

Design and development of a dynamic IO-Link based framework for

generic sensors

A Thesis

Submitted to the Faculty of Fachhochschule Aachen and Centro de Ingeniería

y Desarrolo Industrial

BY

Víctor Francisco Chávez Bermúdez

In Partial Fulfillment of the requirements

for the degree of Master of Science in Mechatronics

Santiago de Querétaro, Qro., Mexico, September 2018

Declaration

i

Declaration

I hereby declare that this thesis work has been conducted entirely on my own accord. The data,

the software employed and the information used have all been utilized in complete agreement

to the copyright rules of concerned establishments.

Any reproduction of this report or the data and research results contained in it, either

electronically or in publishing, may only be performed with the prior sanction of the University

of Applied Sciences (FH Aachen), Centro de Ingeniería y Desarrollo Industrial (CIDESI) and

myself, the author.

Víctor Francisco Chávez Bermúdez

Santiago de Queretaro, Qro., Mexico, September 2018

Acknowledgment

ii

Acknowledgment

I want to thank CONACYT for the financial support provided by their scholarship program

which allowed me to complete my studies in Mexico and Germany.

I would also like to express my sincere gratitude to Prof. Dr.-Ing. Jörg Wollert from the FH

Aachen for the great opportunity he gave me to collaborate and work with him. Likewise, for

the valuable support as my thesis advisor through the duration of the project.

Also, I’m grateful for the support brought by my colleagues in the laboratory of the FH Aachen.

In the same manner, I appreciate the feedback offered by Dr. Luciano Nava Balanzar as my

thesis advisor in Mexico.

Likewise, a special thanks to Brenda, Arantxa and Zurith, who were always there in spite of

being hundreds of kilometers away. Finally, to all my friends that have helped me in one way

or another through my whole stay in Germany, they have my deepest appreciation.

Dedication

iii

Dedication

To my parents, who have always been there for me. This chapter in life wouldn’t

have been completed without you. You taught me that through hard work,

perseverance and determination everything is possible. Your values and beliefs are

always in my heart no matter where I am.

List of Abbreviations

iv

List of Abbreviations

API Application Programming Interface

EEPROM Electrically Erasable Programmable Read-Only Memory

GUI Graphical User Interface

IODD IO-Link Device Description File

ISDU Indexed service data unit

LED Light-emitting diode

PCB Printed circuit board

PLC Programmable logic controller

XML Extended Markup Language

Abstract

v

Abstract

Since the conception of Industry 4.0, there have been different changes in the automation

industry. In this manner, sensors have required extra functionalities as transmission of

diagnostics and parametrization information. With the purpose of meeting these requirements a

standardized communication protocol known as IO-Link was created. IO-Link enables the

exchange of valuable information for diagnostics and parametrization of smart sensors in a plug-

and-play manner. The current methods for the development of IO-Link sensors are peculiar by

the manufacturer and require third-party tools.

This thesis proposes the design and development of a framework based on the IO-Link protocol

for generic sensors. The peculiarity of this framework relies on its simplicity and abstraction

layer which allows its integration into any type of application. It consists of a user interface for

the generation of sensor description files (IODD) and implementation of the IO-Link protocol

with the well-known Arduino framework. In addition, it has a hardware interface that acts as the

physical layer for the sensor. Finally, different examples are shown to demonstrate the

framework’s implementation and results.

Resumen

Con la incorporación de la Industria 4.0 ha habido distintos cambios en la automatización

industrial. Los sensores actualmente requieren funcionalidades adicionales como transmisión de

información de diagnóstico y parametrización. Con el propósito de cumplir estos requisitos, se

creó un protocolo de comunicación estandarizado conocido como IO-Link. IO-Link permite el

intercambio de información valiosa para el diagnóstico y la parametrización de sensores

inteligentes a través de una interfaz “Plug-and-Play”. Los métodos actuales para el desarrollo

de sensores IO-Link son específicos por fabricante y requieren herramientas de terceros.

Esta tesis propone el diseño y desarrollo de un marco basado en IO-Link para sensores

genéricos. La peculiaridad de este marco se basa en su simplicidad y capa de abstracción que

permite su integración en cualquier tipo de aplicación. Consiste de una interfaz de usuario para

la generación de archivos de descripción de sensores (IODD) y la implementación del protocolo

IO-Link con la conocida plataforma de Arduino. Además, cuenta con una interfaz de hardware

que actúa como capa física para el sensor. Finalmente, se muestran diferentes ejemplos para

demostrar la implementación y resultados finales.

