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Abstract 

 

 

This work presents the development of a 3D model of an ABB IRB340 delta robot using ROS. 

The motion of the 3D model is based on inverse kinematics, for this, it is necessary to provide 

the desired coordinates of the end effector. To accomplish this task, it is detailed the derivation 

of the inverse kinematics equations to obtain the robot’s actuators state given the desired 

coordinates. Also, the results of the inverse kinematics computation are validated by means of 

forward kinematics equations. Once the inverse kinematics algorithm is validated, it is 

employed to send the control variables to the URDF model in ROS. In addition, it was created 

a robot motion routine to demonstrate the active operation of the 3D model in a graphical 

environment. It is worthwhile to mention that due to limitations on URDF joint properties the 

displacement of the robot’s model is limited along one axis. 
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Chapter 1 

 

1. Introduction 

 

Robotics is an interdisciplinary field that can be define as the science and technology of robots, 

their manufacture, design and applications. Due to its nature, this field combines electrical and 

mechanical components as well as computer science. Robots are systems that contain control 

systems, sensors and manipulators, used to achieve tasks that must be performed repetitively 

whenever it is needed. Generally, robots are used in different industrial sectors such as 

automotive, pharmaceutical, food, packaging, etc. 

 

The use of robots in industry is increasing constantly and rapidly due to the facility to work in 

different applications, such as, welding, handling operations, assembly, pick and place, 

packaging, drilling painting, chemical handling, among others. There are different reasons for 

using robots in industry, for instance, they can operate continuously without stopping the 

process, reduce the production time, provide high quality products, etc. 

  

Nowadays, in industry there are many different types of robots like mobile robots, robotic arms, 

delta robots, among others. This work is focused on delta robots which have become a popular 

robot in industry. The major advantages of using delta robots are, high accuracy, faster response, 

high stiffness, high ratios of rigidity to weight, reliability and versatility, it works inside a 

smaller workspace, etc. 

 

The spread use of robots has open the necessity of more capable robot applications. For this 

reason, different computational tools have been developed to ease the creation of such 

applications. One of these tools is Robot Operating System (ROS), which, provides a wide set 

of tools, libraries and conventions to simplify the creation of complex and robust algorithms for 

robots. 
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1.1 Justification 

 

The use of delta robots optimize every task that must be done, due to its higher accuracy, faster 

response, greater reliability and versatility, being these key points to improve automation 

systems in various sectors of industry. 

 

This project seeks to create a URDF file of a delta robot in order to use it to simulate the robot 

inside a graphical environment, in this way, using simulation and visualization tools, it will be 

possible to observe the performance of the robot when it is moving. 

 

There are delta robots within the FH Aachen university facility that can be used for didactic 

purposes. Then, the students will be able of making tests using simulation and visualization 

tools before getting contact with the physical machinery. Once the students have sufficient 

knowledge about the behaviour of these robots, they will be able to get in contact with the real 

robots in order to work with them and carry out practical trainings. 

 

Furthermore, the project pursues the use of ROS-I, which is a tool that leads to a versatile 

programming. This allows the use of diverse robots from different manufacturers and simplifies 

the development of complex systems. In such a way, the programming of an automation system 

can be implemented in another system with similar characteristics without the necessity of 

developing the programming from scratch. 
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1.2 Aim and objectives 

 

1.2.1 Aim 

 

This project aims to generate a URDF file for the simulation of a delta robot and develop a 

versatile programming routine for moving the robot observing its performance within a 

graphical environment. 

 

1.2.2 Objectives 

 

o Conduct literature review of concepts of Robot Operating System (ROS). 

o Make practical examples of ROS to get familiar with the environment. 

o Conduct literature review of Robot Operating System Industrial (ROS-I). 

o Carry out practical examples of ROS-I for getting familiar with the environment. 

o Conduct literature review of concepts of Unified Robot Description Format (URDF) 

files to get familiar with this files. 

o Make practical examples of URDF files to get familiar with the concepts of this files. 

o Conduct literature review of concepts of URDF files for industrial robots to get familiar 

with the concepts and standards used for its developing. 

o Make practical examples of URDF files of industrial robots for getting familiar with the 

concepts and standards of this files. 

o Investigate and select the kind of kinematic the delta robot will use in order to perform 

its movements. 

o Design the URDF file of the delta robot. 

o Make firsts tests for observing the delta robot inside the graphical environment. 

o Create a routine for moving the delta robot and observe its performance inside a 

graphical environment. 
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Chapter 2 

 

2. Background 

 

2.1 Robotics 

 

Over the time, humans have look for substitutes that would be able of imitate their behaviour in 

the interaction with the environment. The word robot was introduced in 1920 by Karel Capek, 

a Czech playwright, in his play “Rossum’s Universal Robots”.  The term robot is derived from 

the Slav word robota that means executive labour [1]. 

 

The structure of a robot consists of rigid bodies (links) interconnected by means of articulations 

(joints) that allows the mobility of the robot. The mechanical structure of the robot or kinematic 

chain, can be represented by a wrist that gives dexterity, an arm that guarantee mobility and an 

end effector to perform the required task [1]. 

 

The robots used in industrial applications can be serial or open chain, and closed kinematic chain 

manipulators. A kinematic chain is open when just one sequence of links are connecting the two 

ends of the chain, whereas a kinematic chain is closed when a sequence of links forms a loop. 

 

The serial manipulators cover a large workspace when it is fully extended, and their joints can 

be controlled independently. But, its big disadvantage is the low payload capacity comparing to 

the large structures and motors of each link, causing slow acceleration and deceleration. 

 

A delta robot is considered a closed kinematic chain manipulator and it possess a great number 

of advantages when comparing it to serial manipulators. For instance, higher rigidity and small 

mobile mass, that provides faster acceleration without losing accuracy. Also, delta robots can 

move heavier payload relative to its body mass. The main drawback of delta robots is their 

limited range of motion comparing it to a serial manipulator. 
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2.2 Delta robots 

 

In 1988, Professor Reymond Clavel, at the Swiss Federal Institute of Technology in Lausanne, 

developed an idea of using parallel robots with three translational and one rotational degree of 

freedom, creating the delta robots [2]. 

 

 

 

Figure 1  3D Schematic of a delta robot made in SolidWorks. Image from [2]. 

 

The idea of using delta robots is the use of parallelograms. The parallelograms allow an output 

link to remain at a fixed position with respect to the input link. The function of the three 

parallelograms is to restrain the end effector, remaining only with three translational degrees of 

freedom.  

 

Forming a closed loop structure, each one of the arms are connected to the base platform via 

revolute joints [3], this joints permit only rotation of one of the bodies relative to another, thus, 

this joint has just one degree of freedom [4]. The position of the end effector is changing 

accordingly to the angular position of the motors on the base platform [5]. Finally, a fourth leg 

is used to transmit rotatory motion (Figure 2) from the base to the end effector mounted on the 

mobile platform [6].  
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Figure 2 Example of an ABB IRB 340 delta robot. Image from [7]. 

 

The core advantage of the delta robot is its speed, the difference between the typical robot arms 

and delta robots is that a typical robot arm has to move the payload and also all the servos in 

each joint and a delta robot only moves its frame, which usually is made of a lightweight 

material. Due to this advantage, delta robots achieve accelerations of up to 12g in industrial 

applications [2], making it a perfect candidate for pick and place operations of light objects. 

 

2.3 Kinematics 

  

According to Craig in [8], “Kinematics is the science of motion which treats motion without 

regard to the forces that cause it. Within the science of kinematics one studies the position, 

velocity, acceleration, and all higher order derivatives of the position variables, with respect to 

time or any other variable or variables”. 

  

A manipulator can be represented as a kinematic chain of links connected using joints [1]. One 

end of the chain is attached to the base, while the other end of the chain of links is bounded to 

the end effector. The motion of the structure is obtained by composition of the elementary 
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motions of each link. Therefore, in order to manipulate an object in space, it is necessary to 

describe the end effector position and orientation. 

  

2.3.1 Modelling of delta robot 

 

As mention in section 2.2, the position of the end effector changes accordingly to the angular 

position of the motors, so, by modifying these positions it is possible to control the location of 

the end effector. The effector is connected to the upper arms by means of  universal joints [9]. 

 

Kinematics is used to describe the motion of a delta robot through mathematical equations, this 

with the intention to know how the end effector is led up to a desired position, leading to two 

possibilities, which are: forward or direct kinematics, and inverse kinematics. 

 

2.3.2 Direct kinematics 

 

Direct kinematics allows the end effector position and orientation to be expressed as a function 

of the joint variables of the mechanical structure with respect to a reference frame[1]. 

 

The position of the end effector can be calculated by the angular position of the motors [9], this 

can be done using motor encoders. When having the specific values of the encoders it is 

necessary to determine the position of the end effector. Another way to find the position of the 

end effector in a delta robot is by finding the intersection of three sphere equations, where the 

origin point of the spheres is determined by the dimensions of the upper arms and the angular 

position of motors [5]. 

  

The direct kinematics can provide the travelling plate centre for given three angles. The centre 

of the plate is formulated in a set of three coupled quadratic equations that must be solved 

simultaneously [3]. 
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2.3.3 Inverse kinematics 

 

Given a desired location of the end effector (points in the Cartesian coordinates (𝑋, 𝑌, 𝑍)), it is 

necessary to determine the angular or translational positions of the robot’s links to set them in 

the correct place to locate the end effector. This process is known as inverse kinematics. The 

solution to the inverse kinematics problem of a delta robot consists on the transformation of the 

end effector position into the angular positions of the three arms. 

 

The inverse kinematics problem is complicated because the equations to solve are generally 

nonlinear, and thus multiple solutions may exist, it is not always possible to find a solution or 

there are no allowed solutions in view of the manipulator structure.  

 

2.4 Robot Operating System (ROS) 

 

ROS was developed by the Stanford Artificial Intelligence Laboratory in 2007. The 

development continues at Willow Garage which provided resources to extend ROS concepts 

and create tested implementations.  

 

ROS is a framework for writing software for robots, designed for groups that collaborate and 

improve each other's work [10]. It provides a great variety of tools and libraries that simplify 

tasks for creating complex and robust robots. The libraries and tools that ROS contains can be 

used for writing, building and running code across multiple computers, etc. [11] [12]. This 

characteristics are helpful because it is possible to manipulate a single robot from different 

computers or even modify and improve the code running in the ROS system. ROS also provides 

standard operating system services such as hardware abstraction, device drivers, visualizers, 

package management, message passing between processes, and package management.  

 

An advantageous point is that ROS was designed to be as modular as possible [13], this option 

is useful for the user or programmer, because it makes possible to implement a routine as and 

when it is desired. Another advantage of ROS is its license, called BSD license. This license is 

very permissive, people are free to take it and use it in proprietary, commercial and closed source 
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products [14]. ROS is widely utilized by the research community for robotic applications 

because of its robustness and versatility. It can be applied to other areas, including industrial 

robotics (section 2.9). Finally, ROS is based on Linux system, so, all the characteristics and 

tools work correctly under Linux. It works as experimental on Mac OS and it has partial 

functionality under Windows [12]. 

 

 

Figure 3 ROS framework. Image from [10]. 

 

2.5 ROS concepts  

 

ROS has three levels of concepts [15] [16], which are:  

 

o File system level. 

o Computation Graph level. 

o Community level. 

 

2.5.1 ROS file system level 

 

ROS files are organized on the hard disk in a particular way. In this level it is possible to see 

how the files are organized on the disk. Below are shown the definition of the blocks in the file 

system: 

 

Meta packages, it references one or more related packages which are grouped together. 

