k

public static double[,] mul_k(double[,] m1,double k)

{

104

D MATRIX OPERATIONS CLASS D.4 Inverse using Gauss-Jordan Elimination

for (int i = 0; i < m1.GetLength(0); i++)

{

for (int j = 0; j < m1.GetLength(1); j++)

{

m1[i, j] *= k;

}

}

return m1;

}

D.4 Inverse using Gauss-Jordan Elimination

public static double[,] inv_m(double[,] m1)

{

double[,] m4 = new double[m1.GetLength(0), m1.GetLength(0) * 2];

bool singular = false;

//Check if the matrix is square

if (m1.GetLength(0) == m1.GetLength(1))

{

//Add the Gauss matrix to m4

for (int i = 0; i < m4.GetLength(0); i++)

{

for (int j = 0; j < m4.GetLength(1); j++)

{

if (j < m4.GetLength(0))

{

m4[i, j] = m1[i, j];

}

else if (i == (j - m4.GetLength(0)))

{

m4[i, j] = 1;

}

else

{

m4[i, j] = 0;

}

}

}

for (int l = 0; l < m4.GetLength(0); l++)

{

//Check if the element [l,l] is not 0

if (m4[l, l] == 0)

{

singular = true;

//If there is a row below of row l, that does not contains

//a 0 in position [l,l] these two rows

//are shifted

for (int i = l + 1; i < m4.GetLength(0); i++)

{

if (m4[i, l] != 0)

{

105

D MATRIX OPERATIONS CLASS D.4 Inverse using Gauss-Jordan Elimination

double[] shift = new double[m4.GetLength(1)];

for (int j = l; j < m4.GetLength(1); j++)

{

shift[j] = m4[l, j];

m4[l, j] = m4[i, j];

m4[i, j] = shift[j];

}

l--;

singular = false;

}

}

}

else

{

//The Gauss-Jordan elimination begins

for (int i = 0; i < m4.GetLength(0); i++)

{

double factor;

if (i == l)

{

factor = m4[l, l];

}

else

{

factor = m4[i, l] / m4[l, l];

}

for (int j = 0; j < m4.GetLength(1); j++)

{

if (i == l)

{

m4[i, j] = m4[i, j] / factor;

}

else

{

m4[i, j] = m4[i, j] - (factor * m4[l, j]);

}

}

}

}

}

}

else

{

singular = true;

}

//If it is a singular matrix the return matrix is m1

if (singular)

{

return m1;

}

else

{

//The second half of matrix m4 is stored in matrix m5

106

D MATRIX OPERATIONS CLASS D.5 Transpose

//m5 is now the inverse matrix

double[,] m5 = new double[m4.GetLength(0), m4.GetLength(0)];

for (int i = 0; i < m4.GetLength(0); i++)

{

for (int j = m4.GetLength(0); j < m4.GetLength(1); j++)

{

m5[i, j - m4.GetLength(0)] = m4[i, j];

}

}

return m5;

}

}

D.5 Transpose

public static double[,] trans(double[,] m1)

{

int m = m1.GetLength(0);

int n = m1.GetLength(1);

double[,] m2= new double[n, m];

for (int i = 0; i < m; i++)

{

for (int j = 0; j < n; j++)

{

m2[j, i] = m1[i, j];

}

}

return m2;

}

D.6 Integration

public static double[,] int_m(ref ArrayList func, ref ArrayList func1, double time)

{

double[,] integrate;

double[,] f0, f1;

int count = func.Count;

if (count != 1)

{

f0 = (double[,])func[count - 2];

f1 = (double[,])func[count - 1];

//Trapezoidal Method (f1+f0)*dt/2

integrate = mul_k(sum_m(f1, f0,true), .5*time);

//Add the value of the integral to the old values,

//this is equal to the integration from 0 to the current value

integrate = sum_m(integrate, (double[,])func1[count - 2],true);

}

else

{

//If there is only one value on the array,

107

D MATRIX OPERATIONS CLASS D.7 Matrix printing

//the result of the integration is f(0)*dt/2

return mul_k((double[,])func[0],time / 2);

}

return integrate;

}

D.7 Matrix printing

public static string print_m(double[,] m1,string format)

{

string str = "";

for (int i = 0; i < m1.GetLength(0); i++)

{

for (int j = 0; j < m1.GetLength(1); j++)

{

str += m1[i,j].ToString(format);

// \t adds a Tab space to the string

str += "\t";

