

Development of a monitoring system for processing the CAN bus data of

public transport vehicles

A Thesis

Submitted to the Faculty of Fachhochschule Aachen and Centro de

Ingeniería y Desarrollo Industrial

BY

Luis Adrián Lizama Servín

In Partial Fulfillment of the requirements

for the degree of Master of Science in Mechatronics

Santiago de Queretaro, Qro., Mexico, February 2018

iii

Declaration

I hereby declare that this thesis work has been conducted entirely on my own accord.

The data, the software employed, and the information used have all been utilized in complete

agreement to the copyright rules of concerned establishments.

Any reproduction of this report or the data and research results contained in it, either

electronically or in publishing, may only be performed with prior sanction of the University of

Applied Sciences of Aachen (FH Aachen), the Centro de Ingeniería y Desarrollo Industrial

(CIDESI), and myself, the author.

Querétaro, February 2018

Luis Adrián Lizama Servín

v

Dedication

This work is dedicated to the memory of my best friend Matías.

“Commit to the Lord whatever you do, and He will establish your plans”.

Proverbs 16:3

vii

Acknowledgment

My biggest appreciation to CONACyT for funding my education in Mexico and in Germany,

without it, this project wouldn’t have happened.

I would like to express my sincere gratitude to Ricardo Tejada and Andreas Hermanns,

managers of the IVU Latin America Program. I highly appreciate the trust they have placed in

me to participate in this project as well as the opportunity they have given me to be part of such

a prestigious company as IVU. Moreover, I would like to remark the great support and the

continuous assistance that Ricardo offered at each different stage of development.

I would also like to acknowledge my external advisor Dr. Michael Zimmer, senior software

developer at IVU. He not only consistently supported my work to get results of better quality

but also he provided expertise that greatly assisted the project. In addition, Michael always took

the time to clarify my doubts by responding to each one of the issues with excellent solutions.

Furthermore, I would like to thank my thesis advisor Prof. Dr.-Ing. Günter Schmitz of the

Mechanical engineering & mechatronics faculty at FH Aachen. The door to Prof. Schmitz office

was always open, especially when I need it most. Without his significant participation and high

availability, the project could not have been successfully conducted.

My sincere thanks also goes to Dipl.-Ing. Peter Börger who gave access to the IVU engineering

department and hardware facilities. Without they precious support it would not be possible to

conduct this thesis. I really appreciate his patience and orientation while I was learning about

this matter.

Last but not the least, I would also like to acknowledge Dr. Hugo Jiménez, research professor

at the Center for Engineering and Industrial Development (CIDESI) as the second advisor of

this thesis, I am gratefully indebted to his for his very valuable comments on this thesis.

ix

Abstract

The aim of this master’s thesis is the development of a system which can store relevant

information from the stream of continuous data from the CAN Bus of public transport vehicles.

The collected data must be transmitted through a telematics gateway to a back office server

which will process the information received. Once these data have been stored and treated the

next step consists of generating a human interface to provide access to the information in an

easy and digestible form.

The first part of the project was achieved by developing an onboard computer software in order

to retrieve the CAN Bus data. The computer software was designed to store data in a light and

accessible way, therefore, the system includes a relational SQLite database. The information is

organized and stored on the back office system through a windows service which aims to prepare

the data for proper analysis. The user interface is based on dynamic WEB pages and server

scripts to carry out the graphical visualization of data.

xi

Kurzfassung

Das Ziel dieser Masterarbeit ist die Entwicklung eines Systems, welches die relevanten

Informationen vom kontinuierlichen Datenfluss vom CAN Bus von öffentlichen Transport

Fahrzeugen speichert. Die gesammelten Daten müssen durch einen Telematik Gateway an einen

Back-office Server übermittelt werden. Dieser verarbeitet die empfangenen Informationen.

Sobald diese Daten gespeichert und verarbeitet wurden, besteht der nächste Schritt darin eine

menschliche Schnittstelle zu generieren, um in einfacher und verträglicher Form einen Zugang

zu den Informationen herzustellen.

Das Projekt wurde in Zusammenarbeit mit der Firma IVU Traffic Technologies AG entwickelt

und die dafür gebrauchte Hardware ist die IVU.box. Diese ist der Bordcomputer, welche von

der Firma für Busse, Straßenbahnen und Züge angeboten werden. Der erste Teil dieses Projekts

wurde dadurch realisiert, dass die Bordcomputer Software für die IVU.box entwickelt wurde,

um die CAN Bus Daten abzurufen. Die Bordcomputer Software wurde entwickelt, um Daten

auf einfache und leicht zugängliche Weise zu speichern. Um dies sicher zu stellen, beinhaltet

das System eine integrierte SQLite Datenbank. Die Information wird auf dem Back-office

Server durch einen Windows Service verarbeitet und gespeichert, was die Daten auf eine

geeignete Analyse vorbereitet. Die Benutzerschnittstelle basiert auf dynamischen WEB Seiten

und Server-Skripten, um die graphische Visualisierung der Daten auszuführen.

xiii

Contents

List of Figures .. 15

List of tables ... 17

1 Introduction .. 19

1.1 Motivation ... 20

1.2 IVU Traffic technologies ... 21

1.3 Problem Statement .. 22

2 Concepts & terminology ... 25

2.1 CAN Bus .. 25

2.1.1 Architecture ... 25

2.1.2 Frames ... 26

2.1.3 Arbitration ... 27

2.1.4 Abstraction layers .. 27

2.1.5 SAE J1939 ... 28

2.2 IVU.box.. 29

2.1.2 Windows Embedded CE ... 30

2.2.2 CAN Driver .. 31

2.2.2.1 Cortex M3 microcontroller & ISO 1050 CAN transceiver .. 31

2.2.2.2 GFCAN32.dll dynamic library .. 33

2.3 PCAN-View & PCAN-USB ... 34

2.4 Qt ... 35

2.5 SQLite .. 36

2.6 Web Technologies .. 36

3 Requirements Specification & Methodology .. 39

3.1 Objective .. 39

3.2 System requirements ... 39

3.3 Methodology Adopted ... 41

3.4 Use cases .. 43

3.5 Test cases ... 45

Hardware & Software requirements for development .. 45

4 Implementation.. 47

4.1 On-board computer software .. 47

4.1.1 Initialization .. 47

4.1.2 Classes & Objects... 49

4.2 CAN Bus data transmission .. 57

4.2.1 Back-office server .. 57

4.2.2 Back-office database .. 58

4.2.3 Windows service... 61

4.2.3.1 Service development .. 62

4.3 Online interface ... 65

4.3.1 Data processing ... 65

4.3.2 Operation ... 68

4.4 System architecture ... 72

5 Results & Discussions ... 75

5.1 Test cases execution ... 75

5.1.1 Test the On board computer system. (System in Figure 21) ... 75

5.1.2 Test the Windows service system. (System in Figure 21) .. 80

5.1.3 Test the Online interface system. (System in Figure 23) .. 82

5.2 Observations .. 84

5.3 Summary ... 86

6 Scope for future work .. 87

7 Bibliography .. 89

15

List of Figures

Figure 1. System architecture according to the patent of Michael Kapolkaa [1].................... 19

Figure 2. Schematic drawing of a website according to the patent of Larkin Hill [2]. 20

Figure 3. IVU.suite [3].. 21

Figure 4. CAN bus [4]. ... 25

Figure 5. CAN Bus Architecture [5]. ... 25

Figure 6. CAN message [4]. .. 26

Figure 7. CAN signaling and logic levels [7]. ... 27

Figure 8. The Layered ISO 11898 Standard Architecture [5]. ... 27

Figure 9. J1939 Standards [8]. ... 28

Figure 10. SAE J1939 Message [8]. .. 29

Figure 11. SPN values [8]. .. 29

Figure 12. IVU.box [10]. .. 30

Figure 13. CAN Frame [12]. ... 32

Figure 14. Connection between LM3S5B91 and ISO150. .. 32

Figure 15. Schematic illustration of the GFCan32Api [14]. .. 33

Figure 16. PCAN-View [15].. 34

Figure 17. Pin assignment of PCAN-USB [15]. ... 35

Figure 18. Qt example... 36

Figure 19. Web Technologies [18]. ... 36

Figure 20. System overview. .. 40

Figure 21. On board computer software diagram. ... 43

Figure 22. Windows service diagram. ... 43

Figure 23. Online interface diagram. .. 44

Figure 24. Main function. ... 47

Figure 25. initCAN() function. .. 48

Figure 26. CanWriteDescriptorEx function. .. 48

Figure 27. CanWriteDescriptorEx function structure [14]. ... 48

Figure 28. Class diagram of the on-board computer software. ... 51

Figure 29. Onboard computer software sequence diagram.. 53

Figure 30. SQLite data base code. .. 55

Figure 31. Retrieved data structure. .. 56

Figure 32. Data transmission process ... 58

Figure 33. Logger folder location. .. 58

Figure 34. Tables in the server database. .. 59

Figure 35. Figure 35. ERROR_STATUS bytes [14]. .. 61

Figure 36. Service functions [22]. ... 62

Figure 37. Service flow chart. ... 63

Figure 38. Running the service. ... 64

Figure 39. Vehicle distance frame [9]. .. 65

Figure 40. Fuel consumption frame [9]. .. 66

Figure 41. Engine temperature frame [9]. ... 67

Figure 42. Sequence diagram of the online interface. .. 68

Figure 43. Log in screen. .. 69

Figure 44. Vehicle number & time period screen. ... 70

Figure 45. Vehicle distance screen. ... 70

Figure 46. CAN Bus data visualization.. 72

Figure 47. System Architecture. .. 72

Figure 48. CAN Bus system. .. 75

Figure 49. On board computer software initialization. .. 77

Figure 50. CAN Bus connection. ... 77

Figure 51. Frames transmitted. ... 77

Figure 52. . g_RcvMsgArray reaches int maxReceived. ... 78

Figure 53. Logger folder. .. 78

Figure 54. . Retrieved CAN Bus data... 79

Figure 55. Content of Table box. ... 81

Figure 56 . Wrong log in. .. 83

Figure 57. Device and time period selection.. 83

Figure 58. CAN Bus data print. ... 84

Figure 59. Future work. .. 88

17

List of tables

Table 1. Hardware & Software requirements for development. ... 45

Table 2. Tenants. ... 59

Table 3. Users. .. 59

Table 4. Devices. ... 60

Table 5. Logger. .. 60

Table 6. Box. ... 61

Table 7. Data volume. ... 84

Table 8. Summary. .. 86

19

1 Introduction

Vehicle monitoring systems are a fast growing product category due to the large number of

companies that own a multitude of commercial vehicles such as buses, cars, trucks, ships,

planes, rail cars and so on. Moreover, transport companies wish to have a central database to

access vehicle information for product improvements and diagnostics. Therefore, there is a

strong interest for a system that can store, monitor and analyze vehicle data regarding to the

different needs of different users [1].