Packages, are the most basic unit of the ROS software. It contains ROS nodes, configuration 

files, libraries, etc. 
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Package manifest, it contains information about the package, such as author name, license, 

dependencies and so on.  

Messages, are the information sent from one ROS process to another one.  

Services, it enables a request-reply interaction between processes or nodes.  

Repositories, are collection of packages that share a common version control system (VCS) 

Some examples of repositories are: Git, mercurial, subversion, etc. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4 ROS file system level. Image from [16]. 

Figure 5 List of files inside a package. This figure gives an idea of the basic files 

and folders contained inside a specific package. 
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2.5.2 ROS computation graph level 

 

The computation in ROS is done by using nodes, they are one of the basic concepts of ROS 

computation graph along with master, parameter server, messages, services, and bags. Each one 

of those provide data to the graph [15][16]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Nodes, are processes that perform computation and they are written with the use of ROS clients, 

such as roscpp or rospy. 

ROS Master, provides name registration and lookup to the rest of the computation graph. If the 

master is not running, nodes would not be able to communicate or exchange messages. 

Parameter Server, permits data to be stored in a central location and all nodes are able to access 

to it and modify it.  

Messages, nodes communicate with each other by passing messages. 

Topics, due to the publisher and subscriber communication, a node sends out a message by 

publishing it to a given topic, which is the name used to identify the content of the message. 

Services, are defined by a pair of message structures: one for the request and one for the reply.   

Bags, are a format for saving and playing back ROS message data.  

 

Figure 6 ROS computational graph level. Image from [16] 
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Figure 7 Typical ROS communication. The figure shows the relationship between, nodes, 

publisher, subscriber and topic. 

 

2.5.3 ROS Community Level 

 

In this level resources are used to exchange software and knowledge. These resources include:  

distributions, repositories, ROS wiki, ROS answer, etc. [16]. The goals of the community level 

are to let developers work against a stable code. Institutions or developers can release their own 

robot software and people can contribute by providing corrections or writing tutorials, and ask 

and answer questions related to ROS itself or a specific ROS software. 

 

2.6 ROS Tools 

 

As it was already told, one of the strongest features of ROS is its development toolset. These 

tools allow to diagnose problems easily [17], debugging, plotting, visualizing the state of the 

system, etc. Due to the publisher – subscriber communication it is possible to keep on track the 

flowing data through the system. Some of the most useful ROS tools are rqt_graph and RViz.  

 

2.6.1 rqt_graph 

 

It provides visualization of a ROS system, showing nodes and the connections between them 

[18] and it allows to debug and understand the running system and how it is structured. 
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In Figure 8, the ovals represent nodes, and the arrows represent publisher-subscriber 

relationships. It is possible to observe from the graph that the node named /joint_state_publisher 

publishes messages on a topic called /joint_states and the node named /robot_state_publisher 

subscribes to those messages. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.6.2 RViz 

 

Some sensor devices like stereo cameras, 3D lasers, Kinect sensors, IMUs, etc. provide 3D data. 

ROS make available a graphical tool for displaying three dimensional data of different types of 

sensors. This tool is named RViz, which integrates an interface with a 3D world that stand for 

sensor data representation. To visualize correctly the sensor data type it is necessary to subscribe 

to an appropriate topic [17][18].  

 

This tool also uses information from the tf library to show all of the sensor data in a common 

coordinate frame (section 2.7) along with a three dimensional model of the robot created via 

URDF files (section 2.8). 

 

 

 

Figure 8 rqt_graph interface showing the graph for a joint state publisher. The 

ovals represent the nodes, /joint_states, /tf and /tf_static are the topics. 
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2.7 tf library 

 

tf is a library designed to provide a standard way to keep track of the coordinate frames and 

transform data within the entire system. In this way, users know that the data is in the proper 

coordinate frame without requiring knowledge of all the coordinate frames in the system. tf 

library also maintains the relationship between coordinate frames in a tree structure and permits 

the user transform points, vectors, etc. between any two coordinate frames at any desired point 

in time. [19] 

 

The tf library operates in a distributed system, the information corresponding to the coordinate 

frames of a robot is available to all ROS components on any computer in the system.  

 

 

 

 

 

Figure 9 RViz interface 
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This library has two standard modules, broadcaster and listener. These modules are designed to 

integrate with the ROS ecosystem but are generally useful outside of ROS [20]. The broadcaster 

send updates periodically of the pose of coordinate frames to the rest of the system. The system 

is capable of having many broadcasters providing information about a different part of the robot 

[19][21]. The listener collects the received values and buffer all coordinate frames that are 

broadcasted in the system, and query for specific transforms between frames [21]. 

 

2.8 Unified Robot Description Format (URDF) 

  

In ROS, it is possible to visualize a model of a robot by using Unified Robot Description Format 

files (URDF). The URDF files are based on XML, and it is designed for obtaining a 3D 

representation of a real robot [17]. Using this type of files it is possible to simulate diverse 

characteristics of robots such as, shape, colour, joints, etc. 

 

The way of building and visualizing a robot model in URDF is writing and compiling the URDF 

file. While writing the file it is important to say that it should be divided into links and joints, 

and the connection relationship between parts is described by <parent> and <child> (Table 1).  

 

Figure 10 Visualization of the tf frames in an IRB120 ABB robot. The RGB cylinders 

represent X, Y, and Z axes respectively. 
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Once the 3D representation of a robot is created by using a URDF file, it is possible to use such 

representation to simulate the motion of the robot. For this, the user needs to publish the robot 

conditions to tf, using a node (or nodes) to publish the transform information [22]. 

 

Command Grammar 

Name of the robot robot name = “robot” 

Define the part link name = “base_link”/ 

Define the connection node joint name = ”arm_1_joint”  

type = “revolute” 

Define the connection relationship parent link = “base_link”/ 

child link = “arm_1”/ 

Table 1 Example of common commands used in URDF files. 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.9 ROS Industrial (ROS-I) 

 

Processes inside industry have been based on simple and repetitive tasks performed by robots. 

Nowadays, there has been an increasing demand for dynamic and intelligent robots able of 

Figure 11 Visual model of a robot that look like R2D2. Done during URDF 

tutorials ROS wiki 
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realise more difficult and complex tasks. ROS-I offers high level tools and programs capable of 

solving this tasks. 

 

This project began as a collaboration between Yaskawa Motoman Robotics, Southwest 

Research Institute, and Willow Garage in 2012 to support the use of ROS for industrial 

automation [23]. ROS-Industrial contains repositories, libraries and tools for industrial 

manipulators, grippers, sensors, etc. It is supported by an international consortium of industry 

and research members [24], having as its principal goal to extend the capabilities of ROS to 

industrial robots working in the production process, supporting the use of ROS for industrial 

automation and processes, enabling manufacturing robotic applications that were infeasible or 

cost prohibitive. [25] 

 

 

Figure 12 ROS Industrial Logo. Image from [26] 

 

The industry can benefit from the development tools that has been created around ROS. For 

instance, its framework provides tools for visualization and human machine interaction, which 

can ease the use of robotics systems. On the other hand, there are an increasing number of tools 

being improved by ROS-I, like tools for navigation, manipulation and visualization[25]. In this 

way, tools that were created and/or improved for its employment within industry sectors can 

also be used in ROS, improving existing tools. 

 

In order to have a better overview of the advantages of using ROS-I the main goals and the 

benefits are mentioned below [16][25].  
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Main goals of ROS-I 

 

o Combine strengths of ROS to the existing industrial technologies for exploring advanced 

capabilities of ROS in the manufacturing process. 

o Provide an easy path to apply cutting edge research in industrial applications. 

o Create a wide community supported by researchers and professionals in industrial 

robotics. 

o Provide simple, easy to use APIs (Application program interface), which are a set of 

routines, protocols and tools for building software applications. 

 

Benefits of ROS-I 

 

o ROS-I is able to use all ROS features in industrial robots. For example it is possible 

to use different ROS tools such as RViz, Gazebo and rqt for visualization, simulation 

and debugging. 

o ROS-I is an open source software that allows commercial use without restrictions. 

o Provides simple, easy to use, well documented application programming interfaces. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 13 ROS Industrial high level architecture. Image from [26] 
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2.10 Unified Robot Description Format (URDF) for industrial robots 

 

Create the URDF file for an ordinary robot and industrial robot are the same, both are XML 

files that describes a robot and its joints as well as the kinematics of the robot. But, for industrial 

robots certain standards should be followed during the creation of the URDF file[16]. 

 

o The URDF should be simple and readable. 

o Develop a common design formula for all industrial robots by various vendors. 

o The entire manipulator section is written as a macro using xacro.  

o The base_link frame should be the first link and tool0 should be the end effector link. 
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Chapter 3 

 

3. Inverse kinematics equations of a delta robot 

 

This chapter presents a strategy based on inverse kinematics equations to transform a desired 

position of the end effector of a delta robot into joint parameters. The results obtained using 

inverse kinematics are validated by direct kinematics equations. 

 

3.1 Problem statement 

 

It is desired to express the motion of a delta robot given the location of the end effector. To fulfil 

this task, it is necessary to obtain the joint parameters that provide the desired position of the 

end effector. This is done by inverse kinematics, and in order to carry out such mathematical 

process it is essential to define the robot characteristics. 

 

A delta robot is a closed kinematic chain manipulator. It consists in a fixed base and the end 

effector interconnected by three legs that form parallelograms.  Therefore, the end effector is 

restricted to translational motion and its position is limited by the dimensions of the legs. 

 

3.2 Methodology 

 

3.2.1 Delta robot description  

 

As shown in Figure 14, delta robots are composed of three identical legs in parallel between the 

fixed base and the end effector. Like the delta robot IRB340, the robot model in Figure 14 uses 

revolute joints for moving the upper arms. The control variables  θ𝑖, 𝑖 = 1, 2, 3  are measured 

using the rule of the right hand and zero angle is defined when the actuated link is in the 

horizontal plane. 
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Figure 14 Delta Robot Diagram. 𝜃𝑖  𝑐𝑜𝑛𝑡𝑟𝑜𝑙 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠. Image modified from [27] 

 

The delta robot is able to translate the end effector in the 𝑋, 𝑌, 𝑍 coordinates. The legs are 

represented by the points:  𝐵𝑖, 𝑖 = 1, 2, 3 the hips: 𝐴𝑖, 𝑖 = 1, 2, 3, the knees; and  𝑃𝑖, 𝑖 = 1, 2, 3, 

the ankles. The side length of the end effector is 𝑠𝑃, the length of the upper arms are defined as 

𝐿 while the length of the lower arms is 𝑙. For a better overview, these representations are 

displayed in Figure 15. 
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Figure 15  Delta robot representations for kinematic analysis. 𝐵𝑖 hips of the robot, 𝐴𝑖 knees of 

the robot, 𝑃𝑖 ankles of the robot, 𝑠𝐵 side length of the fixed base, 𝑠𝑃 side length of the end 

effector, 𝐿 length of upper arms, 𝑙 length of lower arms. Image modified from [27] 

 

From Figure 16 and 17, it can be observed that the reference frame of the fixed base is {𝐵}, and 

{𝑃} is the reference frame of the end effector. Both origins are located at the centre of each 

triangle, therefore, the orientation of {𝑃} and {𝐵} are identical, leading to a constant rotation 

matrix ( 𝑅 =  𝐼3)𝑃
𝐵 . [28] The joint variables are Θ =  {𝜃1 𝜃2 𝜃3}

𝑇, and the Cartesian coordinates 

are 𝑃𝑃
𝐵 = {𝑥 𝑦 𝑧}𝑇 .  
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The geometric details of the fixed base and the end effector are shown in the next figures: 

 

Figure 16 Geometric details of the fixed base. 𝑤𝐵 is the planar distance from {0} to near base 

side, 𝑢𝐵 is the planar distance from {0} to a base vertex, 𝐵𝑖=1,2,3 are the position of the 

revolute joints in the fixed base. 