Contents

vi

Contents

Introduction ... 1

Problem Statement ... 1

Justification .. 2

Objective .. 2

Scope .. 3

Requirements ... 3

Functional requirements ... 3

Non-functional requirements.. 3

Conceptual framework ... 3

General overview of IO-Link ... 3

IO-Link system ... 4

IO-Link messages ... 6

IO-Link device ... 7

I/O Device description (IODD) .. 8

IO-Link device profile .. 11

Methodology .. 13

Firmware design and development .. 13

Hardware requirements .. 13

Hardware limitations .. 16

Firmware development ... 18

Example application for firmware API .. 26

Firmware operation .. 27

IODD GUI generator design and development ... 28

Contents

vii

GUI Design .. 28

Requirements of the configuration file generator .. 30

Requirements of the IODD file generator .. 31

Requirements of save and load feature .. 32

Development of the GUI .. 32

Hardware design and development .. 46

Results ... 49

Joystick with LED control.. 49

LED strip controller ... 55

Distance sensor ... 62

Conclusions ... 69

Future work ... 70

Bibliography .. 71

Annexure 1 Thesis Proposal Outline ... 72

Annexure 2 Zulassung zur Master-Abschlussarbeit .. 76

Annexure 3 API for IO-Link firmware.. 79

Annexure 4 GUI user manual .. 86

List of Figures

viii

List of Figures

Figure 1 General overview of an IO-Link system in a fieldbus system [4]. 4

Figure 2 Three wire connection system ... 5

Figure 3 Communication channels in an IO-Link system [3] ... 6

Figure 4 Typical example of different M-sequences [4] ... 7

Figure 5 Structures and services of a Device [3] ... 8

Figure 6 O5D distance sensor .. 9

Figure 7 Snippet of IODD profile header description ... 9

Figure 8 Snippet of IODD device identity information ... 10

Figure 9 Snippet of IODD parameter description ... 10

Figure 10 Snippet of IODD Process data description ... 11

Figure 11 Typical object model for Device profiles [6] .. 12

Figure 12 IO-Link Object transfer example [3] .. 14

Figure 13 TIOL111 development kit [7] ... 16

Figure 14 Snippet of the Configuration file for the dynamic IO-Link firmware 19

Figure 15 Flowchart of function handler for process output data 20

Figure 16 Flowchart for loading parameter values .. 21

Figure 17 Microcontroller pinout functions .. 22

Figure 18 Modification to the boards.txt file of Arduino IDE software.............................. 23

Figure 19 Board selection in Arduino IDE .. 24

Figure 20 Class diagram of the firmware .. 25

Figure 21 Code snippet of variable declarations for the firmware 26

Figure 22 Firmware initialization .. 27

Figure 23 Firmware operation in main loop .. 27

Figure 24 Code snippet of user function for each cycle process ... 27

Figure 25 Requirements diagram for the GUI ... 28

Figure 26 Use case diagram for the GUI based on the requirements 29

Figure 27 Requirements for the Creation of the configuration file 30

Figure 28 Requirements for the creation of the IODD file ... 31

Figure 29 Requirements for Save and load feature task .. 32

file:///C:/Users/vkctl/sciebo/Masterarbeit/Thesis/Thesis.docx%23_Toc521397965
file:///C:/Users/vkctl/sciebo/Masterarbeit/Thesis/Thesis.docx%23_Toc521397966
file:///C:/Users/vkctl/sciebo/Masterarbeit/Thesis/Thesis.docx%23_Toc521397967
file:///C:/Users/vkctl/sciebo/Masterarbeit/Thesis/Thesis.docx%23_Toc521397968

List of Figures

ix

Figure 30 Main window of GUI .. 34

Figure 31 Qt Designer properties dialog ... 34

Figure 32 Flowchart for displaying errors when generating a file 36

Figure 33 Examples of error notifications ... 37

Figure 34 Image not supported error ... 37

Figure 35 Snippet of configuration file template (left) and final output (right) 38

Figure 36 Example of Sketch file for API reference ... 39

Figure 37 GUI Class diagram .. 40

Figure 38 Identification parameters tab for the potentiometer device................................. 41

Figure 39 Process data tab for potentiometer device ... 42

Figure 40 Custom Parameters tab for potentiometer device ... 42

Figure 41 File explorer showing the GUI folder output .. 43

Figure 42 Snippet of IODD file of the potentiometer device .. 44

Figure 43 Snippet of header file of the potentiometer device ... 44

Figure 44 Snippet of sketch example for the potentiometer device 45

Figure 45 File structure for final distribution of GUI .. 45

Figure 46 Electronic schematic of the transceiver module.. 47

Figure 47 Top layer PCB preview ... 48

Figure 48 Bottom layer PCB preview ... 48

Figure 49 3D preview of PCB design .. 48

Figure 50 Data flow for joystick example ... 49

Figure 51 Identification Parameters in GUI for example 1 ... 50

Figure 52 Process data Tab input for Joystick device ... 51

Figure 53 Custom parameters Tab input for joystick device... 51

Figure 54 Arduino sketch for Joystick device ... 52

Figure 55 Validation of parameters for joystick device .. 53

Figure 56 Changing custom parameter for joystick device ... 53

Figure 57 Snippet of PLC program for joystick device .. 54

Figure 58 Reading axes information from PLC GUI .. 55

Figure 59 Data flow of LED strip controller ... 55

Figure 60 LED strip description in GUI .. 57

file:///C:/Users/vkctl/sciebo/Masterarbeit/Thesis/Thesis.docx%23_Toc521397998

List of Figures

x

Figure 61 Process data tab for LED strip .. 57

Figure 62 Custom parameters tab for LED strip ... 58

Figure 63 Arduino sketch for LED strip .. 59

Figure 64 Reading and writing parameters to led strip device .. 60

Figure 65 PLC Program for the control of the LED strip .. 61

Figure 66 GUI for PLC program of LED strip control.. 61

Figure 67 Data flow for distance sensor device .. 62

Figure 68 GUI Identification parameters for distance sensor.. 63

Figure 69 GUI Process data tab for distance sensor .. 63

Figure 70 GUI Event tab for distance sensor .. 64

Figure 71 Arduino sketch for distance sensor ... 65

Figure 72 Test of IO-Link events triggered by the distance sensor..................................... 66