“Because different companies and different industries have different vehicle data gathering and

reporting needs, current solutions involve constructing specialized systems for each particular

user application” [1]. Accordingly, one method for monitoring, configuring, programming and

diagnosing operation of at least one vehicle is that developed by Michael Kapolkaa.

Figure 1. System architecture according to the patent of Michael Kapolkaa [1].

The system is designed with applications and services that interact with raw data from the

vehicle bus so that vehicle information can be stored, analyzed and displayed in a format that is

meaningful to a particular user. The system architecture shown in figure 1 represents the process

for carrying out the functionalities of the system implemented [1].

Another method for monitoring a vehicle's engine control unit data is that implemented in the

patent “Internet-based system for monitoring vehicles” developed by Larkin Hill. The invention

provides a method for monitoring a vehicle that features the steps of [2]:

1) Generating a vehicle data packet.

2) Transmitting the data packet.

3) Processing the data packet.

4) Displaying the set of data on a web page.

Data from the above mentioned system are made available through a serial connector which

retrieved the data from the standardized electronic vehicle bus.

Figure 2. Schematic drawing of a website according to the patent of Larkin Hill [2].

The system proposed by Larkin Hill describes the development of a web page which represents

the following benefits [2]:

1) The schematic drawing of a website shown in Figure 2 illustrates the capacity of the system

to sort and analyze the retrieved data depending on vehicle and customer.

2) The web page also support a large number of tools that can be used to analyze data.

3) The web page can be accessed all over the world using wireless devices.

1.1 Motivation

As in the examples mentioned above the proper implementation of a vehicle monitoring system

allows different companies to obtain benefits such as engine protection methods, remote

maintenance assistance, vehicle diagnostics systems, determining driver negligence, vehicle

inspection support and so on. Therefore, for any transport company, a data monitoring system

represents an area of opportunity to increase its product offer. In the particular case of IVU, the

project is of great interest to clients in Latin America, such as GEP (Grupo Express del Perú).

One of the main goals of the present work is the storage of significant CAN Bus data in order

to generate historical data which can also be used in the future. The proper storage of the data

21

as well as its adequate processing aims to generate the basis for a predictive maintenance system.

Moreover, the implementation of a CAN Bus interface generates the possibility of real time data

monitoring of the bus data.

Advantages and importance of a predictive maintenance system:

 Decreasing operational cost.

 It allows to monitor the health of individual components of the fleet avoiding costly

manual inspections of the vehicle as a whole.

 Predictive maintenance aims to rarely have a bus break down in the middle of service

and thus it decreases the cost of negative customer experience.

Advantage and importance of a real-time monitoring system:

 Protection against accidents.

 Improving employee driving habits.

 Improving emergency response: Reducing confusion, time saving, awareness to

situation change, quickly identify problems.

The implementation of the system represents also a contribution to the management decision

making process for, among other things:

 Operational cost

 Supervise vehicle’s usage

 Monitor drive behavior

1.2 IVU Traffic technologies

Figure 3. IVU.suite [3].

“IVU Traffic Technologies AG has been working for over 40 years with more than 400

engineers to ensure punctual and reliable transport in the world’s metropolises. In growing

cities, people and vehicles are constantly on the move – a logistical challenge that calls for

intelligent and secure software systems. Based on the IVU.suite, IVU develops high-

performance solutions for public passenger and goods transport and transport logistics” [3].

IVU Traffic Technologies is a company which offers support for all fields of activity in transport

companies and provides integrated solutions: from planning, dispatching, fleet management,

and ticketing to passenger information [3]. In this project, the main objective is to develop a

software and hardware solution which can retrieve and monitor on-board data from the vehicle,

especially data from the CAN bus. The project therefore represents an addition to the current

products offered by the company.

IVU.box is the onboard computer offered by the company for buses, trams, and trains. For that

reason, the thesis focuses on developing software suitable for the hardware provided, in this

case, the IVU.box. Moreover, IVU.fleet ensures a consistent supply of data for vehicles. Thus,

IVU.fleet employs a telematics gateway to transmit to the back office system the collected data

from the CAN bus.

1.3 Problem Statement

The vehicle on-board data consists of thousands of signals from the electronic control units such

as engine control unit, cruise control, electric power steering, battery and recharging systems,

auto start/stop, park brakes, and so on. The data is communicated through a CAN network. Since

the frames are sent repeatedly with a specified frequency they form streams of continuous data

which are used for vehicle control and status signaling.

The project focuses on developing a remote system for storing, monitoring and analyzing the

vehicle stream’s data such as motor speed, fuel consumption, wheel speed, clutch pedal

condition, accelerator pedal position, brake pedal condition, alternator status, vibrations,

temperature, pressure, voltage, current, number of kilometers traveled and so on.

The system is developed with the following characteristics:

 The CAN bus interface reads CAN bus frames that adhere to SAE J1939 standard.

 The CAN bus interface is suitable for the onboard computer operating system Windows

CE 7.

 The system stores (on the onboard computer) in a lightweight manner the data retrieved.

 The system transmits the data retrieved to the back office server for further analysis.

Once the information has been backed up the system removes the data from the onboard

computer.

 The back office system organizes and stores the data to generate historical information

which can be used in the future.

 The system includes a user interface that allows information visualization according to

customers and vehicles.

23

In addition the system presents the following benefits:

 Easy integration with the current products offered by the company.

 Reliable and precise data.

 General solution for the entire fleet.

The following chapter deals with some concepts required to understand and to implement the

CAN Bus monitoring system.

25

2 Concepts & terminology

2.1 CAN Bus

Figure 4. CAN bus [4].

Assuming that the car is like a human body, as show in Figure 4. “The CAN bus is the nervous

system, enabling communication between all parts of the body” [4].

CAN stands for Controller Area Network, and it is a multi-master bus originally developed for

the automotive industry to allow communication between electronic control units and sensors

without a network host what results in the broadcasting of many messages to the entire network.

The CAN Bus communication protocol was developed by the German BOSCH Corporation and

specifies a communication speed up to 1MBPS [5].

CAN is an International Standardization Organization (ISO) standard implemented to replace

the elaborate wiring harness with a two-wire bus [5]. On the contrary, CAN Bus offers benefits

such as low cost of implementation since it avoids direct analogue signal lines, central error

diagnosis, and it is robust towards failures. It is efficient because messages with the highest

priority are not interrupted, and since the system allows easy modification or inclusion of

additional nodes it is considered flexible. Nowadays, almost every European car comes with a

CAN bus system which has increased the popularity of the protocol in other industries including

ships, planes and industrial automation. Moreover, it is broadly used in more modern use cases

which include drones, radar systems and submarines [4].

2.1.1 Architecture

Figure 5. CAN Bus Architecture [5].

The CAN Bus is a transmission medium designed for Electronic Control Units (ECUs)

communication. ECUs examples include (also known as nodes), engine control unit, cruise

control, park brakes, audio systems, doors, or just a simple I/O device. The electrical

characteristics of the CAN Bus incorporate a two wire bus terminated at each end with 120 Ω

resistors, the first wire is called high-level transmission line CANH, and the second one is called

low-level transmission line CANL [6].

Each node requires a digital signal processor (DSP), a CAN controller and a transceiver [5]. The

DSP or microcontroller transmits messages to the network and executes indications to the

sensors and actuators depending on the retrieved messages. The CAN arbitration process is

handled by the CAN controller as well as ensuring that an entire message is available for

fetching or sending. The transceiver is responsible for ensuring that the voltage levels are

adequate for the transmission of messages between the network and the node. Figure 5 illustrates

the electrical characteristics of the CAN Bus in conjunction with the components that integrate

the nodes.

2.1.2 Frames

Figure 6. CAN message [4].

In the CAN bus protocol, messages are known as frames and are composed, among other values,

by an identifier or ID, the frame type, and the data to be transmitted [5]. The ID is a unique

value which also represents the message priority. Depending on the size of the ID two frame

formats have been implemented. The base format contains an 11-bit ID while the extended

format has a 29-bit format [6]. Figure 6 illustrates the structure of a frame with a 29-bit ID.

According to the CAN bus protocol, four possible messages can be transmitted [5]:

 The Data Frame: It contains data for transmission.

 The Remote Frame: It solicits the transmission of a specific node.

 The Error Frame: It violates the formatting rules. It is emitted by any node when an error

is detected.

 The Overload Frame: It is used to generate a delay between messages.