 

Figure 17 Geometric details of the end effector base. 𝑤𝑃 represents planar distance from {P} 

to near end effector side,𝑢𝑃 represents the planar distance from {P} to an end effector vertex, 

𝑃𝑖=1,2,3 are the position where the lower arms are attached to the end effector. 
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As shown in Figure 16, the points 𝐵𝑖, 𝑖 = 1, 2, 3 are where the revolute joints are located in the 

fixed frame. And the points 𝑃𝑖, 𝑖 = 1, 2, 3 are where the lower arms are attached to the end 

effector as shown in figure 17.  

It can also be observed that the points 𝐵𝑖 are constant in the base frame {𝐵} and the points 𝑃𝑖 

are constant in the frame {𝑃}, therefore, the following data can be obtained:  

 

𝐵1 = {
0

−𝑤𝐵
0
}𝐵                    𝐵2 = {

√3

2
𝑤𝐵

1

2
𝑤𝐵

0

}𝐵                        𝐵3 = {

−
√3

2
𝑤𝐵

1

2
𝑤𝐵

0

}𝐵           𝒆𝒒. 𝟏 

 

𝑃1 = {
0
−𝑢𝑃
0
}𝑃                        𝑃2 = {

𝑠𝑃

2
𝑤𝑃
0

}𝑃                             𝑃3 = {
−
𝑠𝑃

2
𝑤𝑃
0

}𝑃              𝒆𝒒. 𝟐     

 

The vertices of the fixed base are: 

 

𝑏1 = {

𝑠𝐵

2
−𝑤𝐵
0

}𝐵                          𝑏2 = {
0
𝑢𝐵
0
}𝐵                              𝑏3 = {

−
𝑠𝐵

2
−𝑤𝐵
0

}𝐵           𝒆𝒒. 𝟑     

 

Where:  

 

𝑤𝐵 =
√3

6
𝑠𝐵             𝑢𝐵 =

√3

3
𝑠𝐵             𝑤𝑃 =

√3

6
𝑠𝑃              𝑢𝑃 =

√3

3
𝑠𝑃 

 

It is important to take into account the real dimension of the ABB IRB340 because they define 

the particular solution of this manipulator. Figures 18 to 20 display the dimensions of the ABB 

robot and they are presented in Table 2. 
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Figure 18 Dimensions of the ABB IRB340 robot’s fixed base. Modified from [29] 

 

 

Figure 19 Dimensions of the upper arms and lower arms. Modified from [29] 

 

 

Figure 20 Dimensions of the end effector. Modified from [29] 
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Name Meaning  Value (mm) 

𝑠𝐵 Fixed base equilateral 

triangle side. 

640 

𝑠𝑃 End effector equilateral 

triangle side. 

100 

𝐿 Upper legs length 300 

𝑙 Lower legs length 800 

𝑤𝐵 Planar distance from{0} to 

near base side 

180 

𝑢𝐵 Planar distance from {0} to a 

base vertex 

360 

𝑤𝑝 Planar distance from {𝑃} to 

near platform side 

30 

𝑢𝑃 Planar distance from {𝑃} to a 

platform vertex 

35 

  

Table 2  ABB IRB340 model measurements 

 

3.2.2 Inverse kinematics equations 

 

From the kinematic diagram shown in Figure 15 a three vector loop closure equation for a delta 

robot can be found [28]:  

 

{ 𝐵𝑖
𝐵 } + { 𝐿𝑖

𝐵 } + { 𝑙𝑖
𝐵 } =  { 𝑃𝑃

𝐵 } + [ 𝑅𝑃
𝐵 ] { 𝑃𝑖

𝑃 } =  { 𝑃𝑃
𝐵 } + { 𝑃𝑖

𝑃 }       𝑖 = 1, 2, 3       𝒆𝒒. 𝟒 

 

Where [ 𝑅𝑃
𝐵 ] = [𝐼3], because there are no rotations allowed by the delta robot. 
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The lower leg lengths must have the correct constant length l (virtual length through the centre 

of each parallelogram)[28]: 

 

𝑙𝑖 = ‖{ 𝑙𝑖
𝐵 }‖ =  ‖{ 𝑃𝑃

𝐵 } + { 𝑃𝑖
𝑃 } − { 𝐵𝑖

𝐵 } − { 𝐿𝑖
𝐵 }‖                   𝑖 = 1, 2, 3                    𝒆𝒒. 𝟓 

 

In order to avoid square root in the Euclidean norms it is convenient to square both sides of eq. 

5 [28]: 

 

𝑙𝑖
2 = ‖{ 𝑙𝑖

𝐵 }‖
2
= 𝑙𝑖𝑥

2 + 𝑙𝑖𝑦
2 + 𝑙𝑖𝑧

2                                   𝑖 = 1, 2, 3                                         𝒆𝒒. 𝟔 

  

The vectors { 𝐿𝑖
𝐵 } 𝑖 = 1, 2, 3 are dependent on the joint variables given 

  

𝐿1 = {
0

−𝐿𝑐𝑜𝑠𝜃1
−𝐿𝑠𝑖𝑛𝜃1

}𝐵             𝐿2 = 

{
 

 
√3

2
𝐿𝑐𝑜𝑠𝜃2

1

2
𝐿𝑐𝑜𝑠𝜃2

−𝐿𝑠𝑖𝑛𝜃2 }
 

 
𝐵            𝐿3 = 

{
 

 −
√3

2
𝐿𝑐𝑜𝑠𝜃3

1

2
𝐿𝑐𝑜𝑠𝜃3

−𝐿𝑠𝑖𝑛𝜃3 }
 

 
𝐵             𝒆𝒒. 𝟕 

 

By substituting the equations given above into the vector loop equations (eq.4) it can be 

obtained:  

{ 𝑙1
𝐵 } = {

𝑥
𝑦 + 𝐿𝑐𝑜𝑠𝜃1 + 𝑎
𝑧 + 𝐿𝑠𝑖𝑛𝜃1

} { 𝑙2
𝐵 } =

{
 
 

 
 𝑥 −

√3

2
𝐿𝑐𝑜𝑠𝜃2 + 𝑏

𝑦 −
1

2
𝐿𝑐𝑜𝑠𝜃2 + 𝑐

𝑧 + 𝐿𝑠𝑖𝑛𝜃2 }
 
 

 
 

{ 𝑙3
𝐵 } =

{
 
 

 
 𝑥 +

√3

2
𝐿𝑐𝑜𝑠𝜃3 − 𝑏

𝑦 −
1

2
𝐿𝑐𝑜𝑠𝜃3 + 𝑐

𝑧 + 𝐿𝑠𝑖𝑛𝜃3 }
 
 

 
 

𝒆𝒒. 𝟖 

Where:  

𝑎 =  𝑤𝐵 − 𝑢𝑃                                    𝑏 =  
𝑠𝑃

2
−
√3

2
𝑤𝐵                                     𝑐 =  𝑤𝑃 −

1

2
𝑤𝐵 

 

The three constraint equations yields the kinematics equations for the delta robot: 

 

2𝐿(𝑦 + 𝑎)𝑐𝑜𝑠𝜃1 + 2𝑧𝐿𝑠𝑖𝑛𝜃1 + 𝑥
2 + 𝑦2 + 𝑧2 + 𝑎2 + 𝐿2 + 2𝑦𝑎 − 𝑙2 = 0                                               𝒆𝒒. 𝟗 

 

−𝐿(√3(𝑥 + 𝑏) + 𝑦 + 𝑐)𝑐𝑜𝑠𝜃2 + 2𝑧𝐿𝑠𝑖𝑛𝜃2 + 𝑥
2 + 𝑦2 + 𝑧2 + 𝑏2 + 𝑐2 + 𝐿2 + 2𝑥𝑏 + 2𝑦 − 𝑙2 = 0    𝒆𝒒. 𝟏𝟎 
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𝐿(√3(𝑥 − 𝑏) − 𝑦 − 𝑐)𝑐𝑜𝑠𝜃3 + 2𝑧𝐿𝑠𝑖𝑛𝜃3 + 𝑥
2 + 𝑦2 + 𝑧2 + 𝑏2 + 𝑐2 + 𝐿2 − 2𝑥𝑏 + 2𝑦𝑐 − 𝑙2 = 0     𝒆𝒒. 𝟏𝟏 

 

 

The three absolute vector knee points are found using 𝐴𝑖
𝐵 = 𝐵𝑖

𝐵 + 𝐿𝑖
𝐵 , 𝑖 = 1, 2, 3: 

 

𝐴1 = {
0

−𝑤𝐵 − 𝐿𝑐𝑜𝑠𝜃1
−𝐿𝑠𝑖𝑛𝜃1

}𝐵 𝐴2 =

{
 
 

 
 √3

2
(𝑤𝐵 + 𝐿𝑐𝑜𝑠𝜃2)

1

2
(𝑤𝐵 + 𝐿𝑐𝑜𝑠𝜃2)

−𝐿𝑠𝑖𝑛𝜃2 }
 
 

 
 

𝐵 𝐴3 =

{
 
 

 
 −

√3

2
(𝑤𝐵 + 𝐿𝑐𝑜𝑠𝜃3)

1

2
(𝑤𝐵 + 𝐿𝑐𝑜𝑠𝜃3)

−𝐿𝑠𝑖𝑛𝜃3 }
 
 

 
 

𝐵  𝒆𝒒. 𝟏𝟐 

 

Referring to Figure 15, the inverse kinematics can be solved independently for each of the three 

upper arms. Geometrically each leg is the intersection between a known circle of radio 𝐿 centred 

on the base of the joint point 𝐵𝑖
𝐵  and a known sphere of radio 𝑙 centred on the moving platform 

vertex 𝑃𝑖
𝑃  [28]. Using the three constraint equations applied to the vector loop closure equation 

(eq. 4). The three independent scalar inverse position kinematics are of the form [28]: 

 

𝐸𝑖 cos 𝜃1 + 𝐹𝑖 sin 𝜃1 + 𝐺𝑖 = 0                                     𝑖 = 1, 2, 3                                          𝒆𝒒. 𝟏𝟑 

 

Where: 

 

𝐸1 = 2𝐿(𝑦 + 𝑎)                   

𝐹1 = 2𝑧𝐿            

 𝐺1 = 𝑥
2 + 𝑦2 + 𝑧2 + 𝑎2 + 𝐿2 + 2𝑦𝑎 − 𝑙2 

 

𝐸2 = −𝐿(√3(𝑥 + 𝑏) + 𝑦 + 𝑐)         

𝐹2 = 2𝑧𝐿         

𝐺2 = 𝑥
2 + 𝑦2 + 𝑧2 + 𝑏2 + 𝑐2 + 𝐿2 + 2(𝑥𝑏 + 𝑦𝑐) − 𝑙2 

 

𝐸3 = 𝐿(√3(𝑥 − 𝑏) − 𝑦 − 𝑐)        