Figure 73 Reading IO-Link parameters of the distance sensor ... 67

Figure 74 WAGO PLC program for the distance sensor .. 67

Figure 75 GUI for PLC program of the distance sensor.. 68

Figure 76 Main window of GUI .. 87

Figure 77 Identification parameters tab ... 88

Figure 78 Process data Tab .. 91

Figure 79 Custom parameters input for the user in GUI ... 92

Figure 80 Events tab .. 93

Figure 81 Custom events tab ... 94

file:///C:/Users/vkctl/sciebo/Masterarbeit/Thesis/Thesis.docx%23_Toc521398007
file:///C:/Users/vkctl/sciebo/Masterarbeit/Thesis/Thesis.docx%23_Toc521398015

List of Tables

xi

List of Tables

Table 1 Microcontroller development kits comparison for IO-Link firmware 15

Table 2 IO-Link transceivers comparison ... 16

Table 3 Rough estimations of compiled firmware size ... 24

Table 4 Use case description of GUI ... 30

Table 5 IO-Link potentiometer description ... 41

Table 6 BOM of electronic schematic ... 47

Table 7 Joystick with LED control device description.. 50

Table 8 LED strip controller device description ... 56

Table 9 Distance sensor device description ... 62

Table 10 General functions of GUI ... 88

Table 11 Parameter identification Tab Options ... 90

Table 12 Process data Tab options .. 92

Table 13 Custom parameters tab options .. 93

Table 14 Events tab options .. 94

Table 15 Custom events tab options .. 94

Introduction

1

Introduction

Over the years, the advancements in manufacturing and information technology have brought up

new concepts into the industrial sector. One of these novel concepts is the well-known Industry 4.0

revolution. It was originated in Germany with the purpose of implementing new technology

strategies as part of their economic policies in 2011 [1].

Industry 4.0 is composed of the integration of different technologies, such as cloud systems,

embedded systems, data analytics, adaptive robotics, cybersecurity and sensors [2]. In that matter,

it makes sense to have as much information as possible to handle it and involve a full diagnosable

and deterministic system.

To this extent, sensors, which normally just carry a binary or analog signal require more flexibility

with the data they transmit e.g. diagnostic information, parametrization, and complex data

structures. This necessity resulted in the creation of the standardized communication interface

known as IO-Link under the name of Single-drop digital communication interface for small sensors

and actuators (SDCI) as part of the norm IEC 61131-9.

IO-Link incorporates the data flexibility required for Industry 4.0 with the transmission of

diagnostics data, parametrization of the device and organized data structures. Hence it offers

sensors troubleshooting capabilities, minimal risk of failure and remote diagnostics, and leads them

to the concept of “smart sensors”.

Problem Statement

At the FH Aachen, there exists a great interest on the development of automation projects. There

is a laboratory which develops projects in the frame of Industry 4.0. As a result, their projects could

benefit from the use of the IO-Link communication system for improvements in performance and

technology. Unfortunately, there aren´t tools that provide a low-cost and open-source framework

for the development of prototyping IO-Link solutions. The currently available options are third-

party, which have license restrictions and do not offer a complete integrated solution. Hence, the

workflow for the implementation of the IO-Link protocol is not straightforward and does not offer

Introduction

2

one unique methodology for the development of prototypes and tests on the fly. Furthermore, an

IO-Link sensor requires the use of a so-called IODD file. This file is unique per sensor, so a tool

that can intuitively create these files is required.

Justification

This thesis proposes a solution to facilitate the implementation of the IO-Link communication

protocol for generic sensors through the design of a dynamic framework. This will help decrease

the time of design and implementation of generic sensors with the IO-Link protocol.

In addition, this approach also creates an abstraction layer for users to ease up the utilization of the

IO-Link communication protocol and focus more on the design and development of their

applications.

Furthermore, a framework capable of being customizable implies that virtually any device

application can be implemented within the IO-Link protocol. Consequently, it facilitates the

integration of more devices to the latest automation industry standards.

Objective

To design and develop an IO-Link based framework composed of a dynamic firmware and user

interface for generation of IODD files.

Introduction

3

Scope

The aim of this work is to design and develop an IO-Link framework that can serve as a low-cost

developing environment for prototype applications. Consequently, this project will focus on the

design and development of the firmware that manages the IO-Link protocol, the hardware platform

that will embed the firmware and the software for the generation of IODD files.

Requirements

Functional requirements

• Custom firmware for the IO-Link communication protocol.

