

THESIS

MASTER IN
MECHATRONICS

BY:

ARMANDO RENE NARVÁEZ CONTRERAS

SANTIAGO DE QUERETARO, QRO., FEBRUARY 2017

Use and adoption of software
design patterns for PLC based systems

TO OBTAIN THE ACADEMIC

DEGREE OF

Centro de Ingeniería y
Desarrollo Industrial

Use and adoption of software
design patterns for PLC based systems

Declaration

I hereby declare that this submission is my own work and that, to the best of my knowl-
edge and belief, it contains no material previously published or written by another person
nor material which to a substantial extent has been accepted for the award of any other
degree or diploma of the university or other institute of higher learning, except where
acknowledgement has been made in the text.

Armando Rene Narvaez Contreras Queretaro 02.2017

Acknowledgements

I would like to thank my thesis advisors Dr. Alfonso Gómez Espinosa and Prof. Jörg
Wollert for their willing to help in this work. They consistently allowed this thesis to be
my own work, but steered me in the right the direction whenever they thought I needed it.

I would also like to thank B.Sc. Sebastian Rau as the second reader of this thesis, and
I am gratefully indebted to him for his very valuable comments on this thesis.

I would also like to acknowledge CONACYT and my colleagues from CIDESI in Mex-
ico for giving me the opportunity, support and resources to study in this program.

I want to thank my parents and family for providing me with unfailing support and
continuous encouragement throughout my years of study and through the process of re-
searching and writing this thesis.

Finally, I must express my very profound gratitude to my wife Daniela and my daugh-
ter Paula for giving me light when I needed it the most. This accomplishment would not
have been possible without them. Thank you.

Abstract

The international standard IEC 6113-3 speci�es the syntax and semantics on which most
of the Programmable Logical Controllers (PLC) are programmed as of today. In the latest
update to the standard the concept of domain speci�c object orientation, was approved
to be deployed and implemented on PLC based systems. This opens up a wide variety
of possibilities from the vast and researched �eld of object orientation from Personal
Computers (PC) based systems to be adopted to the automation industry.

One speci�c subject that can be adopted from the PC based systems into the PLC
based systems are, the already existing software design patterns applied to industry related
problems in software development of industrial controllers.

This thesis takes some of the software design patterns de�ned in the Information
Technology (IT) �eld and adopts them to the automation industry, with help of Uni�ed
Modeling Language (UML) notation to present domain speci�c tools in software develop-
ment, that can be directly applied to the software development stage in the automation
industry.

Contents

Contents

1 Introduction 9

1.1 Statement of the Problem . 9
1.2 Hypothesis . 9
1.3 Objective . 10
1.4 Approach . 10

2 State of the Art 11

2.1 IEC 61131 . 11
2.1.1 IEC 61131-3 . 11

2.2 CODESYS development environment . 11
2.3 OOP in Control Automation . 11
2.4 UML . 12

2.4.1 Class diagram . 12
2.4.2 State diagram . 13
2.4.3 Activity diagram . 14
2.4.4 Sequence diagram . 15

2.5 Design patterns concepts . 16
2.5.1 Builder design pattern . 16
2.5.2 Decorator design pattern . 18
2.5.3 Observer design pattern . 19
2.5.4 Proxy design pattern . 20
2.5.5 Singleton design pattern . 22

2.6 Design patterns in Control Automation . 22

3 Procedure 24

3.1 Builder design pattern . 24
3.1.1 Classical approach to the Builder pattern 24

3.1.1.1 UML modeling . 24
3.1.1.2 Code template . 28
3.1.1.3 Industrial application . 30

3.1.2 Optional approach to the Builder pattern 31
3.1.2.1 UML modeling . 31
3.1.2.2 Code template . 34
3.1.2.3 Industrial application . 36

3.2 Decorator design pattern . 37
3.2.1 UML modeling . 37
3.2.2 Code template . 41
3.2.3 Industrial application . 42

3.3 Observer design pattern . 44
3.3.1 UML modeling . 44
3.3.2 Code template . 47
3.3.3 Industrial application . 48

3.4 Proxy design pattern . 49
3.4.1 UML modeling . 50
3.4.2 Code template . 52
3.4.3 Industrial application . 54

3.5 Singleton design pattern . 56
3.5.1 UML modeling . 57

6

Contents

3.5.2 Code template . 59
3.5.3 Industrial application . 61

4 Conclusions 63

5 References 65

6 Appendices 68

6.1 Appendix A: Classic Builder pattern template 68
6.2 Appendix B: Classic Builder pattern application 68
6.3 Appendix C: Optional Builder pattern template 68
6.4 Appendix D: Optional Builder pattern application 68
6.5 Appendix E: Decorator pattern template 68
6.6 Appendix F: Decorator pattern application 68
6.7 Appendix G: Observer pattern template 68
6.8 Appendix H: Observer pattern application 68
6.9 Appendix I: Proxy pattern template . 68
6.10 Appendix J: Proxy pattern application . 68
6.11 Appendix K: Singleton pattern template 68
6.12 Appendix L: Singleton pattern application 68

List of Figures

1 Simple UML class diagram . 13
2 Simple UML state diagram . 14
3 Simple UML activity diagram . 15
4 Simple UML sequence diagram . 16
5 Builder pattern class diagram . 17
6 Decorator pattern class diagram . 18
7 Observer pattern class diagram . 20
8 Proxy pattern class diagram . 21
9 Singleton pattern class diagram . 22
10 Builder pattern activity diagram . 25
11 Builder pattern state diagram . 26
12 Builder pattern sequence diagram . 26
13 Builder template class diagram . 27
14 Client's request code . 29
15 Classic Builder code template sample results 29
16 Builder application HMI . 30
17 Builder application class diagram . 30
18 Builder optional activity diagram . 32
19 Builder optional state diagram . 32
20 Builder optional sequence diagram . 33
21 Builder optional template class diagram 34
22 Client's request code . 35
23 Optional Builder code template sample results 35
24 Builder optional application HMI . 36
25 Builder optional application class diagram 36
26 Decorator activity diagram . 38
27 Decorator state diagram . 38

7

Contents

28 Decorator sequence diagram . 39
29 Decorator template class diagram . 40
30 Client's request code . 41
31 Decorator template sample results . 42
32 Decorator application HMI . 43
33 Decorator application class diagram . 43
34 Observer activity diagram . 44
35 Observer state diagram . 45
36 Observer sequence diagram . 45
37 Observer template class diagram . 46
38 Client's request code . 47
39 Observer code template sample results . 47
40 Observer application HMI . 48
41 Observer application class diagram . 49
42 Proxy activity diagram . 50
43 Proxy state diagram . 51
44 Proxy sequence diagram . 51
45 Proxy template class diagram . 52
46 Client's request code . 53
47 Proxy code template sample results . 53
48 Proxy application HMI . 54
49 Proxy application class diagram . 55
50 Singleton activity diagram . 57
51 Singleton state diagram . 58
52 Singleton sequence diagram . 58
53 Singleton template class diagram . 59
54 Client's request code . 60
55 Singleton code template sample results . 60
56 Singleton application HMI . 61
57 Singleton application class diagram . 62

8

1 Introduction

1 Introduction

Currently, most of the industrial automation software systems are programmed following
the IEC 6113-3 standard. This standard implemented new Object-Oriented (OO) ex-
tensions to its latests version giving the industrial automation systems the possibility to
handle an Object-Oriented Programming (OOP) approach to its applications[1].

Some of the advantages in the use of OOP for automation systems are, better-structured
program code with separation of concerns and information hiding, �exible extensibility
by new types of objects (e.g., software representations of new types of drives), reuse of
code for de�ning specialized subclasses (inheritance) and the reuse of code operating on
di�erent implementations of an interface (polymorphism)[2].

The �rst implementation of Object-Oriented IEC 6113-3 was realized by CoDeSys
[1] and then implemented by the company Beckho� with their Integrated Development
Environment (IDE) TwinCat.

This thesis presents the adoption and implementation of software engineering Object-
Oriented Programming, Uni�ed Modeling Language and design patterns to solve recurrent
problems in software development for industrial automation.

1.1 Statement of the Problem

The complexity of the current automation systems is steadily increasing at a very high
pace, development cycle times are decreasing, and more and more tasks are assigned to the
controller software[2]. According to the German Engineering Federation VDMA, the ratio
of software has doubled in one decade from 20% to 40%. If this trend continues, software
engineering will be the main activity of automation systems suppliers and developers [3].
In order to address this constantly growing complexity, new techniques and methods of
the automation systems development and automation software development are required
[4].

Re�ecting on the trend of growing importance of software in automation, there is a
great number of research projects and corresponding publications addressing various as-
pects of software development process in industrial automation domain. The main driving
forces of these developments are life-cycle costs, dependability, and performance. The cost
issues are addressed through the entire life-cycle of software, from requirements capturing
to phasing the software out. The dependability related challenges focus on the methods
and activities ensuring functional safety of computer systems through guaranteeing certain
safety properties of the software. The performance-related developments aim at ensuring
su�cient execution speed and lower memory footprint of the code. These characteris-
tics can be interdependent, for example, certain dependability guarantees may depend on
su�cient performance, and higher performance of software (achieved on account of more
e�cient coding or compilation) can reduce the overall costs of automation system by us-
ing lower spec hardware. All of these characteristics of computer hardware and software
certainly impact on the performance and reliability of systems being automated [3].

1.2 Hypothesis

Is possible to implement software Builder, Decorator, Observer, Proxy and Singleton
design patterns for PLC systems.

9

1 Introduction

1.3 Objective

The main objective of this work of investigation is the following:

� Design and implement software Builder, Decorator, Observer, Proxy and Singleton
design patterns for PLC based systems.

For the main objective to be done is necessary �rst to accomplish the following speci�c
objectives:

� Explain the common use of each design pattern.

� Model each design pattern in Uni�ed Modeling Language (UML) notation.

� Generate code template from the UML models.

� Propose an industrial application to be solved with the speci�c design pattern.

� Implement, compile and simulate the proposed industrial application using design
patterns in a PLC Integrated Development Environment (IDE).

1.4 Approach

An important research method in industrial automation is to adopt developments from
the general computing area. This is the case for virtually any software-related technology,
e.g., component-orientation, service-orientation or model-based engineering, to mention
a few. This allows the developers to take advantage of the huge investments into such
technologies and rely on proven solutions rather than reinventing the wheel [3].

Design patterns are a well known element in software engineering which brings trusted
solutions to common design problems[5]. Design patterns are solution approaches that
describe, how typical and recurring design problems are solved. A design pattern consists
of a description of the design problem, a possible solution as well as the context in which
the solution is valid [6].