}

// \n is the command to add a new line to the string

str += "\n";

}

return str;

}

D.8 Matrix printing to a file

public static void print_2_file(double[,] m1, string name)

{

string str = "[";

for (int i = 0; i < m1.GetLength(0); i++)

{

for (int j = 0; j < m1.GetLength(1); j++)

{

str += m1[i, j].ToString();

if (j < m1.GetLength(1) - 1)

{

str += ",";

}

}

if (i < m1.GetLength(0) - 1)

{

str += ";";

}

}

str += "]";

System.IO.StreamWriter objWriter = new System.IO.StreamWriter(name);

objWriter.WriteLine(str);

objWriter.Close();

}

108

D MATRIX OPERATIONS CLASS D.9 Reading matrix from file

D.9 Reading matrix from file

public static double[,] read_f_file(string name)

{

double[,] m1;

if (System.IO.File.Exists(name) == true)

{

System.IO.StreamReader objReader = new System.IO.StreamReader(name);

string str = objReader.ReadLine();

str=str.Trim(’[’,’]’);

string[] row = str.Split(’;’);

string[] element = new string[row.Length];

element = row[0].Split(’,’);

m1 = new double[row.Length, element.Length];

for (int i = 0; i < row.Length; i++)

{

element = row[i].Split(’,’);

for (int j = 0; j < element.Length; j++)

{

m1[i, j] = double.Parse(element[j]);

}

}

}

else

m1 = new double [1,1] {{1}};

return m1;

}

109

E DYNAMIC MODEL’S MATRICES

E Dynamic model’s matrices

E.1 Matrix CRB

Coriolis and centripetal matrix from inertia matrix

public static double[,] fill_matrix_c(ref double[,] vel, ref double m,_

ref double Ixx, ref double Iyy, ref double Izz)

{

//double[,] vel = matrix_op.sum_m(vel_rov, vel_c, false);

double uu = vel[0, 0];

double vv = vel[1, 0];

double ww = vel[2, 0];

double pp = vel[3, 0];

double qq = vel[4, 0];

double rr = vel[5, 0];

double [,] m_c = new double[6,6] {{0, 0, 0, 0, m*ww, -m*vv},

{0, 0, 0, -m*ww, 0, m*uu},

{0, 0, 0, m*vv, -m*uu, 0},

{0, m*ww, -m*vv, 0, -Izz*rr, -Iyy*qq},

{-m*ww, 0, m*uu, -Izz*rr, 0, -Ixx*pp},

{m*vv, -m*uu, 0, -Iyy*qq, -Ixx*pp, 0}};

return m_c;

}

E.2 Matrix CA

Coriolis and centripetal matrix from added mass matrix

public static double[,] fill_matrix_ca(ref double[,] vel_rov,ref double[,] vel_c,_

ref double Xup,ref double Yvp, ref double Zwp,_

ref double Kpp,ref double Mqp,ref double Nrp)

{ double[,] vel = matrix_op.sum_m(vel_rov, vel_c, false);

double uu = vel[0, 0];

double vv = vel[1, 0];

double ww = vel[2, 0];

double pp = vel[3, 0];

double qq = vel[4, 0];

double rr = vel[5, 0];

double [,] m_ca = new double[6,6] {{0, 0, 0, 0, -Zwp*ww, Yvp*vv},

{0, 0, 0, Zwp*ww, 0, -Xup*uu},

{0, 0, 0, -Yvp*vv, Xup*uu, 0},

{0, -Zwp*ww, Yvp*vv, 0, -Nrp*rr, Mqp*qq},

{Zwp*ww, 0, -Xup*uu, Nrp*rr, 0, -Kpp*pp},

{-Yvp*vv, Xup*uu, 0, -Mqp*qq, Kpp*pp, 0}};

return m_ca;

}

110

E DYNAMIC MODEL’S MATRICES E.3 Matrix D

E.3 Matrix D

Hydrodynamic damping

public static double[,] fill_matrix_d(ref double[,] vel_rov,ref double[,] vel_c,_

ref double Xu, ref double Xuu, ref double Yv,_

ref double Yvv, ref double Zw, ref double Zww,

ref double Kp, ref double Kpp2, ref double Mq,

ref double Mqq, ref double Nr, ref double Nrr)