• Low-cost hardware solution for the embedded IO-Link firmware.

• Software utility for the generation of IODD files.

Non-functional requirements

• IO-Link communication firmware must support the core functionalities of the IO-Link

specification described in [3].

• Capability of firmware to change core parameters of the IO-Link specification (e.g. data

size, default values).

• IODD file generator shall be fully customizable for the end-user.

• IODD file generator must be developed as a stand-alone software.

Conceptual framework

General overview of IO-Link

The IO-Link protocol was first presented at the Hannover Industrial fair in 2006. The aim was to

develop a universal communication interface that transmitted analog and digital signals, and to

exchange device parameters with overlying controllers in a system [4].

Introduction

4

The first complete specification for IO-Link products was released in 2008 as version 1.0. Figure

1 shows an overview of how the implementation of an IO-Link system looks, where the information

is sent to a gateway (e.g. PLC) which then is distributed through a fieldbus interface.

An IO-Link system consists of a “master” which retrieves all the available information from the

devices connected to it (e.g. sensors). In turn, this information can be linked to a gateway (e.g.

PLC) connected to a fieldbus interface.

Figure 1 General overview of an IO-Link system in a fieldbus system [4].

IO-Link system

“IO-Link is the first I/O technology for communicating with sensors and actuators to be adopted

as an international standard (IEC 61131-9).” [5]. It is a point-to-point communication that consists

of the following elements.

• IO-Link master

• IO-Link device

For each IO-Link system, there exists one IO-Link master which can connect with an automation

system and with one or more IO-Link devices. The physical connection between device and master

Introduction

5

is done through a 3-wire connection as seen in Figure 2. The L+ wire is used as a 24 V power

supply, L- as ground and C/Q for the communication signal.

Figure 2 Three wire connection system

Two different types of data are sent between an IO-Link master and device: process data (sent

cyclically) or on-request data (sent acyclically). This data is structured into three communication

channels:

• Operational data

This data is cyclically transmitted from the device to the master (process input data) and

vice versa (process output data), depending on the device-specific technology, the size may

vary but cannot be greater than 32 bytes.

• Configuration/maintenance

This data is transmitted acyclically and serves as a mean to read and write parameters from

and to the device.

• Events

This channel transmits diagnostic information from the device in an acyclic manner

L+

Master Device

L-

C/Q

Introduction

6

Figure 3 Communication channels in an IO-Link system [3]

IO-Link messages

The IO-Link communication is always started from the master and ends with the response of a

device. The sequence of two messages between a master and device is called an M-sequence. These

sequences are sent in a cyclical manner, where the minimum cyclic time supported depends on the

device.

The first byte that an IO-Link master sends in a UART frame is called an M-sequence control code

(MC). This data indicates to the device if a read or write operation is going to be performed, the

communication channel to be used and the address where the information is sent. Then if the IO-

Link device is set to “operation” mode the master will send process output data (if supported by

the device), and finally, if a write operation is indicated from the MC it will send acyclic data (on-

request data).

The response of the device will start with on-request data if the MC requested a read operation, if

not it will send process data (if “operation” mode is set) and finally a checksum byte to validate

the data. An example of how a whole m-sequence may look like is shown in Figure 4.

Introduction

7

Figure 4 Typical example of different M-sequences [4]

IO-Link device

The IO-Link protocol for a device is structured in layers that are in charge of specific tasks for the

correct operation of the system. These layers are structured as follows:

• Application Layer: Supervises and controls the read and write operations of the device.

• Data Layer: Redirects the current received data to the corresponding communication

channel.

• Physical Layer: Interaction between the device’s software layer and the external physical

layer.

These layers (see Figure 5) communicate internally to process data and command operations. The

operations of the device are handled by the so-called device applications. The device applications

are divided as follows:

• Parameter Manager: Checks the validity and range of parameters that are written to the

device.

Introduction

8

• Data storage: If enabled, it stores the specified parameters in the non-volatile memory of

the device.

• Event Dispatcher: Used to signal events that are originated by the device.

• Process data Exchange: In charge of the transmission and reception of process data from

the master to device and vice-versa.

Figure 5 Structures and services of a Device [3]

I/O Device description (IODD)

The IODD is a mandatory XML file encoded in “UTF-8”, that establishes all the required

parameters for the communication between a device and a master. It also defines the parameters

that can be changed by a user and modified via an IODD tool, which is usually contained in the

software utility of an IO-Link master.

As an example, the IODD file from the distance sensor O5D from IFM electronics is shown (see

Figure 6). Figure 7 shows the first section of the IODD file, which contains the general description

of the file, which includes the file version of the vendor, and the IO-Link protocol version.

The next section of this IODD file contains the specific device information from the sensor, e.g.

vendor name, device name (see Figure 8). Consequently, a device may be parameterized, Figure 9

shows a snippet as how the data type, size, and name are described. Finally, the process data

Introduction

9

structure is shown in Figure 10, this part is structured in length and type of each process variable

and includes a descriptive name.