Design patterns make it easier to reuse successful designs and architectures. Expressing
proven techniques as design patterns makes them more accessible to developers of new
systems. Design patterns help you choose design alternatives that make a system reusable
and avoid alternatives that compromise reusability. Design patterns can even improve the
documentation and maintenance of existing systems by furnishing an explicit speci�cation
of class and object interactions and their underlying intent [6].

This thesis adopts the software engineering design patterns, UML and the new ca-
pabilities of OOP in the CODESYS IDE, to address speci�c situations on the software
development for industrial automation. The use of UML models to produce code tem-
plates and design patterns, accelerates the software development life-cycle reducing the
code footprint memory and communication dependability within the system.

The reminder of the thesis is structured as follows: In Chapter 2, the current State
of the Art will be brie�y introduced, including the UML notation and the basic concepts
of Design patterns, as explained in the literature. In Chapter 3, the work of adoption
of the previous tools is explained and examples of industrial applications related to the
automation industry are given. Finally, in Chapter 4, the conclusions and outlook for this
thesis are given.

10

2 State of the Art

2 State of the Art

2.1 IEC 61131

The International Electrotechnical Commission (IEC) is a not-for-pro�t, non-governmental
worldwide organization for standardization comprising all national electrotechnical com-
mittees (IEC National Committees). The object of IEC is to promote international co-
operation on all questions concerning standardization in the electrical and electronic �elds.
To this end and in addition to other activities, IEC publishes International Standards,
Technical Speci�cations, Technical Reports, Publicly Available Speci�cations (PAS) and
Guides.

The IEC held its inaugural meeting on 26 June 1906, following discussions between
the British IEE, the American Institute of Electrical and Electronics Engineers (IEEE)
(then called AIEE), and others. It currently counts more than 130 countries. Originally
located in London, the commission moved to its current headquarters in Geneva in 1948.

2.1.1 IEC 61131-3

This part of IEC 61131 speci�es syntax and semantics of a uni�ed suite of programming
languages for programmable controllers. This suite consist of two textual languages,
Instruction List (LI) and Structured Text (ST), and two graphical languages, Ladder
Diagram (LD) and Function Block Diagram (FBD). An additional set of graphical and
equivalent textual elements named Sequential Function Chart (SFC) is de�ned for struc-
turing the internal organization of programmable controller programs and function blocks.
Depending on the PLC vendor (and often Country because of cultural reasons), some lan-
guages are most used.

2.2 CODESYS development environment

Some programming environments have been introduced to provide OOP for industrial
automation programming, see, for instance, references [7] and [8].

CODESYS V3 is developed by a medium-size vendor of software tools can be used
for programming a signi�cant number of industrial devices, it supports PLCopen XML
import/export functionality that allows to interface such a tool with other environments
to improve the design of OOP applications as discussed in [9]. CODESYS meets the
additional requirements listed above for OOP programming tools; it extends the IEC
61131 FB to a class construct by the addition of methods, inheritance; it introduces the
INTERFACE-construct for the declaration of abstract FBs with polymorphic reference
semantics [10].

2.3 OOP in Control Automation

OOP has proved to be absolutely unbeatable when It comes to elegantly handling complex
software-development tasks and producing �exible, reusable software components. OOP
has clearly reduced the development time of new software and simpli�ed the solution of
complex software tasks [2].

Bonfè and Fantuzzi in [11] and Secchi et al. [12] performed a practical case of study
with the company Tetra Pak Carton Ambient SpA. In their study, they adopted a �Top-
Down� programmed controller with an OO controller approach using UML notation.

Hee Han in [13] proposed a framework of three phases for the OO design approach in
order to improve PLC programming practices presenting an example of design method

11

2 State of the Art

dividing a complete Automation Manufacturing System into 3 sub-models based in the
UML models use case, class and sequence diagrams.

Pineda-Sanchez et al. [14] Developed a practical example for the packaging industry
exploiting OOP in PLC programming with bene�ts like cost reduction, faster manipula-
tion and reusability of code.

Witsch and Vogel [1] presented the main object-oriented extensions to the IEC-6113-
3 which are implemented in CoDeys V3, based on these extensions the authors derived
UML diagrams to enhance the modularity and reusability of the systems.

2.4 UML

The Uni�ed Modeling Language (UML) has become the de facto standard modeling nota-
tion used as a graphical notation to complement software documentation [15] in software
engineering. It is a graphical language for visualizing, specifying, constructing, and doc-
umenting the artifacts of a software-intensive system. The UML o�ers a standard way to
write a system's blueprints, including conceptual things such as business processes and
system functions as well as concrete things such as programming language statements,
database schemas, and reusable software components.

UML is not a development method, that means it does not tell you what to do �rst
and what to do next or how to design your system, but it helps you to visualize your
design and communicate with others. UML is controlled by the Object Management
Group (OMG) and is the industry standard for graphically describing software.

There are Three prominent types of diagrams in the UML notation:

� Structure diagrams: Showcases things that must be present in the system being
modeled, the structure and substructure of the system using objects, attributes,
operations, and associations. They are used extensively in documenting the software
architecture of software systems. Includes Class diagrams.

� Behavior diagrams: Showcases what must happen in the system being modeled, the
functionality of the system from the user's point of view. They are used extensively
to describe the functionality of software systems. Includes Use Case diagrams and
Activity diagrams.

� Interactions diagrams: Interaction diagrams are a subset of behavior diagrams.
Showcases the �ow of control and data among the things in the system being modeled
and the internal behavior of the system. Includes Sequence diagrams and State
Machine diagrams.

In the literature, there have been several attemps [16], [17], [18], [19], to integrate IEC
61131-3 notations with UML or SysML (Systems Modeling Language, general-porpuse
modeling language for systems engineering applications.) Yet, previous research on soft-
ware engineering with UML shows that while using more diagrams is confusing [17], using
adapted subsets of UML is bene�cial, cf. [19], [20].

Witsch in [19] developed the plcML, a domain-speci�cally adapted UML pro�le for
PLCs. The plcML reduces the number of notations to three, o�ering the class diagram for
structure modeling and adapted activity and state-chart diagrams for behavior modeling.

2.4.1 Class diagram

Class diagrams show the di�erent classes that make up a system and how they relate to
each other. Class diagrams are said to be �static� diagrams because they show the classes,

12

2 State of the Art

along with their methods and attributes as well as the static relationships between them:
which classes �know� about which classes or which classes �are part� of another class, but
do not show the method calls between them.

A class de�nes the attributes and the methods of a set of objects. All objects of this
class (instances of this class) share the same behavior, and have the same set of attributes
(each object has its own set). The term �Type� is sometimes used instead of class, but
it is important to mention that these two are not the same, and type is a more general
term.

In UML, classes are represented by rectangles, with the name of the class, and can
also show the attributes and operations of the class in two other �compartments� inside
the rectangle.

In UML, Attributes are shown with at least their name, and can also show their type,
initial value and other properties. Attributes can also be displayed with their visibility:

� + Stands for public attributes

� # Stands for protected attributes

� - Stands for private attributes

Operations (methods) are also displayed with at least their name, and can also show
their parameters and return types. Operations can, just as attributes, display their visi-
bility:

� + Stands for public operations

� # Stands for protected operations

� - Stands for private operations

Figure 1: Simple UML class diagram

2.4.2 State diagram

State diagrams show the di�erent states of an object during its life and the stimuli that
cause the object to change its state.

State Diagrams view objects as state machines or �nite automata that can be in one
of a set of �nite states and that can change its state via one of a �nite set of stimuli. For
example an object of type NetServer can be in one of following states during its life:

13

2 State of the Art

� Ready

� Listening

� Working

� Stopped

And the events that can cause the object to change states are

� Object is created

� Object receives message listen

� A Client requests a connection over the network

� A Client terminates a request

� The request is executed and terminated

� Object receives message stop ... etc

Figure 2: Simple UML state diagram

2.4.3 Activity diagram

Activity diagrams describe the sequence of activities in a system with the help of "ac-
tivities". Activity diagrams are a special form of State diagrams, that only (or mostly)
contains activities.

Activity diagrams are always associated to a class , an operation or a Use Case.
Activity diagrams support sequential as well as parallel activities. Parallel execution

is represented via Fork/Wait icons, and for the activities running in parallel, it is not
important the order in which they are carried out (they can be executed at the same time
or one after the other)

14

2 State of the Art

Figure 3: Simple UML activity diagram

2.4.4 Sequence diagram

Sequence diagrams show the message exchange (i.e. method call) between several objects
in a speci�c time-delimited situation. Objects are instances of classes. Sequence diagrams
put special emphasis in the order and the times in which the messages to the objects are
sent.

In Sequence diagrams objects are represented through vertical dashed lines, with the
name of the object on the top. The time axis is also vertical, increasing downwards, so
that messages are sent from one object to another in the form of arrows with the operation
and parameters name.

Messages can be either synchronous, the normal type of message call where control
is passed to the called object until that method has �nished running, or asynchronous
where control is passed back directly to the calling object. Synchronous messages have a
vertical box on the side of the called object to show the �ow of program control.

15

2 State of the Art

Figure 4: Simple UML sequence diagram

2.5 Design patterns concepts

As mentioned in the last chapter, Design patterns are a well known element in software
engineering which brings trusted solutions to common design problems. Only software
engineers name them design patterns, but it is a concept commonly found in very di�erent
disciplines. Professionals tend to give name to speci�c problems together with solutions
widely accepted by their colleagues. When those patterns become successful, then they
become jargon, and those terms will appear in the descriptions professionals make of
problems, and in the conversations they carry on about them [5].

Design patterns make it easier to reuse successful designs and architectures. Expressing
proven techniques as design patterns makes them more accessible to developers of new
systems. Design patterns help you choose design alternatives that make a system reusable
and avoid alternatives that compromise reusability. Design patterns can even improve the
documentation and maintenance of existing systems by furnishing an explicit speci�cation
of class and object interactions and their underlying intent [6].

2.5.1 Builder design pattern

The Builder pattern, as described in the literature, separates the construction of a complex
object from its representation so that the same construction process can create di�erent
representations.

In general, the Builder pattern is a software design pattern used to create a complex
objects made up from other objects, and you want the creation of these parts to be
independent of the main object.

The main known uses of the Builder pattern are:

1. When the construction process must allow di�erent representations for the object
that is constructed.

16

2 State of the Art

2. When the algorithm for creating a complex object should be independent of the
parts that make up the object and how they're assembled.

The results of using the Builder pattern are:

1. It lets you vary a product's internal representation. The builder object provides the
director with an abstract interface for constructing the product. The interface lets
the builder hide the representation and internal structure of the product. It also
hides how the product gets assembled.