27

2.1.3 Arbitration

Figure 7. CAN signaling and logic levels [7].

“In the real world, if two people speak at the same time, how do you determine who should

speak? Sometimes it´s the one who talks the loudest, and that´s essentially how a controller area

network (CAN) bus work” [7].

As shown in Figure 7, one of the main characteristics of the CAN bus is a logic-high is

associated with a zero, and a logic-low is associated with a one. This particularity is very

important at the moment of the definition of the identifier since it must be unique for each node

and it must represent the frame priority. The proper definition of the frame priority is essential

to carry out the arbitration process correctly.

The arbitration process is a method used for defining the priority of the frame when two nodes

try to occupy the bus simultaneously. The node winning arbitration continues with the message

and the node that loses arbitration re-queues its message for later transmission. Accordingly,

any node that transmits a logical one when another node transmits a logical zero loses the

arbitration [5].

2.1.4 Abstraction layers

Figure 8. The Layered ISO 11898 Standard Architecture [5].

The different standards decompose the CAN protocol into different levels according to its

functionalities and implementation characteristics. These levels are known as abstraction layers.

For example, Figure 8 illustrates the layers defined in the ISO 11898 Standard [5]. The physical

layer represents the transmission and reception of raw bit streams over a physical medium, and

the Data-Link Layer is responsible for the reliable transmission of data frames. In the CAN

protocol, these two levels are implemented with the transceiver and the CAN Controller

respectively. Since the CAN standard does not include tasks such as device addressing and

transport data blocks, the application layer establishes the communication link to a higher layer

protocol such as CANopen, DeviceNet, SAE J1939, and so on [5].

2.1.5 SAE J1939

SAE J1939 is a standard developed by the Society of Automotive Engineers and focuses mainly

on communication between electronic control units of heavy-duty trucks. It defines the physical

layer, data link layer, network layer and application layer [6]. Therefore, SAE J1939 is

considered a higher layer protocol with the following characteristics [8]:

 It enables the ECUs communication across manufacturers.

 It handles the transport of multi data blocks.

 It specifies the process to convert the raw data into readable data.

Figure 9. J1939 Standards [8].

The above characteristics are achieved by offering a family of SAE standards, which are

illustrated in Figure 9. For example, key attributes according to the SAE J1939-71 standard,

which is used by the European Automobile Manufacturers Association are [9]:

 Speed of 250kb/s

 Unused bytes are filled with FF

 Uses an extended 29 bit identifier

 Messages are identified by Parameter Group Numbers (PGN)

 A PGN contains Suspect Parameter Numbers (SPN)

 A SPN reflects parameters through 8 data bytes

29

Figure 10. SAE J1939 Message [8].

The understanding of PGNs and SPNs is essential to monitoring the CAN bus data transmitted

according to SAE J1939 standard. The parameter group number or PGN is a unique ID for each

message. It is not possible to match the full 29-bit CAN identifier with the PGN. As Figure 10

shows, the 29-bit identifier must be interpreted to obtain the proper PGN. To establish the PGN

according to the SAE J1939 standard, the PGN must have an 18-bit length starting at bit 9 of

the 29-bit identifier. For instance, for identifier 0x0CF00401 the corresponding PGN is 0x0F004

[8].

Figure 11. SPN values [8].

Moreover, each PGN contains several SPNs which reflect the actual sensed values such as fuel

consumption or engine hours. Figure 11 illustrates the 0x0CF00401 frame in which the only

relevant data is in byte 4 and 5 (0x68, 0x13). According to SAE J1939, the mentioned frame

represents an RPM value and, the proper scale for the specified frame is 0.125 RPM/bit with an

offset 0. Therefore, taking the decimal value of 0x1368 (4968) and using the proper scale the

resulting RMP value is 621 [8].

2.2 IVU.box

IVU.box is the on-board computer offered by the company for buses, trams and trains. In the

current CAN Bus data monitoring project the fleet of vehicles is composed only of buses.

IVU.box is based on standard components, has interfaces to all common positioning and

communication systems (GPS, analog and digital radio communication, GSM, UMTS, Tetra)

and controls the entire vehicle environment [10].

Figure 12. IVU.box [10].

IVU.box [10]:

 Operating system: Windows CE 7

 CAN driver system (Cortex M3 microcontroller and ISO1050 CAN transceiver)

 Touchscreen

 Analog and digital wireless communications (GSM, GPRS, UMTS, Tetra)

 Data upload and download with WLAN, GPRS, UMTS

 A variety of interfaces (serial, IBIS, CAN, Ethernet, DigIO)

 Arm-based i.MX6 processor

 1GB of RAM

 Uses industrial grade SD card for mass storage (1 to 4GB)

2.1.2 Windows Embedded CE

Windows Embedded CE is an operating system developed by Microsoft. It is designed to create

intelligent solutions for embedded devices that can be found in different engineering fields such

as [11]:

 Automotive

 Consumer and entertainment

 Home and building automation

 Industrial automation, process control, and manufacturing

 Information kiosk and self-serve terminal

 Medical

 Mobile phone and communication

 Office equipment

 Robotics

Windows Embedded CE has more than 15 years in the market and each new version improves

key aspects such as [11]:

 Small footprint

 Modular architecture

 Real-time support

 Support of broad range of hardware

 Efficient power management

31

 Efficient development tools

 Efficient debugging and testing tools

Windows Embedded CE is a robust development environment that allows implementing

applications reliably using a wide variety of tools. Furthermore, it is compatible with different

hardware components according to the needs of the market.

2.2.2 CAN Driver

As it is listed in section 2.2, the onboard computer has a CAN driver system which is integrated

by the Cortex M3 microcontroller and the ISO1050 CAN transceiver. In addition, the IVU

technology department implements a particular communication protocol called USB tunnel with

which consistent communication is achieved with the CAN module integrated into the

microcontroller. This communication protocol uses the GFCAN32.dll dynamic library

developed by the company Gartz and Fricke.

2.2.2.1 Cortex M3 microcontroller & ISO 1050 CAN transceiver

The microcontroller LM3S5B91 (Cortex M3) is part of the family of Cortex microcontrollers

developed by the Texas Instruments company. The Cortex M3 microcontroller offers benefits

such as minimal memory implementation, low power consumption, outstanding computational

performance and exceptional system response to interrupts. Some of its characteristics are [12]:

 High Performance: 80-MHz operation.

 256 KB single-cycle Flash memory.

 96 KB single-cycle SRAM.

 Advanced Communication Interfaces: UART, SSI, I2C, I2S, CAN, USB.

 Industrial (-40°C to 85°C) temperature range.

As mentioned above, one of the main features of the Cortex M3 microcontroller is its CAN

interface. Thus, the Cortex M3 microcontroller includes a CAN module for receiving and

sending the serial bits from/to the CAN bus accordingly to the algorithm implemented on the

microcontroller. Essential features of the module are listed below [12]:

 CAN protocol version 2.0 part A/B.

 Bit rates up to 1 Mbps.

 32 message objects with individual identifier masks.

 Maskable interrupt.

 Gluelessly attaches to an external CAN transceiver through the CANnTX and CANnRX

signals.

The CAN module consists of three parts, CAN protocol controller, Message memory and CAN

register interface, which must be programmed properly to obtain the correct CAN bus frames

[12]. Figure 13 illustrates the frame structure which as explained in chapter 2.1.2 can be of the

data, remote, error or overload frame type.

Figure 13. CAN Frame [12].

The connection between the CAN bus and the controller is made through the transceiver, which

is responsible for handling the appropriate voltages between the controller and the bus. In the

particular case of the IVU.box, the microcontroller is connected to the ISO1050 CAN

transceiver as shown in Figure 14. The mentioned transceiver is also developed by the Texas

instruments company and, it has the following features [13]:

 Meets the specifications of ISO 11898 standard.

 Bit rates up to 1 Mbps.

 Overvoltage protection from -27 V to 40 V

 3.3 V Inputs are 5-V Tolerant

 Low loop delay: 150 ns

The connection between the ISO1050 CAN transceiver and the Cortex M3 microcontroller is

basically the two-pin wiring, as shown in the following figure 14.

Figure 14. Connection between LM3S5B91 and ISO150.

33

2.2.2.2 GFCAN32.dll dynamic library

As mentioned in the previous chapter, the CAN module consists of three parts, protocol

controller, the Message memory, and CAN register interface. These three elements are

considered the kernel-area and are responsible for obtaining the messages. The controller

transfers and receives the data from the transceiver and passes the data on to the message's

handler. Thus, the message handler is responsible for generating interrupts based on CAN bus

events. Finally, the message object is a set of memory blocks which are accessed via the CAN

registers [12]. However, all this process is carried out by the GFCAN32.dll dynamic library.

Figure 15. Schematic illustration of the GFCan32Api [14].

GFCan32 is a dynamic library developed by the company Ganz & Fricke and, it is designed

primarily for Windows CE. In chapter 2.2.2, it was mentioned that through this library it is

possible to access the CAN module of the microcontroller, thus, as shown in figure 15, by means

of an interrupt service routine the library allows the transmission of information between the

Kemel-area and the User-area [14]. The DLL library is loaded by the application as needed, and

thus, the application gets the pointers to the proper functions in order to control the CAN bus

module regarding the algorithm developed by the user [14].

2.3 PCAN-View & PCAN-USB

With the purpose of testing the on-board application, various software and hardware tools were

used, among them PCAN-View and PCAN-USB. PCAN-View is a software tool for monitoring

the data flow on a Controller Area Network (CAN). It is developed by the company PEAK-

System Technik GmbH and, it has the following features [15]:

Figure 16. PCAN-View [15].