Figure 6 O5D distance sensor

Figure 7 Snippet of IODD profile header description

Introduction

10

Figure 8 Snippet of IODD device identity information

Figure 9 Snippet of IODD parameter description

Introduction

11

Figure 10 Snippet of IODD Process data description

IO-Link device profile

Sensors in automation systems send data related to measurements done in the environment they

interact. Nowadays with the inclusion of Industry 4.0 to these systems, this information is not

enough. This has required adding functions for identification, diagnosis, and parametrization. With

the purpose of categorizing these features, the IO-Link consortium encloses these common

functions into profiles.

These profiles establish functions, data structures, and parameters that an IO-Link device may have.

Figure 11 shows an example of how the structure of an IO-Link device with a device profile may

look.

Each device can have a profile characteristic, which contains up to 32 entries [6]. These entries

consist of “Function classes” (i.e. functionalities a device may support) and/or device profile

identifiers which can contain a set of function classes.

Introduction

12

Figure 11 Typical object model for Device profiles [6]

Methodology

13

Methodology

The development of the project was done in successive steps that were integrated together. In the

first section the design and development of the IO-Link communication firmware are presented.

The firmware´s main characteristics and limitations were established, and the general structure of

how it functions is displayed. Furthermore, a short example that explains the workflow of the

firmware’s operation is shown.

Then the design and development of the IODD file generator are discussed. This section shows its

design requirements, external dependencies that were needed and a practical example on how it

can be used to create IODD files for generic sensors.

Afterward, the design and development of the hardware for the framework is presented. It describes

the design of the hardware layer for the communication protocol and development of a prototype

PCB.

In addition, the implementation of the framework is presented with the purpose of creating a proof

of concept. This section shows different examples to create an IODD file, a program for testing the

IO-Link device with the firmware API, and its interaction with an IO-Link master. Finally, in the

last section a review of the work and conclusions with an outlook for future improvements is

discussed.

Firmware design and development

Hardware requirements

The firmware is contained in an embedded processor that is the backbone of the whole system. For

this reason, it is necessary to analyze the hardware requirements for it.

Firstly, an IO-Link device can have either parameters for its replacement or extra functionalities,

which the user can change through an IODD tool. These parameters can have either read-only

Methodology

14

access or read-write access. In other words, the system needs to have volatile and non-volatile

memory support.

Secondly, the IO-Link protocol is a point-to-point communication based on a universal

asynchronous receiver-transmitter (UART). According to the specifications on [3] the hardware

shall have at least a half-duplex UART with support for either 4.8 kbit/s, 34.8 kbit/s or 230.4 kbit/s.

Furthermore, the IO-Link communication protocol consists of an object-like structure with internal

and external services (see Figure 12). Hence, it is appropriate that the system can support an object-

oriented programming (OOP) approach.

As a short summary, the framework shall meet the following hardware requirements:

• Volatile/Non-volatile memory support

• Half-duplex UART (4.8 kbit/s, 34.8 kbit/s or 230.4 kbit/s)

• OOP support

Analyzing the aforementioned requirements, a microcontroller results in the best option since

nowadays they include all these features. Since the main purpose of the project is to have a low-

cost open-source tool for the development of prototypes, different microcontrollers were compared

to select the most suitable (Table 1).

Figure 12 IO-Link Object transfer example [3]

Methodology

15

Manufacturer
Atmel (Arduino

Nano)

Texas Instruments

(Launchpad

MSP430)

STMicroelectronics

(STM32 Discovery)

Microcontroller Line
Atmega328p (8-

Bit)

MSP430FR5994

(16-Bit)
STM32F103x4 (32-Bit)

Program Memory

size (KB)
32 264 32

SRAM (KB) 2 8 10

Non-volatile Memory

(KB)
1024 256 Emulated (variable)

Max. Clock freq.

(MHz)
16 16 72

Cost (USD) $4.00 $17.64 $11.36

Table 1 Microcontroller development kits comparison for IO-Link firmware

As seen from the previous comparison table, the biggest difference between the distinct products

is, in fact, the price. The Texas Instruments and STMicroelectronics option offer a good amount of

resources but their market price is roughly the triple and double respectively, in comparison to the

Atmel alternative.

Hence, the Arduino Nano development kit was selected for the implementation of the framework.

It has the appropriate resources for the firmware implementation and it is low-cost.

The next step is selecting an IO-Link transceiver to interface the UART from the microcontroller

to the IO-Link physical layer. There are several options in the market that provide transceivers; the

characteristics of three different vendors are described in Table 2.

Vendor Maxim Integrated STMicroelectronics Texas Instruments

Transceiver MAX14827 L6362A TIOL111-5

Control

Interface

SPI (serial programming

interface)/ Digital Pin
Digital Pin Digital Pin

Pins 24 12 10

Size 4 x 4 mm 3mm x 3mm 2.5 x 3.0 mm

Methodology

16

Output voltage
5V and 3.3V @50mA to

250mA
5V or 3.3V @10mA 5V @50mA to 350mA

Protection

functions

• Reverse polarity

• Thermal protection

• Reverse polarity

• Overload with cut-off function.