2. It isolates code for construction and representation. The Builder pattern improves
modularity by encapsulating the way a complex object is constructed and repre-
sented. Clients needn't know anything about the classes that de�ne the product's
internal structure. Each ConcreteBuilder contains all the code to create and assem-
ble a particular kind of product. The code is written once; The di�erent directors
can reuse it to build product variants from the same set of parts.

3. It gives you �ner control over the construction process. Instead of constructing
products in one shot, the Builder pattern construct the product step by step under
the director's control. Only when the product is �nished does the director retrieve
it from the builder.

The classic class diagram of the Builder design pattern is explained.

Figure 5: Builder pattern class diagram

� Builder: speci�es an abstract interface for creating parts of a product object.

� ConcreteBuilder: Constructs and assembles parts of the product by implementing
the builder interface, de�nes and keeps track of the representation it creates and
provides an interface for retrieving the �nal product(GetResult()).

� Director: Constructs the object using the builder interface.

� Product: Represents the complex object under construction. ConcreteBuilder builds
the product's internal representation and de�nes the process by which it's assembled.

17

2 State of the Art

2.5.2 Decorator design pattern

The Decorator pattern, as described in the literature, attaches additional responsibilities
to an object dynamically. Decorators provide a �exible alternative to subclassing for
extending functionality.

In general, the Decorator pattern is a software design pattern that allows you to modify
an object dynamically and add functionality at run time.

The main known uses of the Decorator pattern are:

1. Add responsibilities to individual objects dynamically and transparently, that is,
without a�ecting other objects.

2. When extension by subclassing is impractical. Sometimes a large number of inde-
pendent extensions are possible and would produce an explosion of subclasses to
support every combination.

The result of using the Decorator pattern is:

1. More �exibility than static inheritance. The Decorator pattern provides a more
�exible way to add responsibilities to objects than can be with static (multiple)
inheritance. With decorators, responsibilities can be added and removed at run-
time simply by attaching and detaching them. In contrast, inheritance requires
creating a new class for each additional responsibility. This gives rise to many
classes and increases the complexity of a system.

The classic class diagram of the Decorator design pattern is explained.

Figure 6: Decorator pattern class diagram

� Component: De�nes the interface for objects that can have responsibilities added
to them dynamically.

18

2 State of the Art

� ConcreteComponent: De�nes an object to which additional responsibilities can be
attached.

� Decorator: Maintains a reference to a component object and de�nes an interface
that conforms to component's interface.

� ConcreteDecorator: Adds responsibilities and/or behavior to the component.

2.5.3 Observer design pattern

The Observer pattern, as described in the literature, de�nes a one-to-many dependency
between objects so that when one object changes state, all its dependants are noti�ed and
updated automatically.

In general, the Observer pattern is a software design pattern in which an object,
called the subject, maintains a list of its dependants, called observers, and noti�es them
automatically of any state changes, usually by calling one of their methods.

The main known uses of the Observer pattern are:

1. When an object should be able to notify other objects without making assumptions
about who these objects are. It provides a lose coupled relationship between the
subject and its observers.

2. When a change to one object requires changing others, and you don't know how
many objects need to be changed.

The results of using the Observer pattern are:

1. Abstract coupling between subject and observer. All the subject knows is that
it has a list of observers, each conforming to the simple interface of the abstract
observer class. The subject doesn't know the concrete class of any observer. Thus
the coupling between subjects and observers is abstract and minimal.

2. Support for broadcast communication. Unlike an ordinary request, the noti�cation
that a subject sends needn't specify its receiver. The noti�cation is broadcast au-
tomatically to all interested objects that subscribed to it. The subject doesn't care
how many interested objects exist; its only responsibility is to notify its observers.
This gives you the freedom to add and remove observers at any time. It's up to the
observer to handle or ignore a noti�cation.

The classic class diagram of the Observer design pattern is explained.

19

2 State of the Art

Figure 7: Observer pattern class diagram

� Subject: Provides an interface for attaching and detaching observer objects. Any
number of observer objects may observe a subject.

� Observer: De�nes an updating interface for objects that should be noti�ed of
changes in a subject.

� ConcreteSubject: Stores state of interest to ConcreteObserver objects. Sends a
noti�catio to its observers when its state changes.

� ConcreteObserver: Maintains a reference to a ConcreteSubject object. Stores state
that should stay consistent with the subject's. Implements the observer updating
interface to keep its state consistent with the subject's.

2.5.4 Proxy design pattern

The Proxy pattern, as described in the literature, provides a surrogate or place-holder of
another object to control access to it.

In general, the Proxy pattern is a software design pattern used as an access control
mechanism in charge of �ltering the requests that a certain object may receive, only
passing those requests with the proper access rights to the object and adding additional
functionality to the speci�c response.

The main known uses of the Proxy pattern are:

1. Remote Proxy, a remote proxy controls access to a remote object. The remote proxy
acts as a local representative for an object that lives in a di�erent server, database,
machine etc. A method call on the proxy results in the call being transferred over
the communication line, invoked remotely, and the result being returned back to
the proxy and then to the client.

2. Virtual Proxy, a virtual proxy controls access to a resource that is expensive to
create. The virtual proxy often stalls the creation of the object until it is needed;
the virtual proxy also acts as a surrogate for the object before and while it is being
created. After that, the proxy delegates the requests directly to the RealSubject.

3. Protection Proxy, a protection proxy controls access to the original object. Pro-
tection proxies are useful when objects should have di�erent access rights. The

20

2 State of the Art

protection proxy handles the request di�erently depending on the speci�c client or
administration rights, this way the some methods won't work for the clients without
the needed access rights.

4. Smart Reference, a smart reference is a replacement for a bare pointer that performs
additional actions when an object is accessed.

The results of using a certain type of proxy are:

1. A remote proxy can hide the fact that an object resides in a di�erent address space.

2. A virtual proxy can perform optimizations such as creating an object on demand.

3. Both protection proxies and smart references allow additional housekeeping tasks
when an object is accessed.

The classic class diagram of the Proxy design pattern is explained.

Figure 8: Proxy pattern class diagram

� Proxy: This object maintains a reference that lets the proxy access the real subject.
Controls access to the real subject and may be responsible for creating and deleting
it. Other responsibilities depend on the kind of proxy:

� Remote proxies are responsible for encoding a request and its arguments and
for sending the encoded request to the real subject in a di�erent server.

� Virtual proxies may cache additional information about the real subject so that
they can postpone accessing it.

� Protection proxies check that the caller has the access permissions required to
perform a request.

� Subject: This object can be either an interface or an abstract class. It de�nes the
common interface for RealSubject and proxy so that a proxy can be used anywhere
a RealSubject is expected. It should de�ne all the possible methods available to be
requested by the client.

� RealSubject: De�nes the real object that the proxy represents

21

2 State of the Art

2.5.5 Singleton design pattern

The Singleton pattern, as described in the literature, ensures a class only has one instance,
and provide a global point of access to it.

In general, the Singleton pattern is a software design pattern used to eliminate the
option of instantiating more than one object.

The main known use of the Singleton pattern are:

1. When there must be exactly one instance of a class, and it must be accessible to
clients from a well-known access point.

The results of using the Singleton pattern are:

1. Controlled access to sole instance. Because the singleton class encapsulates its sole
instance, it can have strict control over how and when clients access it.

2. Reduced name space. The Singleton pattern is an improvement over global variables.
It avoids polluting the name space with global variables that store sole instances.

3. Permits a variable number of instances. The pattern makes it easy to change your
mind and allow more than one instance of the singleton class. Moreover, you can
use the same approach to control the number of instances that the application uses.
Only the operation that grants access to the singleton instance needs to change.

The classic class diagram of the Singleton design pattern is explained.

Figure 9: Singleton pattern class diagram

� Singleton: De�nes a GetInstance operation that lets the clients access its unique in-
stance. GetInstance is a class operations(Static method). It may be also responsible
for creation its own unique instance.

2.6 Design patterns in Control Automation

The existing design patterns for Control Automation in the literature are listed.
Dibowski et al. [21] propose a software design approach for large building automation

systems (BAS). The design of large BASs with thousands of devices is a laborious task with
a lot of recurrent works for identical automated rooms. The usage of prefabricated o�-the-
shelf devices and design patterns can simplify this task but creates new interoperability
problems.

22

2 State of the Art

Serna et al. [22] present two speci�c design patterns which allow dealing with failure
management in control applications based on IEC 61499 �extended function blocks�.

Dubinin et al. [23], suggest the use of design patterns that make applications robust
to changes of execution semantics. A semantic-robust pattern is de�ned for a particular
source execution model. The patterns are implemented by means of the same function
block language apparat us and therefore are universal.

Serna et al. [24] presents a design pattern for machine tool control software applica-
tions. The design pattern suggests an indirect detection of deteriorations in the mainte-
nance. In this manner adequate maintenance actions can be identi�ed just in time. [28]
describes �rst the design and operation phase followed by the maintenance phase.

Eckert and Fay et al. In [25] implemented an example of a liquid tank with use
of design patterns in relation to the requirements and solution characteristics taking in
consideration the functional and non-functional requirements.

Steinegger et al. [26] presented a design methodology to separate and decouple control
code for normal operations from fault detection and fault handling methods in discrete
manufacturing systems. Both resulting design patterns take hierarchical control software
design into account and realize a centralized as well as a hierarchically-structured fault
management. The proposed design was applied to an injection molding machine for
evaluation demonstrating that design patterns help, beside enhancing the overall code
quality and increasing maintainability, also to save time during the engineering process
of industrial control applications.

Dai and Vyatkin in [27] proposed a component-based design pattern using an airport
baggage handling system (BHS) as an example. The case of study shows the improvement
in reusability when the proposed component-based design pattern is applied.

Racchetti et al. [28] Proposed a design pattern to direct map UML State-charts
to IEC61131 code based on the previous work by [29]. This design pattern uses OO
characteristics, providing an engine made of classes and mechanisms that allows developer
to realize the static structure of State-charts.

Witsch and Vogel-Heuser in [1], state that pattern catalogues collect software design
experience and up to now such design pattern catalogues for the domain of control engi-
neering do not exist.

Something to notice about the literature is that, the �rst design patterns in software
engineering [6], without considering the State design pattern used by Racchetti et al.
[28], are not documented in the Automation Industry domain. These resources from IT
technologies can be used to solve speci�c situations.

23

3 Procedure

3 Procedure

3.1 Builder design pattern

In this chapter, two di�erent implementations of the Builder design pattern will be de-
scribed. The classical computer science approach to the Builder pattern and an optional
approach to the Builder pattern that, on the author's opinion, could be more suited for
industrial automation.

3.1.1 Classical approach to the Builder pattern

The classical approach to the Builder pattern assumes the ConcreteBuilder class is the
only one in control of the blueprints for the �nal product; This way, the ConcreteBuilder
class can build �nal products as long as there is a complete blueprint of the �nal product.
Outside of these blueprints, no object can be created.