𝐹3 = 2𝑧𝐿         

𝐺3 = 𝑥
2 + 𝑦2 + 𝑧2 + 𝑏2 + 𝑐2 + 𝐿2 + 2(−𝑥𝑏 + 𝑦𝑐) − 𝑙2 
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Using the tangent half angle substitution [28]:  

 

If we define: 

𝑡𝑖 = 𝑡𝑎𝑛
𝜃𝑖
2
                  𝒆𝒒. 𝟏𝟒 

 

Then: 

𝑐𝑜𝑠𝜃𝑖 =
1 − 𝑡𝑖

2

1 + 𝑡𝑖
2           𝒆𝒒. 𝟏𝟓 

And: 

𝑠𝑖𝑛𝜃𝑖 =
2𝑡𝑖

1 + 𝑡𝑖
2            𝒆𝒒. 𝟏𝟔 

 

Substituting the tangent half angle into the 𝐸, 𝐹, 𝐺 equations: 

 

𝐸𝑖 (
1 − 𝑡𝑖

2

1 + 𝑡𝑖
2) + 𝐹𝑖 (

2𝑡𝑖

1 + 𝑡𝑖
2) + 𝐺𝑖 = 0 

 

𝐸𝑖(1 − 𝑡𝑖
2) + 𝐹𝑖(2𝑡𝑖) + 𝐺𝑖(1 + 𝑡𝑖

2) = 0 

 

(𝐺𝑖 − 𝐸𝑖)𝑡𝑖
2 + (2𝐹𝑖)𝑡𝑖 + (𝐺𝑖 + 𝐸𝑖) = 0             𝒆𝒒. 𝟏𝟕 

 

Yielding to a quadratic formula: 

 

𝑡1,2 =
−𝐹𝑖 ±√𝐸𝑖

2 + 𝐹𝑖
2 − 𝐺𝑖

2

𝐺𝑖 − 𝐸𝑖
              𝒆𝒒. 𝟏𝟖 

 

Solve for 𝜃𝑖 by inverting the tangent half angle equation [28]: 

 

 

𝜃𝑖 = 2𝑡𝑎𝑛−1(𝑡𝑖)                                      𝒆𝒒. 𝟏𝟗 
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From eq. 18 it is known that there are two possible solutions of the quadratic formula, both 

solutions are correct. Nevertheless, the solutions that are within the working range of the robot 

will be chosen. In Figure 21 and Table 3, the extreme positions of the arms are presented. 

 

 

 

Figure 21 Extreme positions of robot arms. Image from [29] 

 

Position P1 

U = 100° 

V = 95.5° 

W = 134.5° 

Position P2 

U = -46.1° 

V = -50.6° 

W = 43.9° 

Mechanical stop: 

When angle V = -57° 

Table 3 Extreme values of arm angles 
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3.2.3 Forward kinematics equations 

 

As mentioned in section 2.3.2, the position of the end effector can be calculated from the angular 

position of the upper arms. Hence, given the actuated joint angles, the resulting Cartesian 

coordinates of the end effector can be found. 

 

According to [28], from the forward position kinematics diagram in Figure 22, it is possible to 

define three virtual sphere centres as 𝐴𝑖𝑣 = 𝐴𝑖 −
𝐵𝐵 𝑃𝑖 , 𝑖 = 1, 2, 3

𝑃 , obtaining:  

 

 

Figure 22 Forward position kinematics diagram. The red lines show the vector centre point 

𝐴𝑖𝑣 and the radius 𝑙 of the sphere that allow the forward kinematics solution. Image from [28] 

 

𝐴1𝑣 = {

0
−𝑤𝐵 − 𝐿𝑐𝑜𝑠𝜃1 + 𝑢𝑝

−𝐿𝑠𝑖𝑛𝜃1

}𝐵                       𝐴2𝑣 =

{
 

 
√3

2
(𝑤𝐵 + 𝐿𝑐𝑜𝑠𝜃2) −

𝑠𝑝

2
1

2
(𝑤𝐵 + 𝐿𝑐𝑜𝑠𝜃2 −𝑤𝑝

−𝐿𝑠𝑖𝑛𝜃2 }
 

 
𝐵   

𝐴2𝑣 =

{
 
 

 
 −

√3

2
(𝑤𝐵 + 𝐿𝑐𝑜𝑠𝜃3) +

𝑠𝑝
2

1

2
(𝑤𝐵 + 𝐿𝑐𝑜𝑠𝜃3 −𝑤𝑝

−𝐿𝑠𝑖𝑛𝜃3 }
 
 

 
 

𝐵  𝒆𝒒. 𝟐𝟎 
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Then, the forward kinematics solution is the intersection of three known spheres. Each sphere 

is define as a vector centre point {𝑐} and a scalar radius 𝑟. Thus, the sphere would be of the 

form: 

 

({ 𝐴1𝑣
𝐵 }, 𝑙)                               ({ 𝐴2𝑣

𝐵 }, 𝑙)                               ({ 𝐴3𝑣
𝐵 }, 𝑙) 

 

Having the vector centre point and the radius of the sphere, it is possible to derive the equations 

for the three spheres intersection [28]. This equations are presented in appendix A. It is worth 

mentioning that following the solution in Appendix A there will be a singularity that prevents a 

successful solution [28] when all the three sphere centres have the same height in 𝑍, it is to say, 

the angular parameters 𝜃𝑖 are similar. A solution for this case  [28] is presented in appendix B. 

 

3.3 Inverse kinematics solution 

 

In order to solve the inverse kinematics equations found in section 3.2.1 an algorithm is 

developed in MATLAB. As mentioned in section 3.2.2, the solution of inverse kinematics is 

given by eq. 18, which is quadratic, hence two possible solutions can be obtained. Table 4 

presents the two possible solutions given proposed coordinates of the end effector. 

 

As can be seen, the results obtained in the column with the name “Solution 2”, are not within 

the working range of the robot (according to Table 3), therefore, the values shown in column 

“Solution 1” are the correct angles for moving the arms and bringing the end effector to the 

desired position. 
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Proposed coordinates Solution 1 Solution 2 

(−0.2, 0.2, −0.6)  Arm1 = 0.447175 

Arm2 = 0.109678 

Arm3 = -0.697459 

Arm1 = -2.545099 

Arm2 = -2.623097 

Arm3 = -2.938814 

(−0.5, −0.2, −0.8)  Arm1 = 0.725058 

Arm2 = 1.694179 

Arm3 = 0.423712 

Arm1 = 2.279251 

Arm2 = 2.819121 

Arm3 = 2.201392 

(0.125, −0.367, −0.523)  Arm1 = -1.070931 

Arm2 = 0.076695 

Arm3 = 0.566685 

Arm1 = -2.873512 

Arm2 = -2.497997 

Arm3 = -2.370386 

(0, 0, −0.75)  Arm1 = 0.264188 

Arm2 = 0.220808 

Arm3 = 0.220808 

Arm1 = -3.023826 

Arm2 = -3.040674 

Arm3 = -3.040674 

(0.312, 0.349,−0.856)  Arm1 = 1.607447 

Arm2 = 0.236494 

Arm3 = 1.231427 

Arm1 = 2.580972 

Arm2 = 2.183461 

Arm3 = 2.407590 

 

Table 4 Two possible solutions obtained using inverse kinematics equations. 

 

3.3.1 Validation of results 

 

In order to validate the solutions given in Table 4, the forward kinematics equations are used. 

As mentioned in section 2.3.2, the position of the end effector can be calculated from the angular 

position of the upper arms. Hence, given the actuated joint angles, the resulting Cartesian 

coordinates of the end effector can be found. The angular parameters given in Table 4 are 

validated using them as input values in the forward kinematics calculations and the outcome is 

presented in Table 5. 
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Proposed coordinates Calculated Angles Obtained 

Coordinates 

(-0.2, 0.2, -0.6) 𝜃1 = 0.447175 

𝜃2 = 0.109678 

𝜃3= -0.697459 

x = -0.200000 

y = 0.200000 

z = -0.600000 

(-0.5, -0.2, -0.8)  

 

𝜃1 = 0.725058 

𝜃2 = 1.694179 

𝜃3  = 0.423712 

x = -0.500000 

y = -0.200000 

z = -0.800000 

(0.125, -0.367, -0.523) 

 

𝜃1 = -1.070931      

𝜃2 = 0.076695 

𝜃3 = 0.566685 

x = 0.125000 

y = -0.367000 

z = -0.523000 

(0, 0, -0.75) 

 

𝜃1 = 0.264188 

𝜃2 = 0.220808 

𝜃3 = 0.220808 

x = 0.000000 

y = -0.013362 

z = -0.758460 

(0.312, 0.349, -0.856) 

 

𝜃1 = 1.607447 

𝜃2 = 0.236494 

𝜃3 = 1.231427 

x = 0.312000 

y = 0.349000 

z = -0.856000 

 

Table 5 Solutions using Forward kinematics equations. This table shows resulting coordinates 

of the end effector given angles 𝜃𝑖 calculated by inverse kinematics. It can be seen, the 

obtained coordinates and proposed coordinates match each other. 

 

The data in Table 5 verify the correctness of the results obtained in section 3.3. Table 5 in line 

4 shows the special case mentioned in section 3.2.3, where 𝜃𝑖 are similar. For this case in 

particular, the forward kinematics results and the proposed coordinates do not match exactly. 

There is a small inaccuracy and it is the result of the assumptions made in the mathematical 

solution. 

 

3.3.2 Following trajectory  

 

In this section a motion plan is proposed, called desired position. By using inverse kinematics 

the angles of the upper arms can be calculated and those angles can be used in direct kinematics 

equations to calculate positions, called obtained position. In this way, by comparing the desired 
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and obtained positions it is possible to demonstrate the accuracy of the results. Appendix C 

shows the script for the comparison, obtained from [30].  

 

 

Figure 23 Desired trajectory vs obtained trajectory in X axis against time. Blue line is the 

desired coordinates, red crosses are the obtained coordinates. 

 

In Figure 23 it can be observe that the desired position proposed in the X axis (blue line) and 

the obtain positions using kinematics equations (red crosses) match each other, in other words, 

the positions obtained by means of kinematics equations are calculated correctly. 

 

 

Figure 24 Desired trajectory vs obtained trajectory in Y axis against time. Blue line is the 

desired coordinates, red crosses are the obtained coordinates. 
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From Figure 24 the desired position in the Y axis (blue line) and the obtain positions (red 

crosses) match each other. The motion obtained via kinematics equations behave in the same 

manner than the desired position. From Figure 24 it is also proved that the obtained results are 

correct. 

 

Figure 25 Desired trajectory vs obtained trajectory in Z axis against time. Blue line is the 

desired coordinates, red crosses are the obtained coordinates. 

 

From Figure 25 the desired position in the Z axis (blue line) and the obtain positions (red 

crosses) match each other. From Figure 25 it can be seen that the obtained results are correct. 

 

 

 

 

 

 

 

 

 

Figure 26 Three dimensional plot of desired trajectory vs obtain trajectory given a set of 

points in X, Y, Z. Blue line is the desired coordinates, red crosses are the obtain coordinates. 
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Figure 26 shows a 3 dimensional plot of the desired trajectory to follow in the X, Y and Z axes. 

This plot gives a better idea of the full motion desired of the robot and the full motion obtain 

according to the kinematics equations previously derived.  
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Chapter 4 

 

4. Development of a URDF file for simulation and 

programming of a delta robot using ROS 

 

This chapter presents the development of the URDF file of a delta robot for visualizing it in 

RViz. Also, a python script is developed to calculate inverse kinematics equations and to publish 

joint_states messages to move the robot model. 