• Thermal protection

• Surge protection

• GND and VCC open wire

• Reverse Polarity

• EMC Protection

• Surge protection

• Thermal Protection

Table 2 IO-Link transceivers comparison

The selection of the transceiver was based upon the chip that could offer a minimal design setup

and at least 200 mA of output current to power up the microcontroller and its sensor application.

The MAX14827 falls short on simplicity and the L6362A does not provide enough output current.

Therefore, the TIOL11-5 (see Figure 13) was the best option for this case since it has the lowest

number of pins, enough output current and in addition integrated protection.

Figure 13 TIOL111 development kit [7]

Hardware limitations

Because the design of the firmware is dependent on the characteristics of the embedded processor,

it is necessary to know the hardware limitations of the microcontroller to delimit the capabilities

of the firmware.

Methodology

17

In general, memory allocations and data assignment are among the main challenges when working

with embedded systems [8]. To simplify this problem all the objects and variables were allocated

in memory at compile time (static memory allocation).

As mentioned before, the device can include a data storage mechanism, which parametrizes the

device for any eventual replacement in case of failure. The atmega328p includes an electrically

erasable programmable read-only memory (EEPROM) that can serve this purpose.

This EEPROM takes 3.3 milliseconds for writing a bye into it. As a result, the number of

parameters a user may add to the data storage mechanism shall be limited since the time it takes

for writing operation is shared with the specific device application (sensor sampling, filters, etc.)

and can block the user’s main program.

Finally, the maximum baud rate was calculated in order to know which COM mode (described in

[3]) would be used. The UART speed of the atmega328p is configured by initializing two 8-bit

registers which are part of a 16-bit value. This value can be calculated depending on the desired

UART speed with the following formula:

𝑈𝐵𝐵𝑅0 =
𝑓𝑜𝑠𝑐

16 ∗ 𝐵𝐴𝑈𝐷
− 1

Where

𝑈𝐵𝐵𝑅0 : 16 bit value to calculate

𝑓𝑜𝑠𝑐: Atmega328p oscillator frequency (16 MHz for the Arduino framework)

𝐵𝐴𝑈𝐷: Desired baud rate

According to table 24-2 in [9], it is recommended that the maximum baud rate error for 8 bits of

data and 1 parity bit (IO-Link specification) should be ±1.5%.

Calculating UBBR0 for a baud rate of 230.4 kbit/s (COM3) gives a value of 3.34. Since the

microcontroller only accepts integer values the calculated value is rounded to 3. Calculating the

physical baud rate with this value is 250 kbit/s, which gives a baud rate error of 8.5 %. This means

that COM3 mode is not possible to use.

Methodology

18

The next speed is 38.4 kbit/s (COM2), calculating UBBR0 gives a value of 25.04, which is rounded

to 25. Calculating the physical baud rate gives a speed rate of 38.462 kbit/s. The baud rate error of

this mode is 0.2%, which is inside the range tolerance for correct operation of the device. Therefore,

COM2 was used.

Firmware development

As mentioned before, an IO-Link device consists of a series of parameters, used for storing device

functionalities and data. One of the main functionalities the firmware must have is a way of

accessing these parameters with a specific index and sub-index when the IO-Link master requests

them.

Since the parameters can be accessed in any order, each time the IO-Link master requests a write

or read action to any parameter the IO-Link device must search in its memory this parameter.

To simplify this process a lookup table with the location of the parameters in the static memory

was used. The values of the lookup table are not always sorted since the user can change them,

therefore a linear search method is used for finding values in the lookup table [10].

Furthermore, the design of the firmware can be modified accordingly so the final user can change

configuration parameters of the IO-Link protocol. Some of these modifiable parameters are:

• Size of process input data

• Size of process output data

• Size and initial value of ISDU Parameters

• Data storage size

These modifiable parameters are specified in preprocessor directives in a header file, which is read

at compile time of the firmware (see Figure 14), which allows changing functionalities of the

system depending on user requirements. Since the manual modification of a header file is not

intuitive and time-consuming, a graphical user interface (GUI) was developed to ease up the

process, which is covered in an upcoming section.

Methodology

19

Figure 14 Snippet of the Configuration file for the dynamic IO-Link firmware

Additionally, the IO-Link device needs to send and receive process data once it has established

communication with the IO-Link master. To update the process input data a method for handling

the synchronization of each new message was implemented following the IO-Link interface

recommendations.

The IO-Link protocol notifies the application layer each time a new process output data message

has been received, this notification is used to update the sensor data through a function handler

which calls the user’s device specific function for reading and sending the new sampled data from

the sensor (see Figure 15).

Methodology

20

IO-Link protocol state machines

Device communication with master
established

New Process data cycle

Yes

Update Process data Input (Sensor sampling)

Yes

No

No

Figure 15 Flowchart of function handler for process output data

Another consideration for the data storage mechanism is the dynamic addition of custom

parameters saved on the non-volatile memory. Each new parameter is saved in the preferred index

range as described in [3] where each new custom parameter is added accordingly.

In the case the data storage mechanism is enabled, the parameters are initialized for the first time

with default values and in any subsequent restart, these values are loaded from the EEPROM.