This approach can be used specially when there is a concrete amount of objects to
be made and the client can not make any modi�cations to those objects when requesting
them.

3.1.1.1 UML modeling

In this chapter, the classical approach to a simple Builder pattern will be described with
UML notation.

To Start with, an activity diagram will show the scenario where an Builder pattern is
needed.

24

3 Procedure

Figure 10: Builder pattern activity diagram

From the activity diagram, a state and sequence diagrams are proposed.

25

3 Procedure

Figure 11: Builder pattern state diagram

Figure 12: Builder pattern sequence diagram

As is noted on Figure : 12, the client sends the blueprint to the director in a request
and the the client does the construct request expecting the �nal product. The director
delegates the complete construction to the ConcreteBuilder class which, using the client's
passed blueprint to the director, builds and delivers the �nal product to the director who
then delivers it to the client.

26

3 Procedure

Finally, the class diagram of a Builder pattern, to be implemented in the CODESYS
IDE, is presented and its basic functionality is also described.

Figure 13: Builder template class diagram

� Director:

� Variable concreteBuilder : ConcreteBuilder ; This �eld will hold the correct
ConcreteBuilder instance as a blueprint for the next object to be created. This
variable is passed to the director directly from the client.

� Method fb_init (inputConcreteBuilder : ConcreteBuilder) : void ; The fb_init
method is the default constructor of any Function Block in CODESYS. The
only responsibility of the constructor in this class is to receive the blueprint in
the inputConcreteBuilder variable and store it in its own concreteBuilder �eld.
This constructor can be called by the same instance as many times as needed,
this way a "Set" method for the concreteBuilder variable is not needed.

� Method Construct () : Product ; This method is used by the client to request
the creation of the �nal product. As is noted in the syntax of the method, the
Construct method must deliver an instance of the Product class.

� ITF_Builder:

� Methods Set_Main_Part (mainPart : String) : String ; This method will allow
the write option to the mainPart �eld of the Product instance localProduct
located within the ConcreteBuilder class.

� Methods Set_Part1 (part1 : String) : String ; This method will allow the write
option to the part1 �eld of the Product instance localProduct located within
the ConcreteBuilder class.

� Methods Set_Part2 (part2 : String) : String ; This method will allow the write
option to the part2 �eld of the Product instance localProduct located within
the ConcreteBuilder class.

� Methods Set_Part3 (part3 : String) : String ; This method will allow the write
option to the part3 �eld of the Product instance localProduct located within
the ConcreteBuilder class.

27

3 Procedure

� ConcreteBuilder:

� Variable localProduct : Product ; This variable is an instance of the Product
POU. It is used by the ConcreteBuilder instance for the construction of the
�nal product; Each individual step taken to the completion of the �nal product
is �rst stored in this �eld.

� Variable speci�cations : String[1..4] ; This array holds the current blueprint to
be used to deliver the �nal product instance.

� Method fb_init (specs : String[1..4]) : void ; The constructor of this class is
used on the same way as the constructor of the director class. It changes the
speci�cations �eld to the input variable specs passed by the client.

� Method Get_Result () : Product ; This method is used to deliver the local-
Product object, when it is complete, as the �nal product object to the director
instance and therefore, to the PLC_PRG or the client.

� Method Get_Main_Part () : String ; This method allows the read option of
the variable mainPart in the localProduct object stored in the ConcreteBuilder
instance.

� Method Get_Part1 () : String ; This method allows the read option of the vari-
able part1 in the localProduct object stored in the ConcreteBuilder instance.

� Method Get_Part2 () : String ; This method allows the read option of the vari-
able part2 in the localProduct object stored in the ConcreteBuilder instance.

� Method Get_Part3 () : String ; This method allows the read option of the vari-
able part3 in the localProduct object stored in the ConcreteBuilder instance.

� Product

� Variable mainPart : String ; This variable is used to store the main part value
of a product instance.

� Variable part1 : String ; This variable is used to store the part1 value of a
product instance.

� Variable part2 : String ; This variable is used to store the part2 value of a
product instance.

� Variable part3 : String ; This variable is used to store the part3 value of a
product instance.

Following this de�ned software architecture, a domain speci�c Decorator pattern code
template is proposed.

3.1.1.2 Code template

The implementations was performed in the CODESYS IDE with the speci�c runtime:
CODESYS Control for Raspberry Pi SL.

The code template for this pattern was developed following the class diagram described
in the last section. It includes the Director POU, the ConcreteBuilder POU, the Product
POU and the ITF_Builder interface as described in the UML class diagram.

The code template PLC_PRG, the client, considers one director, two ConcreteBuilder
and two product instances.

28

3 Procedure

In the Figure : 14, one can see three request from the client. The requests on rungs 1
and 10, specify the concreteBuilder instances or "blueprint" to be used. On rung 7, the
request for the �nal Product instances is demanded.

The director object makes the product object request to each ConcreteBuilder object
without knowing the speci�cations of the �nal product object. Only the CocreteBuilder
objects know its own default speci�cations and will deliver a product of its speci�cations
every time a product request is made to them.

Figure 14: Client's request code

(a) Product objects before one RUN cycle (b) Product objects after one RUN cycle

Figure 15: Classic Builder code template sample results

As is noted in �gure: 15, after one RUN cycle the product objects are created with
the speci�cations of the ConcreteBuilder object they were built on.

The Table 1 displays the overall results of the application after 700000 cycles. For the
testing environment we are comparing the di�erent results between a simulation environ-
ment in CODESYS and the real hardware running on a Raspberry Pi 3 model B+ with
the CODESYS Control for Raspberry Pi SL runtime.

Table 1: Overall results of the classical Builder code template application

Description Simulation Raspberry Pi

Allocated memory size 90KB 130KB

Base cycle time 10ms 10ms

Average cycle time 20us 179us

Maximum cycle time 738us 418us

Maximum Jitter 14248us 229us

29

3 Procedure

The full code project can be found in section 6.1 Appendix A given in the Documen-
tation format directly from the CODESYS environment.

3.1.1.3 Industrial application

As an industrial application, a Master HMI with three �nal product possibilities to chose
from is proposed.

Figure 16: Builder application HMI

This HMI, Figure: 16, template replaces the PLC_PRG as the client. The client can
make requests by choosing one option of the HMI and then clicking the request button.
Once a request has been made, the PLC_PRG will handle the speci�c request and will
build the desired product object. The result of each request will be displayed on text
boxes below.

To complete the implementation, a few changes are considered in the class diagram
Figure:17.

Figure 17: Builder application class diagram

� Product

� Method toString () : String ; Method that displays the parameters of the calling
instance in one string variable in order to be displayed by the HMI.

30

3 Procedure

The Table 2 displays the overall results of the application with the same speci�cations
of the last test. As most of the time the application will be on idle, the average cycle time
in the simulation environment can be neglected.

Table 2: Overall results of the classical Builder industrial application

Description Simulation Raspberry Pi

Allocated memory size 1544KB 2235KB

Base cycle time 10ms 10ms

Average cycle time n/a 43us

Maximum cycle time 914us 223us

Maximum Jitter 11203us 148us

The full code project can be found in section 6.2 Appendix B given in the Documen-
tation format directly from the CODESYS environment.

3.1.2 Optional approach to the Builder pattern

The optional approach to the Builder pattern retrieves the control of the blueprints from
the ConcreteBuilder class and grants it to the director class. This way, the director class
has full control and instead of making blueprints of the object, it can deliver a fully
personalized product instance.

This approach can be used specially when there is an unlimited1 amount of objects to
be made and the client can make any modi�cations or special demands to those objects
when requesting them.

3.1.2.1 UML modeling

In this chapter, an optional approach to a simple Builder pattern will be described with
UML notation.

To Start with, an activity diagram will show the scenario where an Builder pattern is
needed.

1Limited only by the amount of "parts" possible to be assembled.

31

3 Procedure

Figure 18: Builder optional activity diagram

From the activity diagram, a state and sequence diagrams are proposed.

Figure 19: Builder optional state diagram

32

3 Procedure

Figure 20: Builder optional sequence diagram

As is noted on Figure : 20, the client sends a ConcreteBuilder instance to the director
but in this case, this ConcreteBuilder instance will work just as the "workshop" to build
the �nal product object. The director, delegates the constructions of the �nal product
to its ConcreteBuider instances but it is the director instance who "pushes" the concrete
speci�cations from the client to the ConcreteBuilder instance. At the end, the Concrete-
Builder instances builds the �nal product objects and delivers it to the director just to
hand it over to the client.

Finally, the class diagram of a Builder pattern, to be implemented in the CODESYS
IDE, is presented and its basic functionality is also described2.

2Only the di�erences to the classical approach will be described.

33

3 Procedure

Figure 21: Builder optional template class diagram

� Director

� Variable speci�cations : String[1..4] ; The speci�cations variable, that on the
ConcreteBuilder had on the classical approach, has been transferred to the
director class. It holds the concrete speci�cations from the client for the con-
structions of the �nal product object.

� Method fb_init (concreteBuilder : ConcreteBuilder , spected : String[1..4]) :
void ; The only di�erence in the constructor method is that now it receives, as
the spected input variable, the full blueprint from the client.

3.1.2.2 Code template

The implementations was performed in the CODESYS IDE with the speci�c runtime:
CODESYS Control for Raspberry Pi SL.

The code template for this pattern was developed following the class diagram described
in the last section. It includes the Director POU, the ConcreteBuilder POU, the Product
POU and the ITF_Builder interface as described in the UML class diagram.

The code template PLC_PRG, the client, considers one director, one ConcreteBuilder
and two product instances.

In the Figure : 22, one can see three request from the client. The requests on rungs 4
and 12, are the request to the construction of the �nal product objects, on this template,
the speci�cations for the �rst object were preloaded. On rung 7, the client speci�es to
the aDirector instance the "blueprint" to be used next.

The director object makes the product object request to the ConcreteBuilder object
passing it the speci�cations of the �nal product object. In this case, the director knows
the speci�cations for every product object before it is built. The ConcreteBuilder object
receives the speci�cations, builds the product object and delivers it to the director object.
As the director dictates the speci�cations for the product to be built, there is only need
to one ConcreteBuilder object.

34

3 Procedure

Figure 22: Client's request code

(a) Product objects before one RUN cycle (b) Product objects after one RUN cycle

Figure 23: Optional Builder code template sample results

As is noted in �gure: 23, after one RUN cycle the product objects are created with
the speci�cations given to the ConcreteBuilder object by the director object.

The Table 3 displays the overall results of the application after 700000 cycles. For the
testing environment we are comparing the di�erent results between a simulation environ-
ment in CODESYS and the real hardware running on a Raspberry Pi 3 model B+ with
the CODESYS Control for Raspberry Pi SL runtime.