 

4.1 Problem statement 

 

It is desired to create a 3D model of an IRB340 delta robot using the URDF package of ROS. 

Also, it is necessary the creation of a motion routine to visualize the active operation of the 3D 

model. 

 

4.2 Methodology 

 

4.2.1 URDF model 

 

As explained in section 2.8, a URDF is used to obtain 3D representations of real robots. During 

the creation of a 3D model using URDF it is possible to customize characteristics such as shape 

and colour.  

 

One of the limitations of URDF is that closed kinematic chains cannot be simulated. Because it 

is necessary to follow a tree structure when designing the model, that is, a parent link can have 

many children, but a child link cannot have many parents.  It is known that parallel robots have 

a closed kinematic chain, thus a modification should be done to permit the creation of the model. 
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For this reason the robot is designed using three kinematics arms and only one arm is connected 

to the end effector.  

 

In order to create a model based on the ABB IRB340 the data presented in Table 2 is used to 

assign the link parameters of the model. The thickness and width of the created links are constant 

(0.02 m). The base_link of the 3D model would be the fixed base of the robot, according to this, 

a link with cylindrical geometry and radius 𝑤𝐵 = 0.180 is created as display in Figure 27.  

 

 

 

Figure 27 Fixed base of the 3D model. It can be observed that the geometry is a cylinder and 

the radius of the base is 𝑤𝐵 = 180. 

 

The next step is to add the three upper arms. These three links have the geometry of a box and 

their length is 𝐿 = 300. As told in section 3.2.1, points 𝐵𝑖 are where the arms are connected to 

the base through revolute joints. Therefore the position of the joints an upper arms is given by 

eq. 1. And the orientation is deducted considering the arms are separated 120 degrees of each 

other. 
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Figure 28 Upper arms of the delta robot mode attached to the fixed base. The upper arms 

have a box geometry and its length is 𝐿 = 300. 

 

The lower arms, like upper arms are links with box geometry and length 𝑙 = 800. 

 

 

 

Figure 29 Lower arms of the delta robot. It can be seen that the lower arms are attached to 

the upper arms and have box geometry with length 𝑙 = 800. 

 

As told before in this section, just one arm can be connected to the end effector due to the obliged 

tree structure of the URDF models, the end effector has a cylindrical geometry of radius 𝑠𝑝 =

100. 
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Figure 30 3D model of the ABB IRB340 delta robot in RViz. In this model, it is observe that 

the three lower arms are separated and the end effector is attached to one lower arm of the 

robot. The model is created in this manner because a tree structure is needed for the creation 

of a URDF. 

 

The joints in URDF files define: the connecting nodes between parent and child links, the origin 

of the joint, the rotation around a fixed axis, safety limits, type of joints (revolute, prismatic, 

fixed, etc.), among others. 

 

The IRB340 robot is composed by 9 joints, three of them are revolute joints and the other six 

are universal joints. A simple leg of the delta robot has a revolute joint attached to the fixed 

base, then the upper arm is connected with the lower arm via a universal joint and the lower arm 

is attached to the end effector using a universal joint. It is to say, one leg of the robot has one 

revolute joint and two universal joints to interconnect the fixed base, the upper arm, the lower 

arm and the end effector. 

 

The URDF do not have the model of universal joints and for this reason this model uses only 

revolute joints. This type of joints rotate along a specified axis and has a limited range specified 

by the upper and lower limits. For a bigger overview of the 3D model of the robot developed in 

ROS, the complete URDF file is presented in appendix D. 
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4.2.2 Motion plan 

 

In order to make the model to move, it is necessary the creation of a node that calculates the 

inverse kinematics and then send the calculated parameter to the joints of the URDF model. The 

algorithm used to calculate the inverse kinematics in ROS, is basically the same than the 

mentioned in section 3.3. But this one was created using python in order to be compatible with 

ROS. The outcome of the inverse kinematics calculations, the angles of joints, are sent to the 

URDF model using sensor_msgs/JointState message format through a joint_state_publisher. 

Appendix E shows the node described above. 

 

4.3 Moving the 3D model inside RViz 

 

Due to the physical characteristics of revolute joints, the joint displacement is limited to one 

axis. Therefore, the motion plan in this section is limited to the movement of the robot model 

along the 𝑍 axis. To observe the motion of the model, three proposed coordinates are given.  

The ROS node is in charge of calculating the desired angles and send these values to the joints 

in the 3D model to perform the motion task.  

 

Desired position of end effector Calculated angles of each arm 

x = 0.0 

y = 0.0 

z = -0.5 

𝜃1= -0.821975 

𝜃2 = -0.938774 

𝜃3 = -0.938774 

x = 0.0 

y = 0.0 

z = -0.7 

𝜃1 = 0.113260 

𝜃2 =  0.065934 

𝜃3 =  0.065934 

x = 0.0 

y = 0.0 

z = -1.0 

𝜃1 = 1.033750 

𝜃2 = 0.998397 

𝜃3 =  0.998397 

 

Table 6 Table presenting the desired position of the end effector and the calculated angles 

using inverse kinematics in ROS. 
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Figure 31 Motion performance of the 3D model inside RViz. The coordinates given for this 

task are (0, 0,- 0.5) 

 

 

 

Figure 32 Motion performance of the 3D model inside RViz. The coordinates given for this 

task are (0, 0,- 0.7) 
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Figure 33 Motion performance of the 3D model inside RViz. The coordinates given for this 

task are (0, 0,- 1.0) 

 

Figures 31 to 33 show the motion of the 3D model following the given positions in Table 6. 

 

4.4 Delta robot model in MATLAB 

 

A model of the delta robot is created in MATLAB in order to visualize the motion of the robot 

within its complete workspace. Appendix F shows the script of the routine. 

 

Figures 34 to 38 show the motion of the model in its entire workspace. This motion plan contains 

the five desired positions mentioned in Table 4. 
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Figure 34 3D model motion in MATLAB. The given coordinates of the end effector are (X=-

0.2, Y=0.2, Z=-0.6). 

 

 

 

Figure 35 3D model motion in MATLAB. The given coordinates of the end effector are (X=-

0.5, Y=-0.2, Z=-0.8). 
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Figure 36 3D model motion in MATLAB. The given coordinates of the end effector are (X=-

0.125, Y=-0.367, Z=-0.523). 

 

 

 

Figure 37 3D model motion in MATLAB. The given coordinates of the end effector are (X=-

0.0, Y=0.013362, Z=-0.758460). 
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Figure 38 3D model motion in MATLAB. The given coordinates of the end effector are (X=-

0.312, Y=0.349, Z=-0.856). 
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Chapter 5 

  

5. Conclusions and future work  

 

This work aims the creation of a 3D model of the IRB340 robot and the simulation of its 

operation. This objective was carried out by dividing the job into two tasks:  the derivation of 

the robot’s kinematics and the creation of the model. 

  

The robot motion problem was stated in such a way that the only information available to 

calculate the robot state was the position of the end effector. For this reason, the feasible option 

to solve the problem was the use of inverse kinematics. This was the tool used to describe the 

motion of the bodies that comprehend the robot’s body.  The results obtained from the inverse 

kinematics calculations were validated and in this way confirm that the data used to create the 

motion plan of the robot was accurate. 

 

The graphical design of the robot was done using ROS packages. This had the intention of 

implement a motion routine in the digital robot that can, in the future, be implemented in the 

real robot. As it was mentioned previously, ROS is in continuous development and there are 

some limitation, like for example the types of joints available in the URDF package and the tree 

structure of links that do not allow parallel structures. 

 

The types of joints available in the URDF package represent a limitation to this project. As 

mentioned before the IRB340 is a robot that possess 9 joints, 6 of them are universal and this 

type of joints are not available in the URDF package. Therefore, it was not possible to add 

universal joints to the 3D model. Instead, revolute joints were used, which has only 1DOF. This 

had as consequence the limitation of the movement of the robot to the displacement along the Z 

axis. As an alternative, it was introduced a representation of the robot in MATLAB to observe 

the operation of the robot in its entire workspace. 
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Finally, according to the results mentioned above, it is possible to propose improvements or 

alternatives to the presented work. 

 

The main limitation during the development of this project was the type of joints available in 

the URDF packages. In order to solve this problem, two alternatives are proposed. The first one 

consist in the modelling of the universal joint to be added to the URDF, as it is possible to make 

contributions to ROS packages. The second alternative is the use of floating joints instead of 

universal joints. This type of joints has 6DOF, but they cannot be controlled using the 

joint_state_publisher. 

 

Another proposal is the control of the physical robot using ROS. The delta robot IRB340 uses 

an IRC5 controller to send desired motions tasks to the manipulator. Thus, it is possible to 

controller the real robot by sending the calculated angles to the controller using a specific ROS 

topic. There are projects integrating ROS and the IRC5 controller, but there is no testing 

implementations using delta robots. 
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Appendix A – Three spheres intersection algorithm 

 

In order to solve this algorithm it is necessary to have three spheres, (𝑐1, 𝑟1), (𝑐2, 𝑟2), (𝑐3, 𝑟3). 

For the solution of the algorithm is necessary to know the vectors centres 𝑐𝑖 and radius 𝑟. The 

centre vectors are presented in eq.20 and the radius is 𝑙. The equations of the three spheres are: 

 

(𝑥 − 𝑥1)
2 + (𝑦 − 𝑦1)

2 + (𝑧 − 𝑧1)
2 = 𝑟1

2                  

(𝑥 − 𝑥2)
2 + (𝑦 − 𝑦2)

2 + (𝑧 − 𝑧2)
2 = 𝑟2

2          𝑒𝑞. 1 

(𝑥 − 𝑥3)
2 + (𝑦 − 𝑦3)

2 + (𝑧 − 𝑧3)
2 = 𝑟3

2                     

 

The first step is to square the left side terms, then it is needed to perform mathematical operations 

to eliminate the square unknown variables, yielding to: 

 

𝑎11𝑥 + 𝑎12𝑦 + 𝑎13𝑧 = 𝑏1                                          𝑒𝑞. 2 

𝑎21𝑥 + 𝑎22𝑦 + 𝑎23𝑧 = 𝑏2                                          𝑒𝑞. 3 

 

Where:  

 

𝑎11 = 2(𝑥3 − 𝑥1)    𝑎21 = 2(𝑥3 − 𝑥2)            𝑏1 = 𝑟1
2 − 𝑟3

2 − 𝑥1
2 − 𝑦1

2 − 𝑧1
2 + 𝑥3

2 + 𝑦3
2 + 𝑧3

2 

𝑎12 = 2(𝑦3 − 𝑦1)    𝑎22 = 2(𝑦3 − 𝑦2)          𝑏2 = 𝑟2
2 − 𝑟3

2 − 𝑥2
2 − 𝑦2

2 − 𝑧2
2 + 𝑥3

2 + 𝑦3
2 + 𝑧3

2 

𝑎13 = 2(𝑧3 − 𝑧1)    𝑎23 = 2(𝑧3 − 𝑧2)  

 

Solving for z in eq.2 and eq.3: 

 

𝑧 =
𝑏1
𝑎13

−
𝑎11
𝑎13

𝑥 −
𝑎12
𝑎13

𝑦          𝑒𝑞. 4 

𝑧 =
𝑏2
𝑎23

−
𝑎21
𝑎23

𝑥 −
𝑎22
𝑎23

𝑦         𝑒𝑞. 5 

 