{

double[,] vel = matrix_op.sum_m(vel_rov, vel_c, false);

double uu = vel[0, 0];

double vv = vel[1, 0];

double ww = vel[2, 0];

double pp = vel[3, 0];

double qq = vel[4, 0];

double rr = vel[5, 0];

double[,] m_d = new double[6, 6] {{-(Xu+Xuu*Math.Abs(uu)), 0, 0, 0, 0, 0},

{0, -(Yv+Yvv*Math.Abs(vv)), 0, 0, 0, 0},

{0, 0, -(Zw+Zww*Math.Abs(ww)), 0, 0, 0},

{0, 0, 0, -(Kp+Kpp2*Math.Abs(pp)), 0, 0},

{0, 0, 0, 0, -(Mq+Mqq*Math.Abs(qq)), 0},

{0, 0, 0, 0, 0, -(Nr+Nrr*Math.Abs(rr))}};

return m_d;

}

E.4 Matrix g

Restoring forces & Moments

public static double[,] fill_matrix_g(ref double[,] pos, ref double zB,_

ref double W, ref double B)

{

double phi = pos[3,0];

double theta = pos[4,0];

double psi = pos[5,0];

//This function can be used only when W=B

double[,] m_g = new double[6, 1] {{ 0 },{ 0 },{ 0 },

{ -zB * W * Math.Cos(theta) * Math.Sin(phi) },

{ -zB * W * Math.Sin(theta) },{ 0 } };

return m_g;

}

E.5 Matrix J1

Rotation matrix for position coordinates (body-fixed frame to earth-fixed frame)

public static double[,] fill_matrix_j1(ref double[,] pos)

{

111

E DYNAMIC MODEL’S MATRICES E.6 Matrix J2

double phi = pos[3, 0];

double theta = pos[4, 0];

double psi = pos[5, 0];

double[,] m_j1 = new double[3, 3]_

{{ Math.Cos(psi)*Math.Cos(theta),_

(-Math.Sin(psi)*Math.Cos(phi))+(Math.Cos(psi)*Math.Sin(theta)*Math.Sin(phi)),_

(Math.Sin(psi)*Math.Sin(phi))+(Math.Cos(psi)*Math.Sin(theta)*Math.Cos(phi)) },_

{ Math.Sin(psi)*Math.Cos(theta),_

(Math.Cos(psi)*Math.Cos(phi))+(Math.Sin(psi)*Math.Sin(theta)*Math.Sin(phi)),_

(-Math.Cos(psi)*Math.Sin(phi))+(Math.Sin(psi)*Math.Sin(theta)*Math.Cos(phi)) },_

{-Math.Sin(theta),_

Math.Cos(theta)*Math.Sin(phi),_

Math.Cos(theta)*Math.Cos(phi)}};

return m_j1;

}

E.6 Matrix J2

Rotation matrix for angles (body-fixed frame to earth-fixed frame)

public static double[,] fill_matrix_j2(ref double[,] pos)

{

double phi = pos[3, 0];

double theta = pos[4, 0];

double psi = pos[5, 0];

double[,] m_j2 = new double[3, 3]_

{ { 1,_

Math.Sin(phi)*Math.Tan(theta),_

Math.Cos(phi)*Math.Tan(theta) },_

{ 0,_

Math.Cos(phi),_

-Math.Sin(phi) },_

{ 0,_

Math.Sin(phi)/Math.Cos(theta),_

Math.Cos(phi)/Math.Cos(theta)} };

return m_j2;

}

E.7 Matrix J

Rotation matrix (body-fixed frame to earth-fixed frame)

public static double[,] fill_matrix_j(ref double[,] pos)

{

double[,] m_j = new double[6, 6];

double[,] m_j1, m_j2;

m_j1 = fill_matrix_j1(ref pos);

m_j2 = fill_matrix_j2(ref pos);

for (int i = 0; i < 6; i++)

112

E DYNAMIC MODEL’S MATRICES E.8 Vector ν̇

{

for (int j = 0; j < 6; j++)

{

if (i < 3 && j < 3)

m_j[i, j] = m_j1[i,j];

else if (i >= 3 && j >= 3)

m_j[i, j] = m_j2[i-3, j-3];

else

m_j[i, j] = 0;

}

}

return m_j;

}

E.8 Vector ν̇

Function to calculate the value of equation 3.16

private double[,] acc_func(ref double[,] vel_val, ref double[,] pos_val,_

ref double[,] tau_val)