Table 3: Overall results of the optional Builder code template application

Description Simulation Raspberry Pi

Allocated memory size 88KB 128KB

Base cycle time 10ms 10ms

Average cycle time 19us 160us

Maximum cycle time 1103us 507us

Maximum Jitter 13979us 191us

The full code project can be found in section 6.3 Appendix C given in the Documen-
tation format directly from the CODESYS environment.

35

3 Procedure

3.1.2.3 Industrial application

As an industrial application, a Master HMI with four tables to fully customize a �nal
product is proposed.

Figure 24: Builder optional application HMI

This HMI template, Figure: 24, replaces the PLC_PRG as the client. The client can
make requests by choosing one option on every table of the HMI and then clicking the
request button. Once a request has been made, the PLC_PRG will handle the speci�c
request and will build the desired product object. The result of each request will be
displayed on text boxes below.

To complete the implementation, a few changes are considered in the class diagram
Figure:25.

Figure 25: Builder optional application class diagram

� Product

36

3 Procedure

� Method toString () : String ; This method displays the parameters of the calling
instance in one string variable in order to be displayed by the HMI.

The Table 4 displays the overall results of the application with the same speci�cations
of the last test. As most of the time the application will be on idle, the average cycle time
in the simulation environment can be neglected.

Table 4: Overall results of the optional Builder industrial application

Description Simulation Raspberry Pi

Allocated memory size 1562KB 2254KB

Base cycle time 10ms 10ms

Average cycle time n/a 46us

Maximum cycle time 957us 192us

Maximum Jitter 8669us 131us

The full code project can be found in section 6.4 Appendix D given in the Documen-
tation format directly from the CODESYS environment.

3.2 Decorator design pattern

Since the industrial revolution, ordinary machines have been designed for mass production.
Nowadays, �exible machines are able to manufacture a certain amount of products but,
most of the times, one at the time until the demanded production is reached. One of the
core ideas of the Industry 4.0, on the marketing side, is the total control and personi�cation
of the desired product. The Decorator pattern can be used to provide added functionality
to machines at run-time. This means, the machines could be able to apply the speci�c
decorators to the product without altering the other products in line, making each product
unique.

3.2.1 UML modeling

In this chapter, a simple Decorator pattern will be described with UML notation.
To Start with, an activity diagram will show the scenario where an Decorator pattern

is needed.

37

3 Procedure

Figure 26: Decorator activity diagram

From the activity diagram, a state and sequence diagrams are proposed.

Figure 27: Decorator state diagram

38

3 Procedure

Figure 28: Decorator sequence diagram

As is noted on Figure : 28, the client can send an speci�c request, either A, B or AB;
then, the decorator class and its dependants must handle these requests and apply the
concrete decorators to the �nal product.

Finally, the class diagram of a Decorator pattern, to be implemented in the CODESYS
IDE, is presented and its basic functionality is also described.

39

3 Procedure

Figure 29: Decorator template class diagram

� ITF Component:

� Method getDescription () : String ; This method will allow the read option of
the sDescription �eld on the classes ConcreteComponent and decorator. On
the case of the ConcreteDecorator classes, this method will be responsible of
adding functionality at runtime.

� Method getValue () : Real ; This method will allow the read option of the
rValue �eld on the classes ConcreteComponent and decorator. On the case
of the ConcreteDecorator classes, this method will be responsible of adding
functionality at runtime.

� ConcreteComponent:

� Variable sDescription : String ; This �eld will be decorated in accordance to
the request from the client.

� Variable rValue : Real ; This �eld will be decorated in accordance to the request
from the client.

� Method fb_init () : void ; The constructor of the ConcreteComponent POU
handles the correct initialization of the variables sDescription and rValue with
its default values.

� Decorator:

� Variable tempComponent : ITF_Component ; This variable holds a reference
to the object being decorated. This can be an already decorated object or a
plain component.

40

3 Procedure

� Variable sDescription : String ; This �eld will be decorated in accordance to
the request from the client.

� Variable rValue : Real ; This �eld will be decorated in accordance to the request
from the client.

� Method fb_init (tempInputComponent : ITF_Component) : void ; The con-
structor of the decorator and ConcreteDecorator classes does two things. It
saves the object to be decorated, passed as the tempInputComponent variable,
to its own �eld tempComponent ; and it handles the correct initialization of
the variables sDescription and rValue with its default values for each Concret-
eDecorator class.

Following this de�ned software architecture, a domain speci�c Decorator pattern code
template is proposed.

3.2.2 Code template

The implementations was performed in the CODESYS IDE with the speci�c runtime:
CODESYS Control for Raspberry Pi SL.

The code template for this pattern was developed following the class diagram described
in the last section. It includes the ConcreteComponent POU, the Decorator POU, the
ITF_Component interface and two ConcreteComponent POUs as described in the UML
class diagram.

The code template PLC_PRG, the client, considers one ConcreteComponent object
and three ConcreteDecorator instances.

In the code template, the default values for a ConcreteComponent object are: Value 4.0
and Description "Plain Component". The PLC_PRG has the necessary instructions, see
Figure: 30, to display the values of the ConcreteComponent object after each decoration
has been made as shown in the following �gure 31.

Figure 30: Client's request code

41

3 Procedure

Figure 31: Decorator template sample results

The �gure: 31 shows the results of using the ConcreteDecorator classes with either
a plain component or a decorated one3. The REAL values of the rValue �elds on the
ConcreteDecorator classes are 0.5 and 0.35 respectively; The STRING values of the sDe-
scription �elds are "Decorator A" and "Decorator B" respectively.

The Table 5 displays the overall results of the application after 700000 cycles. For the
testing environment we are comparing the di�erent results between a simulation environ-
ment in CODESYS and the real hardware running on a Raspberry Pi 3 model B+ with
the CODESYS Control for Raspberry Pi SL runtime.

Table 5: Overall results of the Decorator code template application

Description Simulation Raspberry Pi

Allocated memory size 87KB 126KB

Base cycle time 10ms 10ms

Average cycle time 20us 139us

Maximum cycle time 699us 389us

Maximum Jitter 13020us 209us

The full code project can be found in section 6.5 Appendix E given in the Documen-
tation format directly from the CODESYS environment.

3.2.3 Industrial application

As an industrial application, a Master HMI in charge of decorating the subject's value
(INT) and description (String) is proposed.

3decorB2 takes a ConcreteDecoratorA instance as an input at instanciation

42

3 Procedure

Figure 32: Decorator application HMI

This HMI, Figure: 32, template replaces the PLC_PRG as the client. It can make
requests by checking or clearing the checkboxes of the HMI. As soon as the previous state
of a checkbox is changed, a request is made to the PLC_PRG.

The PLC_PRG will handle those requests on real-time by dynamically creating the
requested object with its speci�c decorations. The result of each request will be displayed
on text boxes below.

To complete the implementation, a few changes are considered in the class diagram
Figure:33.

Figure 33: Decorator application class diagram

� ConcreteDecoratorC; Another ConcreteDecorator POU is implemented with the
same properties as the other ConcreteDecorator's.

The Table 6 displays the overall results of the application with the same speci�cations
of the last test. As most of the time the application will be on idle, the average cycle time
in the simulation environment can be neglected.

43

3 Procedure

Table 6: Overall results of the Decorator industrial application

Description Simulation Raspberry Pi

Allocated memory size 1289KB 1834KB

Base cycle time 10ms 10ms

Average cycle time n/a 74us

Maximum cycle time 840us 271us

Maximum Jitter 4844us 135us

The full code project can be found in section 6.6 Appendix F given in the Documen-
tation format directly from the CODESYS environment.

3.3 Observer design pattern

Due to the tendencies of Industry 4.0 and the Internet of Things, the communication
between devices is crucial.

The Observer design pattern focuses on the automatic communication between devices
or stations. The real di�erence between implementing a Observer design pattern and a
broadcast communication in the network is, that by using the Observer pattern, the
communication network will not be �oated with messages to devices that do not require
to be noti�ed as in a broadcast message.

3.3.1 UML modeling

In this chapter, a simple Observer pattern will be described with UML notation.
To Start with, an activity diagram will show the scenario where an Observer pattern

is needed.

Figure 34: Observer activity diagram

From the activity diagram, a state and sequence diagrams are proposed.

44

3 Procedure

Figure 35: Observer state diagram

The proposed sequence diagram implements a push type noti�cation. Where the
subject object pushes the changes to the observers (writes to the observers) rather than
the observers pulling the state change from the subject (reading from the subject).

Figure 36: Observer sequence diagram

As is noted on Figure : 36, the subject instance is responsible of the noti�cation of all
its subscribed observers without taking into account who these observers are. As long as
an observer is subscribed, it should be noti�ed by the subject.

Finally, the class diagram of an Observer pattern, to be implemented in the CODESYS
IDE, is presented and its basic functionality is also described.

45

3 Procedure

Figure 37: Observer template class diagram

� ConcreteSubject:

� Constant static variable maxObservers : int ; This variable is the maximum
number of subscribed observers. This is due to the lack of arrays with variable
length on CODESYS.

� Variable observerList : Observer_Interface[1..maxObservers] ; This array holds
a list of all the subscribed observers to be used by the notifyObservers() method
for the automatic noti�cation of the observers.

� Variable intToBeObserved : int ; This is just a state variable; It will trigger the
automatic noti�cation every time it is subject to change.

� Method notifyObservers : int ; This method holds the logic behind the auto-
matic noti�cation to the subscribed observers. It uses a FOR loop and the
observerList array to do so.

� Method registerObserver (newObserver : Observer_Interface) : void ; Method
used to subscribe ConcreteObserver instances to the observerList array. The
newObserver variable is the passed ConcreteObserver instance to be saved in
the array.

� Method removeObserver (deleteObserver : Observer_Interface) : void ; Method
used to unsubscribe ConcreteObserver instances to the observerList array. The
deleteObserver variable is the passed ConcreteObserver instance to be removed
from the array.

� Method Set_observedINT (num : int) : void ; This method is used to change
the variable intToBeObserved of a ConcreteSubject instance

� ConcreteObserver:

� Variable intObserved : int ; Integer value to receive the automatic state noti�-
cation.

� Variable observerID : int ; This variable works as the unique identi�er of the
ConcreteObserver instance. It is granted at the creation of the instance whether
the instance is subscribed or not to an ConcreteSubject instance. This variable
is not an essential part of the pattern but it is used to exemplify good code
practices.

46

3 Procedure

� Static variable observerIDTracker : int ; This static variable total amount of
ConcreteObserver instances in the system. This variable is not an essential
part of the pattern but it is used to exemplify good code practices.