 It can emit and receive CAN messages, including Remote request and Error frames.

 It displays CAN messages with its ID, Data length, and data bytes.

 Any number of frames can be emitted, either manually or automatically in fixed time.

 Support for CAN specifications 2.0 A/B and FD.

 Bit rates up to 1 Mbit/s.

35

Figure 17. Pin assignment of PCAN-USB [15].

PCAN-View works in conjunction with PCAN-USB, which enables the connection to CAN

network. It is an adapter with the following features [15]:

 Adapter for the USB connection.

 CAN connection according to ISO 11898-2

 Bit rates up to 1 Mbit/s

 It includes a NXP SJA1000 CAN controller and a NXP PCA82C251 CAN transceiver.

 CAN bus connection via D-Sub, 9-pin. Figure 17 illustrates the pin assignment.

2.4 Qt

Qt is a complete cross-platform software framework with a wide range of integrated tools for

software development. It is used to extend the C++ language with intuitive and comprehensive

libraries and thus, applications using it can be compiled by any C++ compiler [16]. Qt is a

complete software development framework with a large number of resources such as libraries

for data storage, multimedia, network and connectivity, location and positioning, graphics, web

content, and so on [16].

The Qt Integrated Development Environment (IDE) is named Qt Creator. Qt Creator IDE

includes an intuitive interface, a code editor with syntax highlighting and auto completion, a UI

creation, a visual debugger, and other integrated tools. Furthermore, Qt supported platforms

include [16]:

 Desktop: Linux, macOS, Windows.

 Embedded and RTOS: Linux, QNX, VvWorks, Windows CE

 Mobile: Android, iOS, Windows

In this thesis Qt version 5.6.1 is used. Figure 18 is an example using Qt, where a window with

a label (QLabel) is created showing the text ¡Keep calm and finish your Thesis!.

 Figure 18. Qt example.

2.5 SQLite

“SQLite is the most used relational database engine in the world” due to the following features

[17]:

 Self-contained. It uses no external libraries and the entire library is encapsulated in a

single source code file.

 High-reliability. For more than a decade it has been used in billions of devices.

 Embedded. It is stored on a memory disk, and thus, any program that can access the

disk can read and write directly from the database.

 Full-featured. SQLite has all the functions and capabilities as a SQL database, such as

tables, views, index, triggers, and so on.

 Public-domain. SQLite does not require a license, and all the documentation is available

in public domain.

2.6 Web Technologies

Figure 19. Web Technologies [18].

http://sqlite.org/mostdeployed.html

37

Web technologies refers to the technologies used to develop applications, solutions or tools used

in the World Wide Web. Applications designed with web technology can be separated into two

groups depending on their use. The first group is the front-end applications (Client-side), which

involve interaction with the user, that is, everything the user observes, selects or manipulates,

and the clearest example is a web page. Some examples of technology that focuses on

developing front-end applications are HTML, CSS, and JavaScript.

The second group of web applications is those called back-end applications (Server-side), and

its function is to interact with the server. It is all that the user cannot observe, for example,

instructions that the server performs such as the page update process or storing information in a

database. For this reason and since they allow interaction with the database, programming

languages used to work in back-end applications are PHP, .NET, ASP, Perl, among others.

Figure 19 describes the interaction between the types of web technologies.

As mentioned in chapter 1.3, the present project involves accessing to CAN bus information

through an online interface. It was developed using HTML, CSS and JavaScript for describing

the web page structure and its presentation. Moreover, the web page displays the CAN Bus data

through charts and graphs which are deployed by means of the CanvasJS library. It is a charting

library for HTML5 which rendering across devices such as iPhone, iPad, Android, Mac, and

windows [19]. In addition, CanvasJS presents benefits such as simple API, 30 charts types,

supports Chrome, Firefox, Safari, IE8+ and, it can render 100,000 Data-Points in milliseconds

[19].

The online interface used PHP to create the server instructions. It is a scripting language

designed mainly for web development [20]. It is a server-side language which employs scripts

to generate responses for each web application request [20]. These responses can include queries

to the database to load products, update the user's profile, as well as the data processing to update

the site accordingly, etc.

39

3 Requirements Specification & Methodology

3.1 Objective

Design and implementation of a vehicle monitoring system to retrieve, store, and analyze the

CAN Bus data.

3.2 System requirements

1. Developing an on-board computer software:

 The main purpose of the on-board computer is to retrieve the CAN bus data.

 This application will run on the IVU.box, taking into account that it must not affect the

applications that are currently running on the device.

 The application should be configurable to define the relevant data to be stored.

 The on-board storage of the retrieved data must take into account the available disk space

and it must not obstruct the storage of the generated data by other applications.

 The retrieved data has to be transferred to the back-office.

2. Developing a database on the back-office system:

 The database must present a proper organization of the retrieved data.

 Predictive analytics uses historical data to predict future events. Typically, historical data

is used to build a mathematical model that captures important trends. Therefore, the

proper storage of the retrieved data will contribute to the later implementation of a

predictive maintenance system.

3. Developing a service on the back-office system:

 The service must be able to process the file containing the CAN bus information

generated by the application running on the on-board computer.

 The service must be executed automatically once a day.

 The main goal of the service is to process the file which has been generated by the on-

board computer software and store its data (CAN Bus data) in the back-office database.

4. Developing an online interface:

 Provide a backend or other viewing tool for a website that can be used to browse the

data.

 The final step is to generate a frontend viewer such as web page to provide access to the

information.

The following Figure 20 gives an overview of the project.

Figure 20. System overview.

41

3.3 Methodology Adopted

1. Identify functios and capabilities of IVU.box.

a) Operating system (OS).

b) Amount of available memory space and disk space.

c) Type of CAN bus hardware used.

d) Type of communication with back-office server.

2. Select the tool to store the CAN bus data on board.

The system stores on the onboard computer in a lightweight manner the data retrieved
according to the amount of available disk space. Once the information has been
transmitted to the back-office system, the software removes the data from the onboard
computer.

3. Create the on-board computer software with the following features:

a) It runs on WinCE 7.

b) The software main goal is retrieving the CAN bus data.

c) It does not affect the applications that are currently running on the device.

d) The application defines the relevant data to be stored.

e) The retrieved data is transferred to the back-office.

4. Analyze the current back-office server.

a) Operating system (OS).

b) Current storage process for customer and vehicle information according to the different
products offered by IVU.

5. Develop a data base in the back-office server.

The database represents a proper organization of the retrieved data. In the future, the
information can be used for predictive analysis methods.

6. Develop a back-office service.

The main goal of the service is to process the CAN bus data generated by the on-board
computer software and properly store it in the back-office database. The service is
executed automatically once a day.

7. Create an online interface.

It consists of a web page to provide access to the information. It takes into account a log
in procedure to visualize the information according to clients, vehicles and desired
information.

3.4 Use cases

According to the mentioned requirements and the adopted methodology, the following Figures 21, 22, and 23 illustrate use cases to

describe the different system interactions.

Figure 21. On board computer software diagram.

Figure 22. Windows service diagram.

Figure 23. Online interface diagram.

45

3.5 Test cases

The following test cases were established in order to verify the expected results according to the

proposed use cases.

1. Test the On board computer system. (System in Figure 21).

2. Test the Windows service system. (System in Figure 22).

3. Test the Online interface system. (System in Figure 23).

The chapter 5.1 presents the description of the tests as well as its execution process according

to established pre-requisites in order to compare the expected results with the actual results.

Hardware & Software requirements for development

Project area

Software requirements

Hardware

requirements

On-board

computer software

 Windows embedded CE 7

 Qt creator version 5.6.1

 PCAN-View version 4.1.3.505

 GFCAN32 dynamic library.

Copyright © 2000-2004, Garz &

Fricke GmbH, Hamburg.

 IVU.box

 Cortex M3

microcontroller

 ISO 1050 CAN

transceiver

 PCAN-USB

Back-office service

 Windows 7

 Qt creator version 5.6.1

 Windows task scheduler

 Desktop PC

Online interface

 Apache web server module of

XAMPP version 7.1.10

 Web browser

 Any device

that has access

to the IVU

network.

Table 1. Hardware & Software requirements for development.

47

4 Implementation

4.1 On-board computer software

The objective of the on-board computer software is to allow reading and storage of CAN Bus

frames for further analysis. It is executed on Windows CE 7, which is the operating system of

the IVU.box. The IDE used to develop the application was QtCreator, and therefore, the

programming language adopted is C++. Moreover, it has the following features:

 It reads CAN bus frames that adhere to SAE J1939 standard.

 It is able to filter the CAN Bus frames.

 It utilizes an SQLite database to store information locally.

4.1.1 Initialization

As mentioned in chapter 2.2.2.2, the GFCan32.dll dynamic library allows access to the CAN

module installed in the IVU.box. Furthermore and according to the library documentation, the

following steps have to be taken when using GFCan32 within an application [14]:

 Reset of the CAN-hardware

 Setting the transfer speed (BAUD-rate)

 Registering the CAN-callback

 Initializing of the CAN-controller in a valid descriptor for the message-filtering

 Activation of the background-thread

 Processing messages

To this end, a function called initCAN () was created, which aims to load the library and define

the functions necessary to use it. It is the second instruction executed in the main function of the

program. With this, access and adequate manipulation of the CAN module is achieved.

Figure 24. Main function.

Figure 25. initCAN() function.

As shown in Figure 24, the dynamic library is loaded by the application and thus, an

HINSTANCE is created. The functions to manipulate the CAN module are exported by the

library, however, the initCAN() function must get the pointers so that the functions can later be

called by the code. After this initialization process, it is possible to access the CAN module and

define parameters such as the baud rate, the filter mask and the filter descriptor, among others.