Hence, the user shall indicate in the microcontroller if it’s the first time the firmware will be used

by writing a value of 1 to a specific address in the EEPROM which acts as a flag for the system

(see Figure 16)

Methodology

21

Read EEPROM Flag
Value

Value==1

Load defualt Values

Write 0 to Flag Value in
EEPROM

Write default Values in
EEPROM

Start Framework

Yes

Load values from
EEPROM

No

Figure 16 Flowchart for loading parameter values

Finally, to interact with the TIOL111-5 transceiver, it was required to use the external interruption

functionality of the atmega328p to detect when the IO-Link master wants to communicate with the

device through a wake-up pulse which is described in [3].

In addition, a digital output was used to control the TIOL111-5 transceiver “Enable” pin for either

reading or sending data since the IO-Link protocol works as a half-duplex UART. As a summary

Figure 17 shows the microcontroller ports that were used for the firmware.

Methodology

22

Figure 17 Microcontroller pinout functions

Additionally, as described in [11], it is quite useful to have measurement results from different

sensors in a uniform manner. This brought the addition of the so-called “smart sensor profiles”

which are device profiles specifically designated for sensors that transmit more type of information.

The use of these profiles can speed up the inclusion of common functionalities for the development

of IO-Link. For this reason, it was considered that the firmware should support the use of the next

smart sensor profiles:

• Fixed switching sensors (FSS)

• Digital measuring sensors (DMS)

• Generic Sensors

As aforementioned, the IO-Link software library works with a configuration file which the user

may change. The easiest approach is that this file should be contained in the folder where the user’s

Methodology

23

main program is located. Since it is used with the Arduino framework this configuration file should

be inside the folder of the so-called “sketch” file.

The compilation options of the Arduino framework must be modified so it can compile this external

header file from the sketch folder of the user. To achieve this, the file “board.txt” inside the Arduino

IDE software installation has to be modified (see Figure 18) so it includes the configuration file as

part of the compilation of the software library.

Once this modification is made, from the Arduino IDE the user only needs to change the “board”

for the new one that has been added through the menu bar Tools\Board\Arduino Nano (IO-Link)

(see Figure 19).

Figure 18 Modification to the boards.txt file of Arduino IDE software

Methodology

24

Figure 19 Board selection in Arduino IDE

Finally, the firmware library relies on having an object device in charge of managing all the state

machines that are in charge of the communication layers and informing of the relevant flags for the

user’s specific application. Figure 20, shows a Class Diagram that gives an overview of the

relations between the communication and process layers of the IO-Link device for the framework.

As a final remark, the firmware was compiled with two general configurations to estimate roughly

its size, the results are shown in Table 3.

Firmware Configuration

Flash

Memory

(KB)

SRAM

(KB)

• No data storage

• No custom parameters

• No device profile

9.39 0.78

• Data storage

• Custom parameters

• Smart sensor profile

13.30 0.98

Table 3 Rough estimations of compiled firmware size

Methodology

25

Figure 20 Class diagram of the firmware

cl
as

s C
la

ss
 M

od
el

IO
Li

nk
_e

ve
nt

M
od

e

si

ng
le

Sh
ot

 =
 1

ap

pe
ar

s

di
sa

pp
ea

rs

IO
Li

nk
_e

ve
nt

Ty
pe

no

ti
fic

at
io

n
=

1

w
ar

ni
ng

er

ro
r

IO
Li

nk
_e

ve
nt

+
ev

en
tC

od
e:

 u
in

t1
6_

t
+

m
od

e:
 IO

Li
nk

_e
ve

nt
M

od
e

+
ty

pe
: I

O
Li

nk
_e

ve
nt

Ty
pe

io
Li

nk
_A

L

+
AL

_N
ew

O
ut

pu
t:

 b
oo

l =
 fa

ls
e

+
AL

_P
D

Cy
cl

e:
 b

oo
l =

 fa
ls

e
+

D
L:

 io
Li

nk
_D

L*
+

is
PD

O
ut

Va
lid

: b
oo

l =
 fa

ls
e

+
PM

: i
oL

in
k_

PM
*

+
SM

: i
oL

in
k_

SM
*

-
AL

_A
bo

rt
():

 v
oi

d
+

AL
_C

on
tr

ol
(u

in
t8

_t
):

vo
id

+
AL

_E
ve

nt
(IO

Li
nk

_e
ve

nt
*,

 u
in

t8
_t

):
bo

ol
-

AL
_E

ve
nt

_S
ta

te
M

ac
hi

ne
():

 v
oi

d
+

AL
_G

et
O

ut
pu

t(
):

ui
nt

8_
t *

-
AL

_O
D

_S
ta

te
M

ac
hi

ne
():

 v
oi

d
-

AL
_R

ea
d(

ui
nt

8_
t,

 u
in

t8
_t

):
vo

id
+

AL
_S

et
In

pu
t(

ui
nt

8_
t*

):
vo

id
-

AL
_W

ri
te

(u
in

t8
_t

, u
in

t8
_t

, u
in

t8
_t

*)
: v

oi
d

-
is

CH
KP

D
U

Va
lid

():
 b

oo
l

-
re

ad
W

ri
te

O
D

(u
in

t1
6_

t,
 u

in
t8

_t
, u

in
t8

_t
*,

 u
in

t8
_t

, u
in

t8
_t

):
vo

id
-

se
tu

pC
la

ss
Po

in
te

rs
(io

Li
nk

_D
L*

, i
oL

in
k_

PM
*,

 io
Li

nk
_S

M
*)