� Method update (num : int) : void ; Method used by the ConcreteObserver
instance to receive the changes on the observed variable from the Concrete-
Subject instance.

Following this de�ned software architecture, a domain speci�c Observer pattern code
template is proposed.

3.3.2 Code template

The implementations was performed in the CODESYS IDE with the speci�c runtime:
CODESYS Control for Raspberry Pi SL.

The code template for this pattern was developed following the class diagram described
in the last section. It includes the ConcreteSubject POU, the ConcreteObserver POU,
the Subject_Interface POU and the Observer_Interface POU as described in the UML
class diagram.

The code template PLC_PRG, the client, considers one ConcreteSubject object and
three ConcreteObserver instances.

After the registration of the every ConcreteObserver object, the PLC_PRG sends
di�erent Set request to the ConcreteSubject. Then the concrete subject noti�es every
subscribed observer of the changes.

Figure 38: Client's request code

(a) All observers are subscribed (b) Observer 2 is no longer subscribed

Figure 39: Observer code template sample results

47

3 Procedure

The �gure: 39 shows the di�erent behaviour the ConcreteObservers have when they
are subscribed or not. Using the debugging options in CODESYS, the developer can test
the code step by step; the Figure: 38 shows a fraction of the PLC_PRG implementation
used as test. On the �gure 39a one can see how all the ConcreteObservers are subscribed
and receive the noti�cation from the ConcreteSubject. Figure 39b show the behaviour
after the ConcreteObserver2, named realObserver2, was removed and another Set request
was made to the ConcreteSubject object.

The Table 7 displays the overall results of the application after 700000 cycles. For the
testing environment we are comparing the di�erent results between a simulation environ-
ment in CODESYS and the real hardware running on a Raspberry Pi 3 model B+ with
the CODESYS Control for Raspberry Pi SL runtime.

Table 7: Overall results of the Observer code template application

Description Simulation Raspberry Pi

Allocated memory size 94KB 133KB

Base cycle time 10ms 10ms

Average cycle time 15us 63us

Maximum cycle time 1296us 282us

Maximum Jitter 10573us 204us

The full code project can be found in section 6.7 Appendix G given in the Documen-
tation format directly from the CODESYS environment.

3.3.3 Industrial application

As an industrial application, a Master HMI in charge of changing the observed value as
well as registration and deregistration of observers is proposed.

Figure 40: Observer application HMI

This HMI template, Figure: 40, replaces the PLC_PRG as the client. It includes
the controls for increasing and decreasing the subject's observed value. Three observers

48

3 Procedure

are displayed with its controls to register and deregister from the subject and a display
showing the last observed value from the subject.

As soon as the subject's observed value is changed, the automatic noti�cation of the
observers is triggered and displayed on each subscribed observer.

To complete the implementation, a few changes are considered in the class diagram
Figure:41.

Figure 41: Observer application class diagram

� ConcreteObserver:

� Method fb_init (): void ; The constructor method is responsible of the correct
creation of the ConcreteObserver instance. It handles the correct use of both
variables observerID and observerIDTraker at instantiation.

The Table 8 displays the overall results of the application with the same speci�cations
of the last test. As most of the time the application will be on idle, the average cycle time
in the simulation environment can be neglected.

Table 8: Overall results of the Observer industrial application

Description Simulation Raspberry Pi

Allocated memory size 1267KB 1788KB

Base cycle time 10ms 10ms

Average cycle time n/a 44us

Maximum cycle time 401us 224us

Maximum Jitter 12026us 163us

The full code project can be found in section 6.8 Appendix H given in the Documen-
tation format directly from the CODESYS environment.

3.4 Proxy design pattern

The Object Oriented capabilities of the IEC 61131-3 standard implemented in the CODESYS
IDE, grant the developer of a basic concept of encapsulation. This can be done with the
use of Program Organization Unit (POU) Properties object. These properties object can

49

3 Procedure

be con�gured to work as a getter, setter or both depending on the desired access mecha-
nism a variable has. That, does not ful�l the security requirements in automation systems
due to the lack of private variables.

In any system, there are certain variables that the client should not be able to modify
or have access to. Thus, to enhance the data hiding mechanism of the software, the
implementation of a Proxy design pattern is proposed. This Protection Proxy pattern is
used as an access control mechanism in charge of �ltering the request a certain object
may receive, only passing those requests with the proper access rights to the object/�eld
in question.

3.4.1 UML modeling

In this chapter, a simple Proxy Pattern will be described with UML notation.
To start with, an activity diagram will show the possible scenarios of a request being

sent to the proxy object.

Figure 42: Proxy activity diagram

From the activity diagram, a state and sequence diagrams of the request are proposed.

50

3 Procedure

Figure 43: Proxy state diagram

Figure 44: Proxy sequence diagram

As shown in the Figure: 44, when the Clients sends a "Good Request" to the proxy
instance, it should be passed to the RealSubject instance. Either keeping its integrity or
with added functionality by the proxy object. Then the proxy instance can forward the
RealSubject's response to the client. In this case, again, the response can be passed with
or without change by the proxy object.

In the case of a "Bad Request" by the client, the proxy instance should take full
responsibility of the request and forward a reply to the client.

Finally, the class diagram of a protective Proxy, to be implemented in the CODESYS
IDE, is presented and its basic functionality is also described.

51

3 Procedure

Figure 45: Proxy template class diagram

� Proxy:

� Variable refToRealSubject : RealSubject; This variable is de�ned as a pointer
to the RealSubject class. It will hold the address reference to the concrete
RealSubject instance that the proxy object is working on.

� Method fb_init (ptrToRealSubject : RealSubject*): void ; The constructor method
is responsible of the correct creation of the proxy instance and write the passed
RealSubject* to the proxy's own �eld refToRealSubject. The parameter ptrTo-
RealSubject is the current address of the RealSubject instance, to be protected
by the proxy.

� Subject_Interface:

� Method Get_Method() : int ; This method allows the read option of an integer.

� Method Set_Method (num : int) : void ; This method allows the write option
of an integer �eld to be written with the passed value of the parameter num.

� RealSubject:

� Variable iProp : int ; Integer variable to be modi�ed by the proxy instance if
the client's request is accepted by the proxy instance.

Following this de�ned software architecture, a domain speci�c Proxy pattern code
template is proposed.

3.4.2 Code template

The implementations was performed in the CODESYS IDE with the speci�c runtime:
CODESYS Control for Raspberry Pi SL.

The code template for this pattern was developed following the class diagram de-
scribed in the last section. It includes the Proxy POU, the RealSubject POU and the
Subject_Interface POU as described in the UML class diagram.

The code template PLC_PRG, the client, considers two RealSubject objects and one
Proxy pointer on di�erent scope spaces.

The proxy object is dynamically created by the proxy pointer and using a pointer to
the RealSubject object as an input parameter, to hold the reference to the object to be

52

3 Procedure

modi�ed. Once the request for that speci�c RealSubject object is completed, the proxy
object is deleted to free the memory and resource so that another RealSubject object can
instantiate the proxy and realize a connection. The full interaction between the client,
proxy and RealSubject objects is shown in Figure:46.

Figure 46: Client's request code

(a) Values for the Realsubject objects before one

RUN cycle
(b) Values for the Realsubject objects after one

RUN cycle

Figure 47: Proxy code template sample results

As is noted in �gure: 47, after one RUN cycle the value of the iProp �eld on both Real-
Subjec objects has changed. The PLC_PRG has made a set request to both RealSubject
objects through the proxy object. The speci�c set request were done with the speci�c
values in IntSetValue for each RealSubject and the PLC_PRG makes a get request to
validate the change on the iProp �eld of both RealSubject objects.

The Table 9 displays the overall results of the application after 700000 cycles. For the
testing environment we are comparing the di�erent results between a simulation environ-
ment in CODESYS and the real hardware running on a Raspberry Pi 3 model B+ with
the CODESYS Control for Raspberry Pi SL runtime.

53

3 Procedure

Table 9: Overall results of the Proxy code template application

Description Simulation Raspberry Pi

Allocated memory size 89KB 127KB

Base cycle time 10ms 10ms

Average cycle time 23us 58us

Maximum cycle time 2281us 259us

Maximum Jitter 15847us 272us

The full code project can be found in section 6.9 Appendix I, given in the Documen-
tation format directly from the CODESYS environment.

3.4.3 Industrial application

As an example of an industrial application, a Master HMI, in charge of changing the
subject's value (INT) is proposed as shown in Figure: 48.

Figure 48: Proxy application HMI

This HMI template replaces the PLC_PRG as the client. It can make either set or
get requests to the PLC.

The HMI includes the controls to specify, an integer value to be set to the subject,
change the password for the speci�c request and the set and get request buttons. The
password �eld is used to demonstrate, how the request must ful�l the access mechanism,
in order to be passed by the proxy object. This password �eld is cleared after every
request as a security mechanism.

54

3 Procedure

Once a request is sent to the PLC_PRG, the proxy object will handle the request.
The proxy object can either accept the request and pass it to the subject to be handled
properly or reject the request and notify the client (HMI) about the rejection.

To complete the implementation, a few changes are considered in the class diagram
Figure:49.

Figure 49: Proxy application class diagram

� Proxy:

� Variable iTempPassword : int ; This input variable holds the passed value of
the client's current password �eld, to be veri�ed by the proxy instance.

� Variable iRealPassword : int ; This static variable holds the actual password
code.

� Variable iSetValue : int ; This variable holds the value to be set by the proxy
instance if the request passes the security mechanism.

� Variable bReadWrite : bool ; This boolean variable is used as identi�er of the
request. Either ser (boolean value TRUE) or get (boolean value FALSE).

The Table 10 displays the overall results of the application with the same speci�cations
of the last test. As most of the time the application will be on idle, the average cycle time
in the simulation environment can be neglected.

Table 10: Overall results of the Proxy industrial application

Description Simulation Raspberry Pi

Allocated memory size 1410KB 2026KB

Base cycle time 10ms 10ms

Average cycle time n/a 49us

Maximum cycle time 641us 142us

Maximum Jitter 8444us 65us

55

3 Procedure

The full code project can be found in section 6.10 Appendix J given in the Documen-
tation format directly from the CODESYS environment.

3.5 Singleton design pattern

The Singleton design pattern has some special characteristics and should be handled
di�erently.

A classic Java implementation of the Singleton pattern will make it easier to under-
stand and visualize the problems on the CODESYS environment at compile time. This
implementations uses "Lazy Instanciation" to make it simpler.

1 public class Singleton {

2 //A static field of type Singleton to store the one and only Singleton

3 //instance

4 private static final Singleton INSTANCE = new Singleton();

5

6 //The private constructor restricts the object's instanciation to

7 //the class only

8 private Singleton() {}

9

10 //Static method to get access to the sole Singleton instance

11 public static Singleton getInstance() {

12

13 //The lazy instanciation manages the creation of the instance

14 //only if it is needed.