Figure 26. CanWriteDescriptorEx function.

Figure 27. CanWriteDescriptorEx function structure [14].

Figure 26 illustrates the use of one of the exported functions, in this particular case

CanWriteDescriptorEx function. In addition, as shown in Figure 27, the library documentation

provides the structure and the necessary parameters to execute the mentioned function.

Moreover, the CanWriteDescriptorEx function is used to create the CAN Bus filter, which is an

essential feature of the software. Thus, it requires the following parameters [14]:

 HANDLE hDevice. Handle of the CAN device, it is created via CanCreateDevice

function.

 ULONG place. Number of the messageplace that should be read.

49

 ULONG *descr. Address of a 32-bit variable, where the desired descriptor is stored into

 ULONG *mask. Address of a 32-bit variable, where the desired mask is stored into.

According to the above mentioned, Figure 26 shows the implementation of a function that

allows filtering the frames with the 0xFEE9 identifier. The const long variables

(PCARD_CAN_ID_EFF & PCARD_CAN_ID_FLAG_MASK) together with the identifier

(0xFEE9) are used to create a 32-bit descriptor variable, moreover, a 0xFFFFFFFF mask value

is defined. In this example, it is obtained the following binary values for the descriptor and the

mask:

Frame ID = 1111111011101001 (16 bits)

Descriptor = 10000000000000001111111011101001 (32 bit)

Mask = 11111111111111111111111111111111 (32 bits)

The filter mask and the filter descriptor are used to define which Frames will be accepted [14].

If a bit mask is set to a zero, the corresponding ID bit will be accepted, regardless of the value

of the bit descriptor. If a bit mask is set to one, the corresponding ID bit will be compared with

the value of the bit descriptor. If they match it is accepted otherwise the frame is rejected. Since

the mask only includes numbers 1, only frames with 0xFEE9 ID will be accepted.

4.1.2 Classes & Objects

The Qt Object Model provides very efficient runtime support and a high level of flexibility for

the object paradigm. Therefore, “Qt adds the following features to C++” [16]:

 Object communication called signals and slots.

 Queryable and designable object properties.

 Events and event filters.

 Contextual string translation for internationalization.

 Even-driven GUI.

 Hierarchical and queryable object tress.

 Guarded pointers that are automatically set to 0 when the referenced object is destroyed

 A dynamic cast that works across library boundaries

Furthermore, Qt also provides modules with many useful functions implemented in an operating

system independent way. In the present work, the QDatabase module was used for SQLite

integration as well as QFile module in order to provide an interface for reading from and writing

to files.

For the above, the on-board computer software has been developed with the following three

classes:

 MainComponent class. It prepares the database for its transmission to the back-office

system and, it creates an instances of DataHandler class and CANReader class.

 CANReader class. It retrieves the CAN Bus data.

 DataHandler class. It stores the retrieved data in the SQLite database.

51

Figure 28. Class diagram of the on-board computer software.

Figure 28 shows the relationship among the different classes used by the application. From the diagram, it can be deduced

that CANReader class and DataHandler class are part of the MainComponent class, and therefore, objects of these classes

cannot exist without a MainComponent object. In addition, it can be inferred that there is also an association between classes

CANReader and DataHandler and, it can be interpreted as the data emission from CANReader class to DataHandler class.

53

Figure 29. Onboard computer software sequence diagram.

Figure 29 illustrates the interaction among the different functions and objects which have been

implemented in the software. Furthermore, it can be deduced that the process of reading and

storing the CAN bus data is achieved in 20 steps, which are described below (Functions and

objects used in the following steps are organized in the class diagram of Figure 28).

 Step 1. CAN Bus Hinstance is created via the initCAN() function. It allows the proper

handling of the CAN Bus module. As mentioned above, Figure 25 shows the function

structure.

 Step 2. mainComponent object is created from MainComponent class. As can be seen

in Figure 24, the main function executes the instantiation of this object.

 Step 3. explicit MainComponent (QObject *parent = 0) function is executed. It is the

constructor function of the mainComponent object and its first action is to prepare the

previous data base to be exported to the back-office server. It is possible only if actually

a previous data base exists (a previous data base is a database created by the on-board

computer software in the previous session). Moreover, in order to transmit information

to the back-office server through the already established functions of the IVU.box, it is

necessary to copy the desired database to a special folder called logger. It is achieved

via the mainComponent constructor.

 Step 4. reader object is created from CANReader class. It is also done via the explicit

MainComponent (QObject *parent = 0) function.

 Step 5. explicit CANReader(QObject *parent = 0) function is executed. It is the

constructor function of the reader object and it is used to define the value of int

maxReceived. It is an integer value which determines the number of frames that the

application will temporarily store. This is a kind of buffer which allows to temporarily

store a specific amount of frames. Once the buffer has reached its maximum value (int

maxReceived), then the frames are actually stored in the database in one single

transaction.

The hard disk of the IVU.box is an SD memory and since writing many times on the

card can lead to memory corruption, it is necessary to use the buffer. The buffer

implementation prevent the memory from being damaged because it avoids writing

considerable times on the card.

 Step 6. getInstance() function is executed. It is designed to verify if an instance of the

CANReader class already exists. At this point, an instance of the CANReader class

exists, it is the reader object. Therefore this function should return a TRUE value. Thus,

it can be considered an implementation of the singleton pattern (CANReader is a

singleton).

 Step 7. dataHandler object is created from DataHandler class. It is also done via the

explicit MainComponent(QObject *parent = 0) function.

55

 Step 8. explicit DataHandler(QObject *parent = 0) function is executed. It is the

constructor function of the dataHandler object. It is used to destroy the previous data

base.

 Step 9. It is used to create the new data base and it is also done via the explicit

DataHandler(QObject *parent = 0) function. As mentioned in chapter 4.1, the

application utilizes an SQLite database, which is created by means of the QSqlDatabase

class. In addition, the following code in Figure 30 exemplifies the process to create a

new database.

Figure 30. SQLite data base code.

 In Figure 30 the following is shown:

a) itsDatabase object is created from DataHandler class. It allows the access to the database

functionalities offered by Qt. In particular, the itsDatabase object represents an SQLite

database.

b) Since SQLite stores the whole database in one file, this is also the filename of the

database ("CanData.db").

c) The database is created in the same folder where the application is located.

d) The data generated in the last session is deleted. However, it has been copied to the

logger directory before, so the data is not lost.

e) The database only includes one table with the following columns:

id INTEGER PRIMARY KEY,

vector_position INTEGER,

frame_type INTEGER,

identifier INTEGER,

rtr INTEGER,

length INTEGER,

place INTEGER,

time_stamp TEXT,

Error_Status INTEGER,

byte1-8 INTEGER (8 columns, one column for each byte).

 Step 10. mainComponent object indicates to reader object that it must request the

memory address of dataHandler object.

 Step 11. reader object creates a pointer to dataHandler object.

 Step 12. reader object actually retrieves the memory address of dataHandler object.

Therefore, through this process it is possible to establish the communication channel

between reader object and dataHandler object.

 Step 13. Main function executes start function which is a method of mainComponent

object, it is done through QMetaObject::invokeMethod (Figure 24).

 Step 14. The start function indicates to reader object that it must define the value of

static bool doRead. It is a bool variable which is used to control the looping of the CAN

Bus data reading process, as long as static bool doRead and getInstance() are true, the

loop shown in figure 29 will be executed.

 Step 15. Reader object defines a TRUE value for the static bool doRead.

 Step 16. Reader object provides the memory address of the static void

receiveCallback(LPVOID pMessage) function to the CAN Bus Hinstance. It is a special

function used by the GFCAN32.dll library to store the data retrieved from the CAN Bus.

This function is designed as placeholder only.

 Step 17. Once the CAN Bus Hinstance get a memory address to send the retrieved data,

in this case the receiveCallback function address, it is possible to start reading the CAN

Bus. Therefore, at this moment the CAN Bus data emission begins.

 Step 18. Reader object executes processData(PCAN_MESSAGE_EX msg) function.

Figure 31. Retrieved data structure.

57

processData(PCAN_MESSAGE_EX msg) function uses as a parameter a pointer to the

structure shown in Figure 31. This structure is used to store the retrieved data from the

CAN Bus. Actually, the function creates a vector of this structure to store the data

(QVector<CAN_MESSAGE_EX> g_RcvMsgArray).

 Step 19. Once g_RcvMsgArray has the same number of elements as int maxReceived,

then processData(PCAN_MESSAGE_EX msg) function transmits the vector to

dataHandler object.

 Step 20. dataHandler object executes writeData(g_RcvMsgArray) function. This

function stores the vector in the CanData.db. As can be assumed from the previous steps,

g_RcvMsgArray contains the CAN Bus data.

 Loop. According to the diagram, steps 16, 17, 18, 19 and, 20 are within an infinite loop,

as long as static bool doRead and getInstance() are true. Therefore, the process of

retrieving and storing the CAN Bus data is continuous.

4.2 CAN Bus data transmission

4.2.1 Back-office server

As mentioned in the methodology, in order to collect the CAN Bus data from the IVU.box, it is

necessary to analyze the back-office server. Therefore and following the products offered by

IVU:

A) It uses Windows 7 as the operating system.

B) It has a remote data transmission process. IVU.box employs a telematics gateway to

transmit the collected data from the CAN bus to the back-office system. The data is

collected in the logger folder on the IVU.box, and then the folder is compressed and

transmitted to the server. Once the logger folder is received on the server, it is saved

according to the corresponding tenant (IVU client) and the corresponding vehicle in the

system files. Finally, the server indicates to the IVU.box that the logger folder has been

received and it can be deleted from its storage. The data transmission process can be

seen in the following Figure 32.