From eq.4 and eq.5 it is possible to eliminate z and obtain 𝑥 = 𝑓(𝑦) 
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𝑥 = 𝑓(𝑦) = 𝑎4𝑦 + 𝑎5              𝑒𝑞. 6 

Where: 

 

𝑎4 = −
𝑎2
𝑎1
   𝑎5 = −

𝑎3
𝑎1
     𝑎1 =

𝑎11
𝑎13

−
𝑎21
𝑎23

     𝑎2 =
𝑎12
𝑎13

−
𝑎22
𝑎23

   𝑎3 =
𝑏2
𝑎23

−
𝑏1
𝑎13

 

 

Substituting eq.6 into eq.5 to eliminate 𝑥 and obtain 𝑥 = 𝑓(𝑦): 

𝑥 = 𝑓(𝑦) = 𝑎6𝑦 + 𝑎7                𝑒𝑞. 7 

 

Where: 

 

𝑎6 =
−𝑎21𝑎4 − 𝑎22

𝑎23
     𝑎7 =

𝑏2 − 𝑎21𝑎5
𝑎23

 

 

Substitute eq.6 in eq. 7 into eq. 1 to eliminate 𝑥 and 𝑧 and obtain a quadratic equation only in 𝑦 

 

𝑎𝑦2 + 𝑏𝑦 + 𝑐 = 0                         𝑒𝑞. 8 

Where: 

 

𝑎 = 𝑎4
2 + 1 + 𝑎6

2 

𝑏 = 2𝑎4(𝑎5 − 𝑥1) − 2𝑦1 + 2𝑎6(𝑎7 − 𝑧1) 

𝑐 = 𝑎5(𝑎5 − 2𝑥1) + 𝑎7(𝑎7 − 2𝑧1) + 𝑥1
2 + 𝑦1

2 + 𝑧1
2 − 𝑟1

2 

 

eq.8 yields to two possible solutions for 𝑦: 

 

𝑦± =
−𝑏 ± √𝑏2 − 4𝑎𝑐

2𝑎
                   𝑒𝑞. 9 

 

Having the two possible values of 𝑦, those solutions are substitute in eq. 6 and eq.7, once this is 

done. The two possible solutions are found.  

 

(𝑥+, 𝑦+, 𝑧+) and (𝑥−, 𝑦−, 𝑧−) 
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Appendix B – Three spheres intersection algorithm 

for identical vertical centre heights  

 

In order to solve this algorithm it is necessary to have three spheres, (𝑐1, 𝑟1), (𝑐2, 𝑟2), (𝑐3, 𝑟3). 

For the solution of the algorithm is necessary to know the vectors centres 𝑐𝑖 and radius 𝑟. The 

equations of the three spheres are: 

 

(𝑥 − 𝑥1)
2 + (𝑦 − 𝑦1)

2 + (𝑧 − 𝑧𝑛)
2 = 𝑟1

2          𝑒𝑞. 1 

(𝑥 − 𝑥2)
2 + (𝑦 − 𝑦2)

2 + (𝑧 − 𝑧𝑛)
2 = 𝑟2

2          𝑒𝑞. 2 

(𝑥 − 𝑥3)
2 + (𝑦 − 𝑦3)

2 + (𝑧 − 𝑧𝑛)
2 = 𝑟3

2          𝑒𝑞. 3 

 

Due to the sphere centre height in 𝑧 are the same, 𝑧1 = 𝑧2 = 𝑧3 = 𝑧𝑛, yielding to: 

 

𝑥2 − 2𝑥1𝑥 + 𝑥1
2 + 𝑦2 − 2𝑦1𝑦 + 𝑦1

2 + 𝑧2 − 2𝑧𝑛𝑧 + 𝑧𝑛
2 = 𝑟1

2   𝑒𝑞. 4 

𝑥2 − 2𝑥2𝑥 + 𝑥2
2 + 𝑦2 − 2𝑦2𝑦 + 𝑦2

2 + 𝑧2 − 2𝑧𝑛𝑧 + 𝑧𝑛
2 = 𝑟2

2   𝑒𝑞. 5 

𝑥2 − 2𝑥3𝑥 + 𝑥3
2 + 𝑦2 − 2𝑦3𝑦 + 𝑦3

2 + 𝑧2 − 2𝑧𝑛𝑧 + 𝑧𝑛
2 = 𝑟3

2   𝑒𝑞. 6 

 

It is possible to simplificate eq.4, eq.5 and eq.6 yielding to: 

 

2(𝑥3 − 𝑥1)𝑥 + 2(𝑦3 − 𝑦1)𝑦 + 𝑥1
2 + 𝑦1

2 − 𝑥3
2 − 𝑦3

2 = 𝑟1
2 − 𝑟3

2  𝑒𝑞. 7 

2(𝑥3 − 𝑥2)𝑥 + 2(𝑦3 − 𝑦2)𝑦 + 𝑥2
2 + 𝑦2

2 − 𝑥3
2 − 𝑦3

2 = 𝑟2
2 − 𝑟3

2  𝑒𝑞. 8 

 

eq.7 and eq.8 are linear equations so, they can be expressed as: 

 

[
𝑎 𝑏
𝑑 𝑒

] {
𝑥
𝑦} = {

𝑐
𝑓}                                                                                 𝑒𝑞. 9 
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Where: 

 

𝑎 = 2(𝑥3 − 𝑥1)𝑥 

𝑏 = 2(𝑦3 − 𝑦1) 

𝑐 = −𝑥1
2 − 𝑦1

2 + 𝑥3
2 + 𝑦3

2 + 𝑟1
2 − 𝑟3

2 

𝑑 = 2(𝑥3 − 𝑥2) 

𝑒 = 2(𝑦3 − 𝑦2) 

𝑓 = −𝑥2
2 − 𝑦2

2 + 𝑥3
2 + 𝑦3

2 + 𝑟2
2 − 𝑟3

2 

 

The solution for the unknown 𝑥, 𝑦 is: 

 

𝑥 =
𝑐𝑒 − 𝑏𝑓

𝑎𝑒 − 𝑏𝑑
 

𝑦 =
𝑎𝑓 − 𝑐𝑑

𝑎𝑒 − 𝑏𝑑
 

 

To solve the unknown value of z it is necessary to applied: 

 

𝐴𝑧2 + 𝐵𝑧 + 𝐶 = 0 

 

Where: 

 

𝐴 = 1 

𝐵 = −2𝑧𝑛 

𝐶 = 𝑧𝑛
2 − 𝑟1

2 + (𝑥 − 𝑥1)
2 + (𝑦 − 𝑦1)

2 

 

Because the values of 𝑥, 𝑦 are known the quadratic formula can be used to find the value of 𝑧. 

 

𝑧± =
−𝐵 ± √𝐵2 − 4𝐶

2
 

This value also has two possible solutions. But because of the design of the robot the negative 

value of 𝑧 is always used. 
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Appendix C – Following trajectory MATLAB script 

 

clc 
clear all 
close all 

  
L = 0.300;      % upper legs length 
l = 0.800;      % lower legs parallelogram length 
Wb = 0.180;     % planar distance from {0} to near base side 
Wp = 0.030;     % planar distance from {P} to near platform side 
Up = 0.035;     % planar distance from {P} to a platform vertex 
Sp = 0.100;     % platform equilateral triangle side 

  
%centre of the figure 
hx=0.3; 
ky=0.2; 

  
%time 
t0=0; 
tf=4; 

  
%sampling distance 
p_1=.05; 

  
%frequency 
w1 = 2; 
w2 = 4; 

  
sampling=(tf-t0)/p_1; 

  
for s=1:sampling; 

     
t=s*p_1; 

  
%equation for a obtaining lissajous figure 
xd(s) = 0.17*sin(w1*t)+hx; 
yd(s) = 0.17*cos(w1*t)+ky; 
zd(s) = 0.1*sin(w2*t)-0.7; 

  
% desired position 
d = [xd(s), yd(s), zd(s)]; 

  
%IPK 
a = Wb - Up; 
b = (Sp/2.0) - ((sqrt(3.0)/2.0) * Wb); 
c = Wp - (Wb/2.0); 

  
E1 = (2.0 * L) * (d(2) + a); 
F1 = (2.0 * d(3)) * L; 
G1 = d(1)^2 + d(2)^2 + d(3)^2 + a^2 + L^2 + (2.0 * d(2) * a) - l^2; 
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E2 = -L * ((sqrt(3.0) * (d(1) + b)) + d(2) + c); 
F2 = 2.0 * d(3) * L; 
G2 = d(1)^2 + d(2)^2 + d(3)^2 + b^2 + c^2 + L^2 + (2.0 * ((d(1) * b) + 

(d(2) * c))) - l^2; 

  
E3 = L * ((sqrt(3.0) * (d(1) - b)) - d(2) - c); 
F3 = 2.0 * d(3) * L; 
G3 = d(1)^2 + d(2)^2 + d(3)^2 + b^2 + c^2 + L^2 + (2.0 * (-(d(1) * b) + 

(d(2) * c))) - l^2; 

  
t1 = (-F1 - sqrt(F1^2 - G1^2 + E1^2)) / (G1 - E1); 
t2 = (-F2 - sqrt(F2^2 - G2^2 + E2^2)) / (G2 - E2); 
t3 = (-F3 - sqrt(F3^2 - G3^2 + E3^2)) / (G3 - E3); 

  
theta1 = 2*atan(t1); 
theta2 = 2*atan(t2); 
theta3 = 2*atan(t3); 

  
%FPK 
x1 = 0; 
y1 = -Wb - (L*(cos(theta1))) + Up; 
z1 = -L * (sin(theta1)); 
r1 = l; 

  
x2 = (((sqrt(3))/2)*(Wb+(L*(cos(theta2))))) - (Sp/2); 
y2 = 0.5*(Wb+(L*(cos(theta2)))) - Wp; 
z2 = -L*(sin(theta2)); 
r2 = l; 

  
x3 = (((-sqrt(3))/2)*(Wb+(L*(cos(theta3))))) + (Sp/2); 
y3 = 0.5*(Wb+(L*(cos(theta3)))) - Wp; 
z3 = -L*(sin(theta3)); 
r3 = l; 

  
a11 = 2*(x3-x1); 
a12 = 2*(y3-y1); 
a13 = 2*(z3-z1); 

  
a21 = 2*(x3-x2); 
a22 = 2*(y3-y2); 
a23 = 2*(z3-z2); 

  
b1 = r1^2-r3^2-x1^2-y1^2-z1^2+x3^2+y3^2+z3^2; 
b2 = r2^2-r3^2-x2^2-y2^2-z2^2+x3^2+y3^2+z3^2; 

  
a1 = a11/a13 - a21/a23; 

  
a2 = a12/a13 - a22/a23; 

  
a3 = b2/a23 - b1/a13; 

  
a4 = -a2/a1; 
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a5 = -a3/a1; 

  
a6 = ((-a21*a4)-a22)/a23; 

  
a7 = (b2-(a21*a5))/a23; 

  
a = a4^2 + 1 + a6^2; 
b = (2*a4)*(a5-x1) - (2*y1) + (2*a6)*(a7-z1); 
c = a5*(a5-(2*x1)) + a7*(a7-(2*z1)) + x1^2 + y1^2 + z1^2 - r1^2; 

  
yp = (-b + sqrt((b^2)-(4*a*c)))/(2*a); 
yn = (-b - sqrt((b^2)-(4*a*c)))/(2*a); 

  
xp = a4*yp + a5; 
xn = a4*yn + a5; 

  
zp = a6*yp + a7; 
zn = a6*yn + a7; 