{

double[,] acc_val, help_matrix;

matrix_c = Model_Matrix.fill_matrix_c(ref vel_val, ref m, ref Ixx,_

ref Iyy, ref Izz);

matrix_ca = Model_Matrix.fill_matrix_ca(ref vel_val, ref v_current,_

ref Xup, ref Yvp, ref Zwp,_

ref Kpp, ref Mqp, ref Nrp);

matrix_d = Model_Matrix.fill_matrix_d(ref vel_val, ref v_current, ref Xu,_

ref Xuu, ref Yv, ref Yvv, ref Zw,_

ref Zww, ref Kp, ref Kpp2,ref Mq,_

ref Mqq, ref Nr, ref Nrr);

matrix_g = Model_Matrix.fill_matrix_g(ref pos_val, ref zB, ref W, ref B);

//help=t-C_rb(v)*v

help_matrix = matrix_op.sum_m(tau_val, matrix_op.mul_m(matrix_c,vel_val),_

false);

//help=help-C_a(vr)*vr

help_matrix = matrix_op.sum_m(help_matrix, matrix_op.mul_m(matrix_ca,_

matrix_op.sum_m(vel_val, v_current, false)), false);

//help=help-D(vr)*vr

help_matrix = matrix_op.sum_m(help_matrix, matrix_op.mul_m(matrix_d,_

matrix_op.sum_m(vel_val, v_current, false)), false);

//help=help-g(n)

help_matrix = matrix_op.sum_m(help_matrix, matrix_g, false);

//acc_val=vp=(M^-1)*(help)

acc_val = matrix_op.mul_m(matrix_op.inv_m(matrix_m), help_matrix);

return acc_val;

}

113

GLOSSARY REFERENCES

References

[1] Gang Chen, YiLong Jia, and Shang Xiang. Simulation training platform for large tactical com-
munication equipment based on vr. In Computer Engineering and Technology, 2009. ICCET ’09.
International Conference on, volume 2, pages 121 –125, jan. 2009. doi: 10.1109/ICCET.2009.172.

[2] Robert D. Christ and Robert L. Wernli. The ROV manual: A User Guide for Observation-Class
Remotely Operated Vehicles. Elsevier, 1 edition, 2001.

[3] OpenTK community. The open toolkit, c# library, October 2006. URL http://www.opentk.com.

[4] Thor I. Fossen. Guidance and control of ocean vehicles. John Wiley & Sons, Ltd, 1994.

[5] Thor I. Fossen. Marince Control Systems, Guidance, Navigation, and Control of Ships, Rigs and
Underwater Vehicles. Marine Cibernetics, 1 edition, 2002.

[6] GameDev.net. Nehe productions, 2012. URL http://www.opentk.com.

[7] L.G. Garcia-Valdovinos and T. Salgado-Jimenez. On the dynamic positioning control of underwater
vehicles subject to ocean currents. In Electrical Engineering Computing Science and Automatic
Control (CCE), 2011 8th International Conference on, pages 1 –6, oct. 2011. doi: 10.1109/ICEEE.
2011.6106590.

[8] ECMA Intenational. C# language specification, June 2006. URL http://www.

ecma-international.org/publications/files/ECMA-ST/Ecma-334.pdf.

[9] Microsoft. Microsoft flight simulator x, 2006. URL http://www.microsoft.com/games/

flightsimulatorx/default.htm.

[10] Motioninjoy. URL http://www.motioninjoy.com.

[11] Antonio Nieves Hurtado and Federico C Dominguez Sanchez. Metodos Numericos Aplicados a la
Ingenieria. Grupo Editorial Patria, 3 edition, 2007.

[12] Ing. Guillermo Delgado Ramirez. Control de un robot submarino (rov). Master’s thesis, CIDESI.

[13] Martin Reddy. C# language specification, 1994. URL http://www.martinreddy.net/gfx/3d/OBJ.

spec.

[14] T. Salgado-Jimenez, J.L. Gonzalez-Lopez, J.C. Pedraza-Ortega, L.G. Garćıa-Valdovinos, L.F.
Mart́ınez-Soto, and P.A. Resendiz-Gonzalez. Design of rovs for the mexican power and oil industries.
In Applied Robotics for the Power Industry (CARPI), 2010 1st International Conference on, pages
1 –8, oct. 2010. doi: 10.1109/CARPI.2010.5624437.

[15] Yang Yang, Chen Guo, Jian bo Sun, and De wen Yan. A novel simulation system for marine main
diesel propulsion remote control. In Virtual Reality and Visualization (ICVRV), 2011 International
Conference on, pages 57 –62, nov. 2011. doi: 10.1109/ICVRV.2011.9.