Figure 32. Data transmission process

C) The back-office server receives the logger folder, and it is saved according to the

tenant and vehicle number. The following Figure 33 illustrates the location of the

logger folder on the back-office server (d:\IVU\import\errorlog\GEP\1167\).

Figure 33. Logger folder location.

4.2.2 Back-office database

According to the features mentioned in the previous chapter, a database was created on the back-

office server with the following characteristics:

 It has been developed to store all the CAN Bus data according to the different tenants

and vehicles.

 It is a relational SQLite database which is used only as a placeholder, a full scale data

base management system such as Oracle will be used in the future.

 Figure 34 illustrates the tables that compose the server database as well as the

relationships between them.

Creation of
CanData.db via

onboard
computer
software

Copying the
CanDaba.db to
logger folder.

Compression and
transmission of
logger folder to

Back-office server.

Receiving and
saving the logger

folder on the
Back-office

server.

IVU.box deletes
the logger folder.

59

Figure 34. Tables in the server database.

Values stored in table tenants contain the name of the Tenants (IVU Clients). For example,

GEP Grupo Express del Peru.

COLUMN TYPE CHILDREN PARENTS COMMENTS

ID INTEGER USERS

DEVICES

 PRIMARY KEY

NAME TEXT TENANT NAME

Table 2. Tenants.

Values stored in users table contain mainly the user credentials to access the online interface.

COLUMN TYPE CHILDREN PARENTS COMMENTS

ID INTEGER PRIMARY

KEY

NAME TEXT USER NAME

PASSWORD TEXT USER

PASSWORD

TENANT_ID INTEGER TENANTS FOREIGN KEY

Table 3. Users.

Values stored in devices table contain the vehicle number (device number) according to the

proper MANDANT.

COLUMN TYPE CHILDREN PARENTS COMMENTS

ID INTEGER LOGGER PRIMARY

KEY

NUMBER INTEGER VEHICLE

NUMBER

TENANT_ID INTEGER TENANTS FOREIGN KEY

Table 4. Devices.

Values stored in logger table contain the CAN Bus data properties such as tenant name,

vehicle number and emission date to the back-office server.

COLUMN TYPE CHILDREN PARENTS COMMENTS

ID INTEGER BOX PRIMARY

KEY

DATE TEXT EMISSION

DATE

DEVICES_ID INTEGER DEVICES FOREIGN KEY

Table 5. Logger.

Values stored in box table contain mainly the retrieved CAN Bus data

COLUMN TYPE CHILDREN PARENTS COMMENTS

ID INTEGER PRIMARY KEY

VECTOR_POSITION INTEGER Frame position in

vector

g_RcvMsgArray

(Chapter 4.1.2)

FRAME_TYPE INTEGER “This structure

supports

messages with

11- and 29-bit

identifier and can

take the value

STANDARD or

EXTENDED

[14]”

IDENTIFIER INTEGER “Identifier of the

message. Can be

11 or 29 bits long

[14]”

61

RTR INTEGER “Remote frame

flag. If true, this

value, it is a

remote frame

[14]”

LENGTH INTEGER “Message-lenght

in bytes [14]”

PLACE INTEGER “Number of the

message place, a

message has been

sent or received

through [14]”

TIME_STAMP TEXT “Time stamp of

the received

message [14]”

ERROR_STATUS INTEGER “The data length

is 5 bytes (Figure

35) [14]”

BYTE8-1 INTEGER “Databytes of the

message [14]”

LOGGER_ID INTEGER LOGGER FOREIGN KEY

Table 6. Box.

Figure 35. Figure 35. ERROR_STATUS bytes [14].

4.2.3 Windows service

Microsoft Windows services enable the creation of long-running executable applications that

run in the background of Windows sessions. They can be automatically started when the

operating system starts and they run as long as Windows is running. In addition, they can be

paused and restarted either manually or according to scheduled events via Windows scheduler.

“Services are ideal for use on a server or whenever it is needed a long-running functionality”

[21].

According to the server characteristics and its data transmission process, a Windows service

was implemented on the back-office server. It is designed to extract the CAN Bus data from the

logger folder and store it in the server database. Moreover, it automatically runs once a day.

4.2.3.1 Service development

The Windows service was developed with QtCreator, and it uses QtService project (hosted on

GitHub) as the basis for its implementation [22]. The QtService project provides a base class

for a Windows service that will exist as part of a service application. Furthermore, when an

instance of this class is created, it is possible to use three functions which correspond to the three

possible states of the service (started, paused, resumed, and stopped). Thus, every time the

service changes its state, the corresponding function is executed.

Figure 36. Service functions [22].

Figure 36 illustrates the instructions for each service state. In this particular case, only the start

and resume functions are used to execute the process() function. This function aims to extract

the CAN Bus data from the logger folder and store it in the server database. Therefore, it can be

concluded that each time that the service is started or resumed the CanBus data is extracted and

stored. However, the pause functionality is currently not supported. The service needs to process

everything and cannot be paused while it is processing.

63

Figure 37. Service flow chart.

Figure 38 illustrates the service flow chart, from which can be deduced the following steps to

extract and save the CAN Bus data:

1. First of all, the service must be started or resumed. As shown in figure 36, when the

service is started or resumed, the process() function is executed.

2. It creates a connection with the server database.

3. It performs an iteration (one by one) through the several logger folders located on the

server (Figure 33).

4. It queries the server database using the name of the folder as a parameter. Moreover it

checks if the logger file is already imported, if so, the process continues with the iteration

process. In addition, if the file is already imported and the current folder is the last one

in the iteration process then the process concludes.

5. In case that the folder data has not yet been stored, then the service unzips the respective

logger archive and extracts the on board database.

6. After that, the program creates a connection with the on board database.

7. It queries the on board database in order to obtain all its information which actually is

all the retrieved data from the CAN Bus.

8. Finally, the program stores the CAN Bus data in the server data base and if the current

logger folder is the last one in the iteration, then the process concludes. Otherwise the

process continues with the iteration.

As explained above, the service was implemented with Qt, and as a result of this an exe file is

obtained. This file is the basis for generating the long-running executable application (Windows

service). In order to create the service in Windows, it is necessary to do the following 2 steps

[22]:

 Run "cmd.exe" as administrator

 Execute the following command sc create "CANBUS" binpath = "C: \ CAN.exe" start

= auto. Thus, CANBUS is the desired name for the service and binpath is the exe file

address or another directory were the service application is installed.

Furthermore, the service can be started manually via “services” or it can be scheduled via “task

scheduler” (Figure 38). In the present work the service is scheduled to be started once per day.

Figure 38. Running the service.

65

4.3 Online interface

Finally, the present thesis includes the development of a web page (Online interface). As

mentioned before, the primary objective of the online interface is to provide access to the

retrieved CAN Bus data according to the different Tenants and their respective vehicles.

Moreover, the online interface is a client-server computer program with three main participants:

1. The user interface (client):

 It is used to perform requests to the server and display the information returned.

 It is developed using HTML and JavaScript programming languages.

 It displays a special window of graphics and results. This window is created via

CanvasJS.

 It runs in a web browser.

2. The server:

 It is used to query the server database and process the resulting CAN Bus data.

 The server instructions are created through scripts written with the PHP

programming language.

 It runs in an Apache HTTP Server.

3. The server database (Chapter 4.2.2).

4.3.1 Data processing

The online interface developed in the present thesis allows only the analysis of the following

three CAN Bus frames (other frames are currently not supported):

 Vehicle distance

Figure 39. Vehicle distance frame [9].

Figure 39 illustrates the characteristics of the vehicle distance can bus frame according to the

SAEJ1939 standard. From the Figure, the following can be deduced [9]:

a) It is used to indicate the accumulated distance travelled by the vehicle during its

operation.

b) Its corresponding PGN number is 0x00FEC1. In the present work and for simulation

purposes it is assumed that the PGN number is equal to the ID number. For future

implementations it is necessary to provide the ID number, which depends on each

vehicle.

c) Only the data in bytes1-4 must be considered. Therefore, the sensor resolution is 4

bytes (0xFFFFFFFF)

d) It has an offset of 0m and for each bit increment the sensed value increases by 5m. For

instance, if the sensed value is 0x0000000F, it represents a distance traveled of 75 m.

e) It has a rate of 1000 milliseconds.

 Fuel consumption

Figure 40. Fuel consumption frame [9].

Figure 40 illustrates the characteristics of the fuel consumption can bus frame according to the

SAEJ1939 standard. From the Figure, the following can be deduced [9]:

a) It is used to indicate the accumulated amount of fuel used during vehicle operation.

b) Its corresponding PGN number is 0x00FD09. In the present work and for simulation

purposes it is assumed that the PGN number is equal to the ID number. For future

implementations it is necessary to provide the ID number, which depends on each

vehicle.

c) Only the data in bytes 5-8 must be considered. Therefore, the sensor resolution is 4

bytes (0xFFFFFFFF)

d) It has an offset of 0 liters and for each bit increment the sensed value increases by

0.001 liters. For instance, if the sensed value is 0x0000000F, it represents a fuel

consumption of 0.015 liters.

e) It has a rate of 1000 milliseconds.

67

 Engine Temperature

Figure 41. Engine temperature frame [9].

Figure 41 illustrates the characteristics of the engine temperature can bus frame according to

the SAEJ1939 standard. From the Figure, the following can be deduced [9]:

a) It is used to indicate the temperature of liquid found in the engine cooling system.

b) Its corresponding PGN number is 0x00FEEE. In the present work and for simulation

purposes it is assumed that the PGN number is equal to the ID number. For future

implementations it is necessary to provide the ID number, which depends on each

vehicle.

c) Only the data in byte 1 must be considered. Therefore, the sensor resolution is 1 byte

(0xFF)

d) It has an offset of -40°C and for each bit increment the sensed value increases by 1°C.