  
%end effector's position  
 px1(s) = xp; 
 py1(s) = yp; 
 pz1(s)= zp; 

    
end 

  
figure(1) 
plot(px1,'+r','LineWidth', 2); 
grid on 
hold on 
plot(xd,'b','LineWidth', 1); 
hold on 
grid on 
title('X obtained vs X desired');legend('X-ob','X-

des');xlabel('t');ylabel('X-ob, X-des'); 

  
figure(2) 
plot(py1,'+r','LineWidth', 2); 
grid on 
hold on 
plot(yd,'b','LineWidth', 1); 
hold on 
grid on 
title('Y obtained vs Y desired');legend('Y-ob','Y-

des');xlabel('t');ylabel('Y-ob, Y-des'); 

  
figure(3) 
plot(pz1,'+r','LineWidth', 2); 
grid on 
hold on 
plot(zd,'b','LineWidth', 1); 
hold on 
grid on 
title('Z obtained vs Z desired');legend('Z-ob','Z-

des');xlabel('t');ylabel('Z-ob, Z-des'); 
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figure(4)  
plot3(px1,py1,pz1,'+r','LineWidth', 2)  
grid on 
hold on 
plot3(xd,yd,zd,'b','LineWidth', 1)  
grid on 
hold on 
title('DESIRED POSITION VS. REAL POSITION');legend('X,Y,Z','X-des,Y-des,Z-

des');xlabel('X,X-des');ylabel('Y,Y-des');zlabel('Z,Z-des'); 
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Appendix D – URDF File 

 

<?xml version="1.0"?> 

<!-- Robot Name --> 

<robot name="delta_robot"> 

<!-- Base --> 

    <link name="base_link"> 

        <visual> 

            <geometry> 

                <cylinder length="0.02" radius="0.180"/>         

            </geometry> 

            <origin rpy="0 0 0" xyz="0 0 0"/> 

        </visual> 

    </link> 

 

<!-- Arm 1 --> 

    <link name="arm_1"> 

        <visual> 

            <geometry> 

                <box size="0.300 0.02 0.02"/> 

            </geometry> 

            <origin rpy="0 0 0" xyz="0.150 0 0"/> 

            <material name="blue"> 

                <color rgba="0 0 1 1"/> 

            </material> 

        </visual> 

    </link> 

 

    <joint name="base_to_arm_1" type="revolute"> 

        <axis xyz="0 1 0"/> 

        <limit effort="1000.0" lower="-1.5708" upper="1.5708" velocity="0.5"/> 

        <parent link="base_link"/> 

        <child link="arm_1"/> 

        <origin rpy="0 0 -1.5708" xyz="0 -0.180 0"/> 

    </joint> 

 

<!-- Down Part Arm 1 --> 
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    <link name="down_arm_1"> 

        <visual> 

            <geometry> 

                <box size="0.800 0.02 0.02"/> 

            </geometry> 

            <origin rpy="0 0 0" xyz="0.400 0 0"/> 

            <material name="blue"> 

                <color rgba="0 0 0.8 1"/> 

            </material> 

        </visual> 

    </link> 

 

 

    <joint name="down_arm_1_to_arm_1" type="revolute"> 

        <axis xyz="0 1 0"/> 

        <limit effort="1000.0" lower="-1.5708" upper="1.5708" velocity="0.5"/> 

        <parent link="arm_1"/> 

        <child link="down_arm_1"/> 

        <origin rpy="0 1.5708 0" xyz="0.300 0 0"/> 

    </joint> 

 

<!-- End efector -->  

    <link name="tool0"> 

        <visual> 

            <geometry> 

                <cylinder length="0.02" radius="0.100"/> 

            </geometry> 

            <origin rpy="0 0 0" xyz="0.100 0 0"/> 

            <material name="blue"> 

                <color rgba="0 0 0.8 1"/> 

            </material> 

        </visual> 

    </link> 

 

    <joint name="tool0_to_down_arm_1" type="revolute"> 

        <axis xyz="0 1 0"/> 

        <limit effort="1000.0" lower="-1.5708" upper="1.5708" velocity="0.5"/> 

        <parent link="down_arm_1"/> 

        <child link="tool0"/> 
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        <origin rpy="0 1.5708 0" xyz="0.800 0 0"/> 

    </joint>    

 

<!-- Arm 2 --> 

    <link name="arm_2"> 

        <visual> 

            <geometry> 

                <box size="0.300 0.02 0.02"/> 

            </geometry> 

            <origin rpy="0 0 0" xyz="0.150 0 0"/> 

            <material name="blue"> 

                <color rgba="0 0 1 1"/> 

            </material> 

        </visual> 

    </link> 

 

    <joint name="base_to_arm_2" type="revolute"> 

        <axis xyz="0 1 0"/> 

        <limit effort="1000.0" lower="-1.5708" upper="1.5708" velocity="0.5"/> 

        <parent link="base_link"/> 

        <child link="arm_2"/> 

        <origin rpy="0 0 0.5236" xyz="0.155885 0.09 0"/> 

    </joint>  

 

<!-- Down Part Arm 2 --> 

    <link name="down_arm_2"> 

        <visual> 

            <geometry> 

                <box size="0.800 0.02 0.02"/> 

            </geometry> 

            <origin rpy="0 0 0" xyz="0.400 0 0"/> 

            <material name="blue"> 

                <color rgba="0 0 0.8 1"/> 

            </material> 

        </visual> 

    </link> 

 

    <joint name="down_arm_2_to_arm_2" type="revolute"> 

        <axis xyz="0 1 0"/> 
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        <limit effort="1000.0" lower="-1.5708" upper="1.5708" velocity="0.5"/> 

        <parent link="arm_2"/> 

        <child link="down_arm_2"/> 

        <origin rpy="0 1.5708 0" xyz="0.300 0 0"/> 

    </joint>  

 

<!-- Arm 3 --> 

 

    <link name="arm_3"> 

        <visual> 

            <geometry> 

                <box size="0.300 0.02 0.02"/> 

            </geometry> 

            <origin rpy="0 0 0" xyz="0.150 0 0"/> 

            <material name="blue"> 

                <color rgba="0 0 1 1"/> 

            </material> 

        </visual> 

    </link> 

 

    <joint name="base_to_arm_3" type="revolute"> 

        <axis xyz="0 1 0"/> 

        <limit effort="1000.0" lower="-1.5708" upper="1.5708" velocity="0.5"/> 

        <parent link="base_link"/> 

        <child link="arm_3"/> 

        <origin rpy="0 0 2.618" xyz="-0.155885 0.09 0"/> 

    </joint>  

 

<!-- Down Part Arm 3 --> 

    <link name="down_arm_3"> 

        <visual> 

            <geometry> 

                <box size="0.800 0.02 0.02"/> 

            </geometry> 

            <origin rpy="0 0 0" xyz="0.400 0 0"/> 

            <material name="blue"> 

                <color rgba="0 0 0.8 1"/> 

            </material> 

        </visual> 
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    </link> 

 

    <joint name="down_arm_3_to_arm_3" type="revolute"> 

        <axis xyz="0 1 0"/> 

        <limit effort="1000.0" lower="-1.5708" upper="1.5708" velocity="0.5"/> 

        <parent link="arm_3"/> 

        <child link="down_arm_3"/> 

        <origin rpy="0 1.5708 0" xyz="0.300 0 0"/> 

    </joint>  

 

</robot> 
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Appendix E – ROS node 

 

#!/usr/bin/env python 

#-------- Libraries --------# 

import math 

import numpy as np 

#---------------------------# 

#-------- ROS Libraries --------# 

import rospy  

from sensor_msgs.msg import JointState 

from std_msgs.msg import Header 

import geometry_msgs.msg 

import tf 

#-------------------------------# 

#-------- Node initialization --------# 

rospy.init_node('delta_robot') # Node initialization in ROS 

broadcaster = tf.TransformBroadcaster()  

odom_trans = geometry_msgs.msg.TransformStamped() 

joint_state = JointState()  

odom_trans.header.frame_id = 'odom' 

odom_trans.child_frame_id = 'base_link' 

joint_state.header = Header() 

joint_state.name = ['base_to_arm_1', 'base_to_arm_2', 'base_to_arm_3', 

'down_arm_1_to_arm_1', 'down_arm_2_to_arm_2', 

'down_arm_3_to_arm_3','tool0_to_down_arm_1'] 

#-------------------------------------# 

#-------- Variables --------# 

L = 0.300 # Upper legs length 

l = 0.800 # Lower legs length 

wb = 0.180 # Planar distance from {0} to near base side 
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wp = 0.030 # Planar distance from {p} to near platform side 

up = 0.035 # Planar distance from {p} to a platform vertex 

sp = 0.100 # Platform equilateral triangle side 

E = np.zeros(3) #Variable for calculate angle 

F = np.zeros(3) #Variable for calculate angle 

G = np.zeros(3) #Variable for calculate angle 

t1 = np.zeros(3) #Variable for calculate angle 

t2 = np.zeros(3) #Variable for calculate angle 

angle_upper_arm_rad_1 = np.zeros(3) #First solution angle of motors in rad 

angle_upper_arm_rad_2 = np.zeros(3) #Second solution angle of motors in rad 

angle_upper_arm_deg_1 = np.zeros(3) #First solution angle of motors in degrees 

angle_upper_arm_deg_2 = np.zeros(3) #Second solution angle of motors in degrees 

final_angle_lower_arm1 = np.zeros(1) 

final_angle_lower_arm2 = np.zeros(1) 

final_angle_lower_arm3 = np.zeros(1) 

end_effector = np.zeros(1) 

k=0 #Flag for changing coordinates 

#---------------------------# 

#-------- Function block for calculating angles --------# 

def calculate_delta_robot_angle():  

    #-------- Calculate a, b, c --------# 

    a = wb - up 

    b = (sp/2.0) - ((math.sqrt(3.0)/2.0) * wb) 

    c = wp - (wb/2.0) 

    #-------- Calculate E[0], F[0], G[0] --------# 

    E[0] = (2.0 * L) * (y + a) 

    F[0] = (2.0 * z) * L 

    G[0] = math.pow(x, 2) + math.pow(y, 2) + math.pow(z, 2) + math.pow(a, 2) + math.pow(L, 

2) + (2.0 * y * a) - math.pow(l, 2) 

    #-------- Calculate E[1], F[1], G[1] --------# 

    E[1] = -L * ((math.sqrt(3.0) * (x + b)) + y + c) 



67 

 

    F[1] = 2.0 * z * L 

    G[1] = math.pow(x, 2) + math.pow(y, 2) + math.pow(z, 2) + math.pow(b, 2) + math.pow(c, 

2) + math.pow(L, 2) + (2.0 * ((x * b)+ (y * c))) - math.pow(l, 2) 

    #-------- Calculate E[2], F[2], G[2] --------# 

    E[2] = L * ((math.sqrt(3.0) * (x - b)) - y - c) 

    F[2] = 2.0 * z * L 

    G[2] = math.pow(x, 2) + math.pow(y, 2) + math.pow(z, 2) + math.pow(b, 2) + math.pow(c, 

2) + math.pow(L, 2) + (2.0 * (-(x * b) + (y * c))) - math.pow(l, 2) 

    #-------- Calculate angle in rad and degrees --------# 

    for i in range(0, 3): 

        t1[i] = (-F[i] + math.sqrt(math.pow(F[i],2) - math.pow(G[i],2) + math.pow(E[i],2))) / 