Glossary

A

API Application Programming Interface, a program that works like an interface to share data or
functions with other programs.

114

http://www.opentk.com
http://www.opentk.com
http://www.ecma-international.org/publications/files/ECMA-ST/Ecma-334.pdf
http://www.ecma-international.org/publications/files/ECMA-ST/Ecma-334.pdf
http://www.microsoft.com/games/flightsimulatorx/default.htm
http://www.microsoft.com/games/flightsimulatorx/default.htm
http://www.motioninjoy.com
http://www.martinreddy.net/gfx/3d/OBJ.spec
http://www.martinreddy.net/gfx/3d/OBJ.spec

GLOSSARY GLOSSARY

C

CIDESI The Center for Engineering and Industrial Development.

Class In object-oriented programming, a class is a construct that is used to create instances of
itself, these instances will share the same behaviour as their class parent.

D

DOF Degree Of Freedom.

F

Form Is an easy way to create a GUI window. A form contains components and controls, which
are a high-level representation of standard GUI widgets.

G

GUI Graphical user interface.

L

Library Is a collection of implementations of behaviour, written in terms of a language, that has a
well-defined interface by which the behaviour is invoked.

O

OpenGL Open Graphics Library, maintained by OpenGL Architectural Review Board or ARB.

OpenTK Open Toolkit, is a C# library that allows .Net programs to access OpenGL, OpenAL and
OpenCL.

P

PID Proportional Integral Derivative Controller.

Plug-in In computing is a set of software components that adds specific abilities to a larger software
application.

POV Point of view switch also known as hat switch.

R

RGB Red Green Blue, is a color mode in which red, green, and blue light are added together to
reproduce a broad array of colors.

RGBA Red Green Blue Alpha, similar to RGB but here the Alpha property is used in as the opacity
channel.

ROV Remotely Operate Underwater Vehicle.

115

GLOSSARY GLOSSARY

S

SNAME Society of Naval Architects and Marine Engineers, was organized in 1893, to advance the
art, science, and practice of naval architecture, shipbuilding and marine engineering.

T

Thread In computer science, a thread of execution is the smallest sequence of programmed instruc-
tions that can be managed independently by an operating system, Multithreading applica-
tions processes two or more threads in the same process and sharing resources.

116

	Introduction
	Problem Definition
	Description of the project
	Objectives
	Structure of the thesis

	Theoretical Fundamentals
	Marine coordinate system
	Linear and angular velocities' transformations
	Cinematic and Dynamic Model
	The matrix M
	The matrix C
	The matrix D
	The matrix G
	Matrices simplifications
	The vector T

	Sea Currents
	CIDESI's KAXAN ROV
	State of the art

	Methodology
	Set-up and considerations for the visual environment
	The graphic models
	Creation of the models
	Lighting
	Sea bottom & Textures
	Water surface & Blending
	Fog
	3D models in Wavefront format
	Object loader Class

	Joystick functions
	Solution of equations (Mass-Spring-Damper)
	Matlab vs C# vs Real
	Results of P Controller
	Results of PI Controller
	Results of PID Controller
	Conclusions of the Mass-Spring-Damper's equations

	Thrusters
	Thruster 520
	Thruster 540

	Training platform (The simulator)
	GUI - Graphical user interface
	Matrices' functions class
	Equation's solution
	PID Controllers' code
	Normal mode and Test mode
	Matlab's results vs C#'s

	Depth PID controller
	Selecting Kp
	Selecting Kd
	Selecting Ki
	New controller vs. Old controller

	Orientation PID controller
	Selection Kp - Orientation controller
	Selection Ki - Orientation controller
	Selection Kd - Orientation controller

	Conclusions & Results
	Final results
	Conclusions
	Future work

	Flow Charts
	Mass-Spring-Damper on C#
	Simulator on C#

	Thrusters datasheets
	Model 520
	Model 540

	Joystick programming
	Joystick structure code
	Joystick reading code

	Matrix Operations Class
	Addition-Subtraction
	Multiplication of matrices
	Matrix k
	Inverse using Gauss-Jordan Elimination
	Transpose
	Integration
	Matrix printing
	Matrix printing to a file
	Reading matrix from file

	Dynamic model's matrices
	Matrix CRB
	Matrix CA
	Matrix D
	Matrix g
	Matrix J1
	Matrix J2
	Matrix J
	Vector

	References
	Glossary