For instance, if the sensed value is 0x0000000F, it represents an engine coolant liquid

temperature of -25°C.

e) It has a rate of 1000 milliseconds.

Remark: The system only processes frames with values equals to 0xFE (Maximum value).

This means that the temperature is very high and an alarm must be generated.

4.3.2 Operation

Figure 42. Sequence diagram of the online interface.

69

As mentioned above, the online interface has three participants. The Figure 42 illustrates the

interaction among them as well as the online interface operation process which can be described

in the following 24 steps:

Step 1. The process starts with the user's log in. In order to access it is necessary to present the

appropriate credentials. The user interface (UI) captures the user's credentials and sends them

to the server for validation. Figure 43 shows the log in screen.

Figure 43. Log in screen.

Step 2-4. The server uses the user's credentials as parameters to create a query in the server

database. If the query is successful (the user exists in the database) then the online interface

allows access to the user.

Step 4. Once access has been authorized, the UI allows the user to enter the desired vehicle

number (device) and the desired time period to consult. Figure 44 shows the screen to define

the vehicle number and the time period.

Figure 44. Vehicle number & time period screen.

Step 5-6. The server uses the vehicle number and the time period as parameters to create a query

in the server database. The query automatically defines the desired frame as Vehicle distance.

Step 7-8. After consulting the database, the server processes the retrieved information. Mainly,

the server interprets and converts the data to the corresponding value in Kilometers according

to the vehicle and time period consulted. It returns the accumulated vehicle distance in

kilometers per day.

Step 9. The UI uses CanvasJS to display the processed data. Figure 45 shows the vehicle

distance screen.

Figure 45. Vehicle distance screen.

71

Step 10-24. As the diagram in Figure 42 shows, steps from 10 to 24 can be executed in parallel.

Thus, as shown in Figure 45, the UI allows consulting the following three parameters:

 Fuel Consumption: It returns the Vehicle fuel consumption in liters per day.

 Temperature Alert: It returns the time in seconds in which the engine temperature

exceeded the maximum value per day.

 Cost Euros: It returns the cost in euros according to the vehicle fuel consumption per

day.

Depending on the user's request, the server query the database according to the vehicle number,

time period and desired frame. Once the server queries the requested information, it processes

the data for its proper visualization. Figure 46 shows a possible visualization if all the frames

have been requested.

Figure 46. CAN Bus data visualization.

4.4 System architecture

Figure 47. System Architecture.

73

According to the implementation, Figure 47 illustrates the system architecture. As can be seen,

the IVU.box includes the CAN module described in chapter 2.2.2.1, which is controlled by the

on board computer software, specifically by the CAN interface section. In addition, it can be

observed that as a result of the CAN Bus reading, the program generates a database which

contains the information retrieved. Moreover, the last component of IVU.box consists of a

telematics gateway, which uses the logger folder to transmit information to the server.

Once the information has been received by the server, it is stored on the hard drive according to

the tenant and its corresponding vehicle number. After that, it is possible to run the Windows

service, which extracts the CAN Bus data from the hard disk and stores it in the server database.

Finally, the user can access the information through an online interface supported by an Apache

server.

75

5 Results & Discussions

5.1 Test cases execution

Testing is an integral part of any development process. Therefore and as mentioned in chapter

3.5, three test cases were defined with the aim of providing the system stability. In addition, the

test cases execution allows the proper analysis of the expected results and the actual results. The

test cases are described below along with their results.

5.1.1 Test the On board computer system. (System in Figure 21)

Summary:

Testing the on board computer software to ensure adequate reading, filtering and on board

storing of the CAN Bus data.

Prerequisites:

 The IVU.box must be connected to a CAN Bus network (Figure 48). In this particular

case, PCAN-View & PCAN-USB were used to simulate the CAN Bus Network. Figure

1 illustrates the connection between the IVU.box and the CAN Bus system. Moreover,

since the software reads CAN bus frames that adhere to SAEJ1939 standard, PCAN-

View must be set up with a bit rate of 250kBit/s as well as with an extended frame

format.

Figure 48. CAN Bus system.

 int maxReceived must be 16 (Chapter 4.1.2 Step 9).

 The application filter must be programmed to read only frames with the following

identifiers:

a) 0xFEC1

b) 0xFD09

c) 0xFEEE

Test procedure:

1. Start the on board computer software.

2. Create a new CAN Bus connection with PCAN-View.

3. Transmit 16 frames with an identifier of 0xFEC1 (Cycle time = 1000 milliseconds).

4. Transmit 16 frames with an identifier of 0xFD09 (Cycle time = 1000 milliseconds).

5. Transmit 16 frames with an identifier of 0xFEEE (Cycle time = 1000 milliseconds).

6. Transmit 16 frames with an identifier of 0x1F0F0F0F (Cycle time = 1000 milliseconds).

7. Transmit 16 frames with an identifier of 0x1000000F (Cycle time = 1000 milliseconds).

8. Transmit 16 frames with an identifier of 0x00000000 (Cycle time = 1000 milliseconds).

9. Stop on board computer software

10. Start on board computer software

Expected results:

1. Proper software initialization (Chapter 4.1.1)

2. Proper creation of the CAN Bus connection.

3. Reading and storage of frames with the following IDs (all other frames must be ignored):

0xFEC1, 0xFD09, 0xFEEE.

4. The CAN Bus data must be stored in the database every time g_RcvMsgArray reaches

int maxReceived (Chapter 4.1.2).

5. The database must content the retrieved CAN Bus data.

6. Starting the software again triggers that the database is copied to the logger folder for its

correct transmission.

Actual results:

1. Software initialization achieved. Figure 49 illustrates the IVU.box messages generated

by the program once the initialization has been carried out (Chapter 4.1.1).

77

Figure 49. On board computer software initialization.

2. CAN Bus connection achieved. Figure 50 illustrates the proper set up of PCAN-View

as well as the resulting connection.

Figure 50. CAN Bus connection.

3. The following Figure 51 illustrates the frames that were transmitted to the CAN Bus

network. However, only the frames with the proper IDs (0xFEC1, 0xFD09, 0xFEEE)

were read and stored. Therefore, it is concluded that the filter was working correctly.

Figure 51. Frames transmitted.

4. The CAN Bus data is successfully stored in the database every time g_RcvMsgArray

reaches int maxReceived. Since int maxReceived is equal to 16, the CAN Bus data is

stored in one single transaction through vectors of 16 elements, as shown in figure 52.

Figure 52. . g_RcvMsgArray reaches int maxReceived.

5. Once the application was restarted, the database was successfully copied to the logger

folder (Figure 53). In addition, Figure 54 shows the CAN Bus data stored in the

database, which successfully corresponds to the data emitted (Figure 51).

Figure 53. Logger folder.

79

Figure 54. . Retrieved CAN Bus data.

5.1.2 Test the Windows service system. (System in Figure 21)

Summary:

Testing the Windows service system to ensure adequate extraction and storing of the CAN Bus

data in the Back-office server.

Pre requisites:

 A new data logger folder must be transmitted from the IVU.box. Therefore, the logger

folder generated in the previous test case will be used to carry out the present test case.

 The mentioned logger folder belongs to the GEP tenant and corresponds to vehicle

number 1167.

 The service must be scheduled to operate each day at 20:00 hrs.

Test procedure:

 Wait for it to be 20:00 hrs.

 Query the server database.

 Start manually the Windows service.

 Query the server database.

Expected results:

1. At 20.00 hrs. The Windows service must be automatically executed (Figure 38).

2. The server database must contain the data shown in figure 54.

3. The Windows service must be manually executed (Figure 38).

4. The server database must contain only one time the data shown in figure 54.

Actual results:

1. The Windows service was successfully executed at 20:00 hrs.

2. The server database contains the data shown in figure 54. Figure 54 illustrates that the

box table content actually corresponds to data emitted by the IVU.box.

3. The Windows service was manually executed.

4. The server database contains only the data shown in figure 54. Thus, it is deduced that

the logger file was read only once.

81

Figure 55. Content of Table box.

5.1.3 Test the Online interface system. (System in Figure 23)

Summary:

Testing the Online interface system to ensure adequate access to the CAN Bus data according

to different Tenants and their corresponding vehicles.

Pre requisites:

 New CAN Bus data must be stored in the server database. Therefore, The CAN Bus data

which have been stored in the previous test case will be used to carry out the present test

case (Figure 55).

 The server database must include at least one user with the proper credentials to access

the online interface. Therefore, a general user was created with the following credentials:

Username: admin & Password: admin

Tenant: GEP (It is assumed from point two of the pre-requisites of the previous test case)

Test procedure:

 Log in with the wrong credentials.

 Log in with the proper credentials.

 Select date and vehicle number according to the stored data in the previous chapter

(19.02.2018 & 1167).

 Consult Fuel consumption.

 Consult Temperature alert.

 Consult Cost.

 Print image

Expected results:

1. Access denied.

2. Access allowed.

3. Visualize Vehicle distance. Moreover, according to chapter 4.3.1 as well as the data

stored in the previous chapter (Figure 55), it is expected to visualize a vehicle distance

of 20.3 km.

4. Visualize Fuel consumption. Moreover, according to chapter 4.3.1 as well as the data

stored in the previous chapter (Figure 55), it is expected to visualize a fuel consumption

of 4.1 liters.

5. Visualize Temperature alert. Moreover, according to chapter 4.3.1 as well as the data

stored in the previous chapter (Figure 55), it is expected to visualize a temperature alert

of 16 seconds.