15 if (INSTANCE == null) {

16 INSTANCE = new Singleton();

17 }

18

19 //The the method will grant access to the Singleton INSTANCE

20 return INSTANCE;

21

22 }

23

24 }

The problems to make a classic Singleton pattern implementation on CODESYS and
IEC 61131-3 are:

1. The constructor fb_init(); in CODESYS can not be private; This leaves the instan-
ciation process unrestricted and many objects could be declared of the Singleton
class.

2. There are no static methods in CODESYS; A static method in JAVA can be accessed
without an instance. One can just use the name of the class and use the static
method Singleton.getInstance(); in this case but in CODESYS all the methods
from a class must be called from an instance of that class.

3. Data recursion is not yet implemented in CODESYS; In line 4 of the JAVA example,
a case of data recursion will occur. This will lead to error at compile time.

4. The THIS operator is not a valid as assignment target; This means that the calling
object can not modify its own address to point to the �rst Singleton instance.

56

3 Procedure

Because of this problems, the classic Singleton implementation can not be done. A new
implementation is proposed usign a proxy object in between the client and the singleton
class.

The proxy will solve the problem in the following way:

1. The proxy object will handle the dynamic creation of an instance of the singleton
class; The constructor of the singleton class will still be public but if the creation of
the instances of that class is restricted through a proxy, the proxy object can then
decide whether or not create more that one instance of the singleton class.

2. The created singleton instance will be stored in a static �eld on the proxy object,
that way, even if there are more than one proxy objects they will all share the same
singleton instance in one of their �elds. This way the static methods, data recursion
and the THIS operator problems are solved.

3.5.1 UML modeling

In this chapter, a modi�ed Singleton Pattern will be described with UML notation.
To start with, an activity diagram will show the scenario where a modi�ed Singleton

pattern is needed.

Figure 50: Singleton activity diagram

57

3 Procedure

From the activity diagram, a state diagram of the request is proposed.

Figure 51: Singleton state diagram

The sequence diagram to handle all scenarios of the client's request is proposed.

Figure 52: Singleton sequence diagram

As shown in the Figure: 52, the proxy object has to handle every request from the
client. If the client request the creation of a singleton object, the proxy must either create
the �rst singleton instance or return the same �rst instance. If the request from the client
does not involve the creation of a singleton instance, the proxy object can simply forward
the request to the singleton instance.

Finally, the class diagram of a modi�ed Singleton pattern, to be implemented in the
CODESYS IDE, is presented and its basic functionality is also described.

58

3 Procedure

Figure 53: Singleton template class diagram

� ProxyToSingleton:

� Static variable bFirstInstance : BOOL := FALSE ; This variable is de�ned as
static to be available to all Proxy instances. Its basic responsibility is to hold
the reference to the creation of the singleton instance. This means, it knows
the status of whether or not a singleton instances has been created.

� Static variable realSingleton : Singleton* ; This static variable, is declared as
as pointer to an instance of the singleton FB. That way, this pointer is the
only declared instance of singleton class in the program. It can be dynamically
created by the �rst proxy instance and then, the constructor should avoid a
duplicate of the singleton instance based on the bFirstInstance current value.

� Method fb_init() : void In this case, the constructor is responsible of the one
and only creation of the singleton instance.

� Subject_Interface:

� Method Get_() : int ; This method allows the read option of an integer.

� Method Set_(num : int) : void ; This method allows the write option of an
integer �eld to be written with the passed value of the parameter num.

� RealSubject:

� Variable var1 : int ; Integer variable to be modi�ed by the proxy instance if
the client's request is accepted by the proxy instance.

Following this de�ned software architecture, a domain speci�c Singleton pattern code
template is proposed.

3.5.2 Code template

The implementations was performed in the CODESYS IDE with the speci�c runtime:
CODESYS Control for Raspberry Pi SL.

59

3 Procedure

The code template for this pattern was developed following the class diagram described
in the last section. It includes the ProxyToSingleton POU, the RealSingleton POU and
the Proxy_Interface POU as described in the UML class diagram.

The code template PLC_PRG, the client, considers two ProxyToSingleton objects
and one RealSingleton object. There are also two pointers to RealSingleton to verify that
the two ProxyToSingleton objects in its static realSingleton �eld have the same object.

As previously mentioned, the �rst ProxyToSingleton object is in charge of the dy-
namic creation of the RealSingleton object, once the RealSingleton object is created,
every ProxyToSingleton will have access to the only RealSingleton object, so it will not
matter which of the two ProxyToSingleton objects make the request, the RealSingleton
object will always receive the request as shown in Figures: 54 and 55.

Figure 54: Client's request code

(a) Values of the RealSingleton object after a

request from the instance1 is made
(b) Values of the RealSingleton object after a

request from the instance2 is made

Figure 55: Singleton code template sample results

As is noted in �gure: 55, both ProxyToSingleton instances have the same address in
its pointer to RealSubject �eld, so both have access to the same RealSingleton object
and a request made to any of the ProxyToSingleton objects will alter the results on the
RealSingleton object.

The Table 11 displays the overall results of the application after 700000 cycles. For
the testing environment we are comparing the di�erent results between a simulation en-
vironment in CODESYS and the real hardware running on a Raspberry Pi 3 model B+
with the CODESYS Control for Raspberry Pi SL runtime.

60

3 Procedure

Table 11: Overall results of the Singleton code template application

Description Simulation Raspberry Pi

Allocated memory size 88KB 127KB

Base cycle time 10ms 10ms

Average cycle time 15us 58us

Maximum cycle time 1178us 259us

Maximum Jitter 39912us 272us

The full code project can be found in section 6.9 Appendix I given in the Documen-
tation format directly from the CODESYS environment.

3.5.3 Industrial application

As an industrial application, a Master HMI displaying the default background stored in
a con�guration �le (Singleton instance) is proposed.

Figure 56: Singleton application HMI

This HIM, Figure: 56, template replaces the PLC_PRG as the client. It can make
Set requests and by default makes the Get request to the background colour.

In the HMI there are three proxy instances that are able to change the values in
the singleton instance. It does not matter which proxy instance triggers the background
change, in the end all proxy instances receive the new background because they are
modifying the same singleton instance.

To complete the implementation, a few changes are considered in the next class dia-
gram

61

3 Procedure

Figure 57: Singleton application class diagram

� Proxy_Interface:

� Method Set_Background (newBackground : DWORD) : void ; This method
grants the functionality, to both the RealSingleton FB and the ProxyToS-
ingleton FB, of being able to modify the backgroundColour variable in the
RealSingleton instance.

� Variable newBackground : DWORD ; This variable is passed to modify the
value inside the backgroundColour �eld in the RealSingleton instance.

� RealSingleton:

� Variable backgroundColour : DWORD ; This variable holds the current back-
ground colour of the application and can be modi�ed only by the ProxyToS-
ingleton instances.

� Method fb_init() : void ; The constructor method of the RealSingleton FB set
the default background colour to blue.

The Table 12 displays the overall results of the application with the same speci�cations
of the last test.

Table 12: Overall results of the Proxy industrial application

Description Simulation Raspberry Pi

Allocated memory size 1250KB 2026KB

Base cycle time 10ms 10ms

Average cycle time 17us 49us

Maximum cycle time 714us 142us

Maximum Jitter 10606us 65us

The full code project can be found in section 6.12 Appendix L given in the Documen-
tation format directly from the CODESYS environment.

62

4 Conclusions

4 Conclusions

The growing complexity of automation systems demanded a change. New techniques and
methods are required in the industry to address its needs. These techniques must be
domain speci�c in order to be useful to the automation industry.

The Codesys IDE is a great tool for prototyping new concepts. The simulation and
visualization options can be used for testing these concepts, that can be directly applied
and deployed in the industry without being target speci�c; the developer can write the
whole architecture and behaviour of the program and then, map the I/O from the chosen
target to the already existing variables. This way, if the hardware does not exist any
more, the core of the system remains intact and switching the hardware, is a much easier
task than developing the project again.

The concept of object oriented programming is relatively new in the automation in-
dustry but, it is a well known concept for systems engineers, in fact, it has been studied
since 1962. With the latest update to the IEC 6113-3 standard and the introduction of
the OOP basic concepts for software development of PLC based systems, a wide door of
possibilities has been open for automation engineers, to exploit and make use of it.

In the autor's opinion, the wisest move in software development for embedded systems
programmed under the IEC 6113-3 standard; is to learn, adopt and apply the more than
50 years of e�ort and research in software development for PC based systems. This
ideology could reduce the time gap and research e�ort of automation software developers,
researchers and educators by having 50 years of continuous research and knowledge from
the PC based systems. One clear example of this are design patterns.

A design pattern is the use of a de�ned architecture, that has been tried and tested as
a proven solution to many common recurring problems. These reusable solutions are a set
of rule of conventions. These rules, include a list of objects used in the application and
an e�ective description of how these objects interrelate and interact with each other, this
means patterns not only describe how software is structured, but more importantly, they
also describe how classes and objects interact, especially at run time. Other important
advantages of design patterns are:

� Reduction of the technical risk of deploying a new and untested design.

� Improvement of code readability.

� Reusability and extensibility of the already developed applications.

� Reduction of development time and thus reduction of the �nal cost of the system.

� Easier implementation of principles of good design.

� Easier understanding of the documentation.

� Easier communication between developers.

Design patterns are a well understood and documented resource in the PC based
systems �eld but, they are not deterministic or prescriptive solutions; Rather they are
abstract solutions that can be tailored to the speci�c problem in hand. In our case, they
have to be adopted to PLC based systems to solve domain speci�c problems in software
development.

The main reason behind the possible adoption of Design patterns is that they are
language neutral, so can be applied to any language that supports object-orientation.

63

4 Conclusions

Design Patterns are highly �exible and can be used in practically any type of application
or domain.

This thesis is an adoption of design patterns for PC based systems to domain spe-
ci�c design patterns for the automation industry. The explored design patterns explained
in this thesis are, the Builder pattern (both classical and optional approaches), Decora-
tor pattern, Observer pattern, Proxy pattern and a workaround implementation of the
Singleton pattern.

A summary for this speci�c work is:

� The common use for each of the proposed design patterns was explained.

� The creation of domain speci�c UML models for software development of each pro-
posed design pattern was made.

� The generation of code template from these domain speci�c UML models was de-
veloped.

� An industrial application to be solved with the domain speci�c design patterns
template was proposed.

� Implementation and simulation of the proposed industrial applications, with aid of
visualization elements, was developed and tested in a PLC based IDE and on a
Raspberry Pi 3.