(G[i] - E[i]) 

        t2[i] = (-F[i] - math.sqrt(math.pow(F[i],2) - math.pow(G[i],2) + math.pow(E[i],2))) / 

(G[i] - E[i]) 

        angle_upper_arm_rad_1[i] = 2 * math.atan(t1[i]) 

        angle_upper_arm_rad_2[i] = 2 * math.atan(t2[i]) #Usada 

        angle_upper_arm_deg_1[i] = math.degrees(angle_upper_arm_rad_1[i]) 

        angle_upper_arm_deg_2[i] = math.degrees(angle_upper_arm_rad_2[i]) 

#----------------------------------------------------------------# 

def calculate_angle_lower_arms(): 

#####Calculo de angulos##### 

    p0 = np.array([x, y, z]) 

    p1 = np.array([0, -up, 0]) 

    p2 = np.array([sp/2, wp, 0]) 

    p3 = np.array([-sp/2, wp, 0]) 

    a1 = np.array([0, -wb-L*math.cos(angle_upper_arm_rad_2[0]), -

L*math.sin(angle_upper_arm_rad_2[0])]) 

    a2 = np.array([((math.sqrt(3))/2)*(wb+(L*math.cos(angle_upper_arm_rad_2[1]))), 

0.5*(wb+(L*math.cos(angle_upper_arm_rad_2[1]))), -

L*math.sin(angle_upper_arm_rad_2[1])]) 
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    a3 = np.array([-((math.sqrt(3))/2)*(wb+(L*math.cos(angle_upper_arm_rad_2[2]))), 

0.5*(wb+(L*math.cos(angle_upper_arm_rad_2[2]))), -

L*math.sin(angle_upper_arm_rad_2[2])]) 

    pf1 = p0 + p2 

    pf2 = p0 + p3 

    pf3 = p0 + p1 

    #"transpuesta" para obtener cuadrados 

    d1_square = ((pf1 - a1)*(pf1 - a1)).sum() 

    d2_square = ((pf2 - a2)*(pf2 - a2)).sum() 

    d3_square = ((pf3 - a3)*(pf3 - a3)).sum() 

    D1 = math.acos((d1_square - math.pow(sp,2)-math.pow(l,2))/((-2)*sp*l)) 

    alpha1 = math.pi - D1 

    beta1 = math.pi - angle_upper_arm_rad_2[0] 

    final_angle_lower_arm1[0] = beta1 - alpha1 - (math.pi/2) + 0.15 

    D2 = math.acos((d2_square - math.pow(sp,2)-math.pow(l,2))/((-2)*sp*l)) 

    alpha2 = math.pi - D2 

    beta2 = math.pi - angle_upper_arm_rad_2[1] 

    final_angle_lower_arm2[0] = beta2 - alpha2 - (math.pi/2)  

    D3 = math.acos((d3_square - math.pow(sp,2)-math.pow(l,2))/((-2)*sp*l)) 

    alpha3 = math.pi - D3 

    beta3 = math.pi - angle_upper_arm_rad_2[2] 

    final_angle_lower_arm3[0] = beta3 - alpha3 - (math.pi/2) + 0.1 

    end_effector[0] = (angle_upper_arm_rad_2[0] + final_angle_lower_arm1[0]) * -1 

#-------- Function block for sending joint state to URDF --------# 

def send_joint_state_to_urdf(): 

    joint_state.header.stamp = rospy.Time.now() 

    joint_state.position = [upper_arm_1, upper_arm_2, upper_arm_3, lower_arm_1, 

lower_arm_2,lower_arm_3, effector] 

    odom_trans.header.stamp = rospy.Time.now() 

    pub.publish(joint_state) 
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    broadcaster.sendTransform((0.0, 0.0, 0.0), (0.0, 0.0, 0.0, 1.0), 

rospy.Time.now(),'base_link','odom') 

#----------------------------------------------------------------# 

#-------- Definition of publisher --------# 

pub = rospy.Publisher('joint_states', JointState, queue_size=10) 

#-----------------------------------------# 

#-------- Main program --------# 

r = rospy.Rate(1) 

#------------------------------# 

#-------- Infinite loop --------# 

while not rospy.is_shutdown(): 

#------------------------------# 

#-------- Three coordinates changing --------# 

    if k == 0: 

        x = 0.0 ##Coordinates 

        y = 0.0 

        z = -0.5 

    if k == 1: 

        x = 0.0 

        y = 0.0 

        z = -0.7 

    if k == 2: 

        x = 0.0 

        y = 0.0 

        z = -1.0 

#--------------------------------------------# 

    calculate_delta_robot_angle() #Call function calculate_delta_robot_angle 

    calculate_angle_lower_arms() 

    upper_arm_1 = angle_upper_arm_rad_2[0] 

    upper_arm_2 = angle_upper_arm_rad_2[1] 

    upper_arm_3 = angle_upper_arm_rad_2[2] 
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    lower_arm_1 = final_angle_lower_arm1 

    lower_arm_2 = final_angle_lower_arm2 

    lower_arm_3 = final_angle_lower_arm3  

    effector = end_effector 

    send_joint_state_to_urdf() #Call function send_joint_state_to_urdf 

    k=k+1 

    if k == 3: 

        k = 0 

    print angle_upper_arm_deg_2 

    print angle_upper_arm_rad_2 

    print final_angle_lower_arm1 #angulo lower arm 

    print final_angle_lower_arm2 #angulo lower arm 

    print final_angle_lower_arm3 #angulo lower arm 

    print end_effector 

    r.sleep() 
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Appendix F – Delta robot model in MATLAB 

 

% Robot values 

  
Sb = 0.640;     % base equilateral triangle side 
Sp = 0.100;     % platform equilateral triangle side 
L = 0.300;      % upper legs length 
Wb = 0.180;     % planar distance from {0} to near base side 
Ub = 0.360;      % planar distance from {0 } to a base vertex 
Wp = 0.030;     % planar distance from {P} to near platform side 
Up = 0.035;     % planar distance from {P} to a platform vertex 

  
P = [0.0; 0.013362; -0.758460]; %Coordinates 
t1 = 0.264188; %Angle upper arm 1 
t2 = 0.220808; %Angle upper arm 2 
t3 = 0.220808; %Angle upper arm 3 

  
% fixed-base revolute joint points B (constant in the base frame B) 
B1 = [0,-Wb,0]; 
B2 = [(sqrt(3)/2)*Wb, 0.5*Wb,0]; 
B3 = [-(sqrt(3)/2)*Wb, 0.5*Wb,0]; 

  
%edges of the base triangle 
b1 = [Sb/2, -Wb, 0]; 
b2 = [0, Ub, 0]; 
b3 = [-Sb/2, -Wb, 0]; 

  
%knee points of the delta robot 
A1 = [0;-Wb-L*cos(t1); -L*sin(t1)]; 
A2 = [sqrt(3)/2 * (Wb+L*cos(t2)); 1/2 * (Wb+L*cos(t2)); -L*sin(t2)]; 
A3 = [-sqrt(3)/2 * (Wb+L*cos(t3)); 1/2 * (Wb+L*cos(t3)); -L*sin(t3)]; 

  
% platform-fixed U-joint connection (constant in the base frame P) 
P1 = [0; -Up; 0]; 
P2 = [Sp/2; Wp; 0]; 
P3 = [-Sp/2; Wp; 0]; 

  
% platform-fixed U-joint connection (when P is not located in {0 0 0}) 
Pf1 = P+P1; 
Pf2 = P+P2; 
Pf3 = P+P3; 

  
% linspace--> to create the points to plot (lines) 

  
%base triangle 

  
bt1(:,1) = linspace(b1(1),b2(1));   
bt1(:,2) = linspace(b1(2),b2(2));   % triangle side 1 components 
bt1(:,3) = linspace(b1(3),b2(3)); 

  



72 

 

bt2(:,1) = linspace(b2(1),b3(1)); 
bt2(:,2) = linspace(b2(2),b3(2));   % triangle side 2 
bt2(:,3) = linspace(b2(3),b3(3)); 

  
bt3(:,1) = linspace(b3(1),b1(1)); 
bt3(:,2) = linspace(b3(2),b1(2));   % triangle side 3 
bt3(:,3) = linspace(b3(3),b1(3)); 

  
plot3(bt1(:,1), bt1(:,2), bt1(:,3),'k'); 
hold on 
plot3(bt2(:,1), bt2(:,2), bt2(:,3),'k'); 
hold on 
plot3(bt3(:,1), bt3(:,2), bt3(:,3),'k'); 

  
% upper arms 

  
ua1(:,1) = linspace(B1(1),A1(1)); 
ua1(:,2) = linspace(B1(2),A1(2));   % upper arm 1 components 
ua1(:,3) = linspace(B1(3),A1(3)); 

  
ua2(:,1) = linspace(B2(1),A2(1)); 
ua2(:,2) = linspace(B2(2),A2(2));   % upper arm 2 
ua2(:,3) = linspace(B2(3),A2(3)); 

  
ua3(:,1) = linspace(B3(1),A3(1)); 
ua3(:,2) = linspace(B3(2),A3(2));   % upper arm 3 
ua3(:,3) = linspace(B3(3),A3(3)); 

  
plot3(ua1(:,1), ua1(:,2), ua1(:,3),'r'); 
hold on 
plot3(ua2(:,1), ua2(:,2), ua2(:,3),'g'); 
hold on 
plot3(ua3(:,1), ua3(:,2), ua3(:,3),'b'); 

  
% lower arms 

  
la1(:,1) = linspace(A1(1),Pf1(1)); 
la1(:,2) = linspace(A1(2),Pf1(2));  % lower arm 1 components 
la1(:,3) = linspace(A1(3),Pf1(3)); 

  
la2(:,1) = linspace(A2(1),Pf2(1)); 
la2(:,2) = linspace(A2(2),Pf2(2));  %lower arm 2 
la2(:,3) = linspace(A2(3),Pf2(3)); 

  
la3(:,1) = linspace(A3(1),Pf3(1)); 
la3(:,2) = linspace(A3(2),Pf3(2));  %lower arm 3 
la3(:,3) = linspace(A3(3),Pf3(3)); 

  
plot3(la1(:,1), la1(:,2), la1(:,3),'k'); 
hold on 
plot3(la2(:,1), la2(:,2), la2(:,3),'k'); 
hold on 
plot3(la3(:,1), la3(:,2), la3(:,3),'k'); 
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% end-effector base 

  
eet1(:,1) = linspace(Pf1(1),Pf2(1)); 
eet1(:,2) = linspace(Pf1(2),Pf2(2));   
eet1(:,3) = linspace(Pf1(3),Pf2(3)); 

  
eet2(:,1) = linspace(Pf2(1),Pf3(1)); 
eet2(:,2) = linspace(Pf2(2),Pf3(2));  %end effector 
eet2(:,3) = linspace(Pf2(3),Pf3(3)); 

  
eet3(:,1) = linspace(Pf3(1),Pf1(1)); 
eet3(:,2) = linspace(Pf3(2),Pf1(2)); 
eet3(:,3) = linspace(Pf3(3),Pf1(3)); 

  
plot3(eet1(:,1), eet1(:,2), eet1(:,3),'k'); 
hold on 
plot3(eet2(:,1), eet2(:,2), eet2(:,3),'k'); 
hold on 
plot3(eet3(:,1), eet3(:,2), eet3(:,3),'k'); 

  
hold on 
grid on 
title('Delta Robot Position'); 
xlabel('X'); 
ylabel('Y'); 
zlabel('Z'); 
plot3(P(1),P(2),P(3),'r*') 

 