6. Visualize Cost. Moreover, according to chapter 4.3.1 as well as the data stored in the

previous chapter (Figure 55), it is expected to visualize a cost of 5.3 Euros.

7. Printing of generated image

83

Actual results:

1. Access denied (Figure 56).

Figure 56 . Wrong log in.

2. Via the proper credentials the access is allowed and thus it is possible defining the

device (vehicle number) as well as the time period (Figure 57).

Figure 57. Device and time period selection.

3. It can be visualized a vehicle distance of 20.3 km.

4. It can be visualized a fuel consumption of 4.1 liters

5. It can be visualized a temperature alert of 16 seconds

6. It can be visualized a cost of 5.3 Euros

7. It is possible printing the generated image (Figure 58).

Figure 58. CAN Bus data print.

5.2 Observations

The system developed in the present Thesis allows the reading of CAN Bus frames according

to the specifications established in the SAE J1939 standard. In addition, it enables the on-board

storage of data in a lightweight manner. Moreover, once the data has been transmitted to the

back-office server, the present monitoring system extracts the transmitted data and store it in the

server database. Finally, the online interface allows access to information according to the

different Tenants and their respective vehicles. Therefore, it can be concluded that the CAN Bus

data monitoring system has been successfully implemented. However, it is important to mention

the following aspects according to each implementation section:

 Onboard computer software.

a) It only allows the reading of frames mentioned in chapter 4.3.1. Nevertheless, it is

programmable (only in form of C++ code) according to the customer needs.

b) The application was tested through a simulation of the CAN Bus network (Figure

43). The application has not been tested in a real CAN Bus environment (vehicle

engine).

c) Data volume of the stored file.

Frame Value range Storage type Rate

Vehicle distance

long 4 byte 1000

milliseconds

Fuel consumption

long 4 byte 1000

milliseconds

Temperature alert

long 1 byte 1000

milliseconds

Table 7. Data volume.

85

 The following conditions apply:

1. The few bytes at the drive start are neglected.

2. 9-byte per second.

3. The operating day is 12 hours long.

4. There will also be some (small) overhead by SQLite.

 12*3600*9 ≈ 400 000 Byte. According to the IVU.box capabilities, it is acceptable.

 Windows service.

a) It is designed for the current folder structure of the Back-office system. If the

structure changes, the service is no longer useful.

b) Pause functionality is currently not supported. That means, the service cannot be

paused while it is processing the data.

c) The server database is only a placeholder and a full scale data base system will be

used in the future.

 Online interface.

a) It was tested using only one user, one vehicle number and one tenant.

b) It is able to process only the frames mentioned in chapter 4.3.1

c) CanvasJS was used with a student license. If the product becomes commercial it is

necessary to acquire the appropriate license.

5.3 Summary

The test cases were successfully run according to the pre requisites. Therefore, the CAN Bus

monitoring system was found to be quite stable. In addition, the below table represents the

summary of all the results obtained.

Section Implementation Drawbacks Remarks

On board

software

Successful. It

allows the reading

as well as the on

board storage of

the CAN Bus data.

 Is not

configurable

once it has been

deployed.

 Limited to

IVU.box storage

capacity.

 It was tested

through a

simulation of the

CAN Bus network

Windows

service

Successful. It

extracts and stores

the emitted data

from the IVU.box.

 If the folder

structure

changes, the

service is no

longer useful.

 Pause

functionality is

currently not

supported

 The server

database is only a

placeholder

Online

interface

Successful. It

allows the access

and visualization of

the CAN Bus data

 It is able to

process only

three frames:

vehicle distance,

fuel

consumption,

and engine

temperature.

 Developed with a

CanvasJS student

license

Table 8. Summary.

87

6 Scope for future work

According to the results obtained and the observations made, it can be deduced that the CAN

BUS data monitoring system can be improved with the following proposals:

 The on board computer software should be customizable (without changing the source

code) in aspects such as the filter, the value of int maxReceived, the sampling time and

so on. It could be possible through a configuration file which enables saving and

restoring settings in portable manner.

 The Windows service should support changes in the directory structure.

 The Windows service should include the pause functionality. It should be able to be

interrupted while it is processing.

 The server database should be replaced for a full scale database such as Oracle.

 The Online interface should be able to process a broad range of CAN Bus frames.

Moreover, the implementation of the system enables the possibility to generate new

development areas such as (Chapter 1.1):

 Predictive maintenance.

The aim of predictive maintenance is the continuous monitoring and diagnosis of in-service

equipment in order to predict when equipment failure might occur as well as prevent unexpected

equipment failures by performing maintenance. Since Predictive maintenance is highly

dependent on the collection of historical data for the component being inspected, the CAN Bus

interface implementation, as well as the proper storage of the data, aims to generate the basis

for a predictive maintenance system. Therefore, the development of the present work combined

with analytical software such as Matlab, Python or R could produce a mathematical model to

predict future failures.

 Real time data monitoring.

The implementation of the on-board computer software with a CAN Bus interface coupled with

a proper web service technology could allow the implementation of a real time monitoring

system. Making remote access to “Live data” is a modern approach with huge benefits such as

protection against accidents, maintenance handling, evaluating driver efficiency, and so on.

Currently, IVU offers real time data monitoring for public transport vehicles through IVU.fleet

(Figure 3). Therefore, the proprietary data telegrams technology (IVU.fleet) offered by the

company combined with the present monitoring system could produce a new system which

allows the remote access to the CAN Bus data in real time.

The following Figure 59 gives an overview of the project. The blue lines represent the developed

system and the green lines are the possibilities and the future work produced with the

implementation of the system.

Figure 59. Future work.

As a general conclusion it can be mentioned that the present Thesis represents a product concept

for monitoring the CAN Bus data of public transport vehicles. Moreover, the present work

presents benefits such as a CAN Bus interface which is able to filter the frames according to the

SAE J1939 standard. It also stores the retrieved data in a light way manner and it offers an

appropriate interface for online access to information.

89

7 Bibliography

[1] I. M. Kapolka, S. Heights, S. Chang, W. Bloomfield, M. I. Us, and B. Crull, “so :,” vol.

2, no. 12, 2006.

[2] I. Larkin et al., “(12) United States Patent (10) Patent No .:,” vol. 1, no. 12, 2010.

[3] “IVU.suite IVU Traffic Technologies.” [Online]. Available:

https://www.ivu.com/ivusuite.html. [Accessed: 08-Feb-2018].

[4] “CAN Bus Explained - A Simple Intro (2018).” [Online]. Available:

https://www.csselectronics.com/screen/page/simple-intro-to-can-bus/ [Accessed: 08-

Feb-2018].

[5] S. Corrigan, “Introduction to the Controller Area Network (CAN),” Texas Instruments,

no. August 2002, pp. 1–17, 2016.

[6] Li Ran, Wu Junfeng, Wang Haiying, and Li Gechen, “Design method of CAN BUS

network communication structure for electric vehicle,” Int. Forum Strateg. Technol.

2010, pp. 326–329, 2010.

[7] “CAN bus arbitration: To yell and back - Analog Wire - Blogs - TI E2E Community.”

[Online]. Available: https://e2e.ti.com/blogs_/b/analogwire/archive/2015/01/30/can-

bus-arbitration-to-yell-and-back. [Accessed: 08-Feb-2018].

[8] “SAE J1939 Explained - A Simple Intro (2018).” [Online]. Available:

https://www.csselectronics.com/screen/page/simple-intro-j1939-explained. [Accessed:

08-Feb-2018].

[9] M. A. N. Truck and B. Ag, “Daimler Buses - EvoBus GmbH FMS-Standard description

Version 03,” 2012.

[10] “IVU.box IVU Traffic Technologies.” [Online]. Available:

https://www.ivu.com/ivusuite/fleet-management/ivubox.html. [Accessed: 08-Feb-2018].

[11] S. Phung, D. (David W. Jones, and T. Joubert, Professional Windows Embedded Compact

7. John Wiley & Sons, 2011.

[12] T. I. Incorporated, “Stellaris LM3S5B91 Microcontroller,” History, 2011.

[13] F. Outputs et al., “ISO1050L Dominant Time-Out Function ISO1050L,” no. June 2009,

2011.

[14] Garz & Fricke Industrieautomation GmbH “GFCan32 function library” 2000-2004.

[15] PEAK-System Technik GmbH, “PCAN-USB CAN Interface for USB,” vol. 1, pp. 1–33,

2014.

[16] “Complete software development framework | Qt.” [Online]. Available:

https://www.qt.io/what-is-qt/. [Accessed: 08-Feb-2018].

[17] “SQLite Home Page.” [Online]. Available: http://sqlite.org/. [Accessed: 08-Feb-2018].

[18] “A Beginner’s Guide to Back-end Development.” [Online]. Available:

https://www.upwork.com/hiring/development/a-beginners-guide-to-back-end-

development/. [Accessed: 08-Feb-2018].

[19] “Beautiful HTML5 JavaScript Charts | CanvasJS.” [Online]. Available:

https://canvasjs.com/. [Accessed: 08-Feb-2018].

[20] “PHP: Hypertext Preprocessor.” [Online]. Available: http://www.php.net/. [Accessed:

08-Feb-2018].

[21] “Introduction to Windows Service Applications | Microsoft Docs.” [Online]. Available:

https://docs.microsoft.com/en-us/dotnet/framework/windows-services/introduction-to-

windows-service-applications. [Accessed: 08-Feb-2018].

[22] “GitHub - cedoduarte/QtService.” [Online]. Available:

https://github.com/cedoduarte/QtService. [Accessed: 08-Feb-2018].