For future work, there are more concepts on the PC based systems, that could be
adopted to PLC based systems. Some examples of this are; object oriented databases,
concurrent programming and a workaround recursive programming (similar to the ad-
justment to the Singleton pattern). As PLC's are getting more potent and robust, these
possibilities are not very far away from being executed.

Another direction for future work, besides the adoption of more design patterns, is a
virtual plant simulation integrating more than one design pattern to control and ful�l the
requirements of an automation plant as a whole.

64

5 References

5 References

[1] D. Witsch and B. Vogel-Heuser. Close integration between UML and IEC61131-3:New
possibilities through object-oriented extensions. in Proc. IEEE Conf. Emerging Tech-
nol. Factory Autom., 2009, pp. 1�6.

[2] B. Werner. Object-oriented extensions for IEC 61131-3. IEEE Ind. Electron. Mag.,
vol. 3, no. 4, pp. 36�39, Dec. 2009.

[3] V. Vyatkin. Software Engineering in Industrial Automation: State-of-the-Art Review.
Industrial Informatics, IEEE Transactions on, vol. 9, no. 3, pp. 1234�1249, Aug 2013.

[4] D. Tikhonov, D. Schütz, S. Ulewicz and B. Vogel-Heuser. Towards industrial appli-
cation of model-driven platform-independent PLC programming using UML. IECON
2014 - 40th Annual Conference of the IEEE Industrial Electronics Society, Dallas,
TX, 2014, pp. 2638-2644.

[5] F. Serna, C. Catalan, A. Blesa, and J. M. Rams. Design patterns for failure manage-
ment in IEC 61499 function blocks. in Proc. IEEE Conf. Emerging Technol. Factory
Autom., 2010, pp. 1�7.

[6] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Elements of
Reusable Object-oriented Software. Addison-Wesley Longman Publishing Co., Inc.,
Boston, MA, USA, 1995.

[7] V. Gonzandez , A. S. Diaz , P. G. Fernandez , A. F. Junquera and R. M. Bayon.
MIOOP. An object oriented programmingparadigm approach on the IEC 61131 stan-
dard. Proc.IEEE Conf. Emerging Technol. Factory Autom. (ETFA 2010), pp. 1-4,
2010

[8] 3S SmartSoftware Solutions. Codesys v3 2012., [online] Available: http://www.3s-
software.com

[9] N. Papakonstantinou, S. Sierla, and K. Koskinen. Object oriented extensions of IEC
61131-3 as an enabling technology of software product lines. in Proc. 16th IEEE Conf.
Emerg. Technol. Fact. Autom. (ETFA), Toulouse, France, 2011, pp. 1�8.

[10] F. Basile, P. Chiacchio and D. Gerbasio. On the Implementation of Industrial Au-
tomation Systems Based on PLC. in IEEE Transactions on Automation Science and
Engineering, vol. 10, no. 4, pp. 990-1003, Oct. 2013.

[11] M. Bonfe and C. Fantuzzi. A practical approach to object-oriented modeling of logic
control systems for industrial applications. Decision and Control, 2004. CDC. 43rd
IEEE Conference on, Nassau, 2004, pp. 980-985 Vol.1.

[12] C. Secchi, M. Bonfe, C. Fantuzzi, R. Borsari and D. Borghi. Object-Oriented
Modeling of Complex Mechatronic Components for the Manufacturing Industry. in
IEEE/ASME Transactions on Mechatronics, vol. 12, no. 6, pp. 696-702, Dec. 2007.

[13] K. H. Han and J. Jeon. Object-oriented design and simulation of automated manufac-
turing system. Information Science, Electronics and Electrical Engineering (ISEEE),
2014 International Conference on, Sapporo, 2014, pp. 498-502.

65

5 References

[14] M. Pineda-Sanchez et al. Programmable Logic Controllers (PLC) in the packaging
industry: An object oriented approach for developing control programs. 2014 9th In-
ternational Microsystems, Packaging, Assembly and Circuits Technology Conference
(IMPACT), Taipei, 2014, pp. 386-389.

[15] A. M. Fernández-Sáez, D. Caivano, M. Genero and M. R. V. Chaudron. On the use
of UML documentation in software maintenance: Results from a survey in industry.
Model Driven Engineering Languages and Systems (MODELS), 2015 ACM/IEEE
18th International Conference on, Ottawa, ON, 2015, pp. 292-301.

[16] K. Sacha. Veri�cation and Implementation of Dependable Controllers. Dependability
of Computer Systems, 2008. DepCos-RELCOMEX '08. Third International Confer-
ence on, Szklarska Poreba, 2008, pp. 143-151.

[17] L. Bassi, C. Secchi, M. Bonfe and C. Fantuzzi. A SysML-Based Methodology for
Manufacturing Machinery Modeling and Design. in IEEE/ASME Transactions on
Mechatronics, vol. 16, no. 6, pp. 1049-1062, Dec. 2011.

[18] N. Papakonstantinou and S. Sierla. Generating an object oriented IEC 61131-3 soft-
ware product line architecture from SysML. in Proc. IEEE 18th Conf. Emerg. Technol.
Fact. Autom. (ETFA), Cagliari, Italy, 2013, pp. 1�8.

[19] D. Witsch, M. Ricken, B. Kormann and B. Vogel-Heuser. PLC-statecharts: An ap-
proach to integrate umlstatecharts in open-loop control engineering. 2010 8th IEEE
International Conference on Industrial Informatics, Osaka, 2010, pp. 915-920.

[20] D. Friedrich and B. Vogel-Heuser. Bene�t of system modeling in automation and
control education. 2007 American Control Conference, New York, NY, 2007, pp.
2497-2502.

[21] H. Dibowski, J. Ploennigs, and K. Kabitzsch. Automated design of building automa-
tion systems. IEEE Trans. Ind. Electron., vol. 57, no. 11, pp. 3606�3613, Nov. 2010.

[22] F. Serna, C. Catalan, A. Blesa, and J. M. Rams. Design patterns for failure manage-
ment in IEC 61499 function blocks. in Proc. IEEE Conf. Emerging Technol. Factory
Autom., 2010, pp. 1�7.

[23] V. Dubinin and V. Vyatkin. Semantics-robust design patterns for IEC 61499. IEEE
Trans. Ind. Inf., vol. 8, no. 2, pp. 279�290, May 2012.

[24] F. Serna, C. Catalán, A. Blesa, J. M. Colom and J. M. Rams. �Predictive main-
tenance surveyor� design pattern for machine tools control software applications.
Emerging Technologies and Factory Automation (ETFA), 2011 IEEE 16th Confer-
ence on, Toulouse, 2011, pp. 1-7.

[25] K. Eckert, A. Fay, T. Hadlich, C. Diedrich, T. Frank and B. Vogel-Heuser. Design
patterns for distributed automation systems with consideration of non-functional re-
quirements. Proceedings of 2012 IEEE 17th International Conference on Emerging
Technologies and Factory Automation (ETFA 2012), Krakow, 2012, pp. 1-9.

[26] M. Steinegger, A. Zoitl, M. Fein and G. Schitter. Design patterns for separating fault
handling from control code in discrete manufacturing systems. Industrial Electronics
Society, IECON 2013 - 39th Annual Conference of the IEEE, Vienna, 2013, pp.
4368-4373.

66

5 References

[27] W. Dai and V. Vyatkin. A component-based design pattern for improving reusability
of automation programs. Industrial Electronics Society, IECON 2013 - 39th Annual
Conference of the IEEE, Vienna, 2013, pp. 4328-4333.

[28] L. Racchetti, C. Fantuzzi, L. Tacconi and M. Bonfe. The PLC UML State-chart
design pattern. Proceedings of the 2014 IEEE Emerging Technology and Factory
Automation (ETFA), Barcelona, 2014, pp. 1-4.

[29] M. Samek. Practical Statecharts in C/C+: Quantum Programming for Embedded
SystemscMiro. Taylor & Francis US, 2002.

67

5 Appendices

6 Appendices

6.1 Appendix A: Classic Builder pattern template

Please refer to the �les AppendixA.pdf and AppendixA.project

6.2 Appendix B: Classic Builder pattern application

Please refer to the �les AppendixB.pdf and AppendixB.project

6.3 Appendix C: Optional Builder pattern template

Please refer to the �les AppendixC.pdf and AppendixC.project

6.4 Appendix D: Optional Builder pattern application

Please refer to the �les AppendixD.pdf and AppendixD.project

6.5 Appendix E: Decorator pattern template

Please refer to the �les AppendixE.pdf and AppendixE.project

6.6 Appendix F: Decorator pattern application

Please refer to the �les AppendixF.pdf and AppendixF.project

6.7 Appendix G: Observer pattern template

Please refer to the �les AppendixG.pdf and AppendiG.project

6.8 Appendix H: Observer pattern application

Please refer to the �les AppendixH.pdf and AppendixH.project

6.9 Appendix I: Proxy pattern template

Please refer to the �les AppendixI.pdf and AppendixI.project

6.10 Appendix J: Proxy pattern application

Please refer to the �les AppendixJ.pdf and AppendixJ.project

6.11 Appendix K: Singleton pattern template

Please refer to the �les AppendixK.pdf and AppendixK.project

6.12 Appendix L: Singleton pattern application

Please refer to the �les AppendixL.pdf and AppendixL.project

68

	Introduction
	Statement of the Problem
	Hypothesis
	Objective
	Approach

	State of the Art
	IEC 61131
	IEC 61131-3

	CODESYS development environment
	OOP in Control Automation
	UML
	Class diagram
	State diagram
	Activity diagram
	Sequence diagram

	Design patterns concepts
	Builder design pattern
	Decorator design pattern
	Observer design pattern
	Proxy design pattern
	Singleton design pattern

	Design patterns in Control Automation

	Procedure
	Builder design pattern
	Classical approach to the Builder pattern
	UML modeling
	Code template
	Industrial application

	Optional approach to the Builder pattern
	UML modeling
	Code template
	Industrial application

	Decorator design pattern
	UML modeling
	Code template
	Industrial application

	Observer design pattern
	UML modeling
	Code template
	Industrial application

	Proxy design pattern
	UML modeling
	Code template
	Industrial application

	Singleton design pattern
	UML modeling
	Code template
	Industrial application

	Conclusions
	References
	Appendices
	Appendix A: Classic Builder pattern template
	Appendix B: Classic Builder pattern application
	Appendix C: Optional Builder pattern template
	Appendix D: Optional Builder pattern application
	Appendix E: Decorator pattern template
	Appendix F: Decorator pattern application
	Appendix G: Observer pattern template
	Appendix H: Observer pattern application
	Appendix I: Proxy pattern template
	Appendix J: Proxy pattern application
	Appendix K: Singleton pattern template
	Appendix L: Singleton pattern application