: v
oi

d
-

su
cc

es
sf

ul
lR

ea
dR

es
po

ns
e(

):
vo

id

io
_l

in
k_

de
vi

ce

+
ad

dP
ar

am
et

er
(u

in
t8

_t
*,

 u
in

t8
_t

, u
in

t8
_t

, b
oo

l,
bo

ol
):

bo
ol

+
be

gi
n(

):
vo

id
+

co
nt

ro
lP

D
In

(b
oo

l):
 v

oi
d

+
ge

tP
D

O
ut

(u
in

t8
_t

*)
: v

oi
d

+
in

it
D

ev
ic

e(
vo

id
, u

in
t8

_t
*)

: v
oi

d
+

in
it

D
ev

ic
e(

vo
id

):
vo

id
+

io
Li

nk
_T

as
k(

):
vo

id
+

is
CO

M
Lo

st
():

 b
oo

l
+

is
PD

O
ut

Va
lid

():
 b

oo
l

+
is

Se
ns

or
D

is
ab

le
d(

):
bo

ol
+

se
tD

ev
ic

eS
ta

tu
s(

de
vi

ce
St

at
us

Pa
ra

m
et

er
s)

: v
oi

d
+

se
tE

ve
nt

(s
tr

uc
t I

O
Li

nk
_e

ve
nt

*,
 u

in
t8

_t
):

bo
ol

+
se

tS
SC

(u
in

t6
4_

t,
 u

in
t8

_t
):

vo
id

+
up

da
te

D
M

SM
ea

su
re

m
en

t(
in

t1
6_

t,
 u

in
t8

_t
):

vo
id

io
Li

nk
_D

L

-
ca

lc
ul

at
eC

he
ck

su
m

6(
ui

nt
8_

t*
, u

in
t8

_t
, u

in
t8

_t
, b

oo
l):

 u
in

t8
_t

-
ca

lc
ul

at
eM

ax
Cy

cl
eT

im
e(

):
vo

id
-

de
ac

ti
va

te
H

an
dl

er
s(

):
vo

id
-

di
sa

bl
eT

im
er

_U
AR

T(
):

vo
id

-
D

L_
cm

dH
an

dl
er

_S
ta

te
M

ac
hi

ne
():

 v
oi

d
-

D
L_

Co
nt

ro
l(u

in
t8

_t
):

vo
id

-
D

L_
Ev

en
t(

ui
nt

8_
t)

: v
oi

d
-

D
L_

ev
en

tH
an

dl
er

_S
ta

te
M

ac
hi

ne
():

 v
oi

d
-

D
L_

IS
D

U
Ab

or
t(

):
vo

id
-

D
L_

IS
D

U
H

an
dl

er
_S

ta
te

M
ac

hi
ne

():
 v

oi
d

-
D

L_
IS

D
U

Tr
an

sp
or

t(
ui

nt
16

_t
, u

in
t8

_t
, u

in
t8

_t
*,

 u
in

t8
_t

, u
in

t8
_t

):
vo

id
-

D
L_

M
od

e(
D

L_
m

od
es

):
vo

id
-

D
L_

m
od

eH
an

dl
er

_S
ta

te
M

ac
hi

ne
():

 v
oi

d
-

D
L_

m
sg

H
an

dl
er

_S
ta

te
M

ac
hi

ne
():

 v
oi

d
-

D
L_

PD
Cy

cl
e(

):
vo

id
-

D
L_

PD
H

an
dl

er
_S

ta
te

M
ac

hi
ne

():
 v

oi
d

-
D

L_
PD

In
pu

tU
pd

at
e(

ui
nt

8_
t*

):
vo

id
-

D
L_

PD
O

ut
pu

tT
ra

ns
po

rt
(u

in
t8

_t
*)

: v
oi

d
-

D
L_

Re
ad

(u
in

t8
_t

):
ui

nt
8_

t
-

D
L_

Re
ad

Pa
ra

m
(u

in
t8

_t
):

vo
id

-
D

L_
W

ri
te

(u
in

t8
_t

, u
in

t8
_t

):
ui

nt
8_

t
-

D
L_

W
ri

te
Pa

ra
m

(u
in

t8
_t

, u
in

t8
_t

):
vo

id
-

Ev
en

tF
la

g(
bo

ol
):

vo
id

-
is

Ch
ec

ks
um

Va
lid

(u
in

t8
_t

*,
 u

in
t8

_t
, u

in
t8

_t
):

bo
ol

-
M

H
In

fo
(M

H
St

at
e)

: v
oi

d
-

O
D

(u
in

t8
_t

, u
in

t8
_t

, u
in

t8
_t

, u
in

t8
_t

):
vo

id
-

on
Re

qH
an

dl
er

St
at

eM
ac

hi
ne

():
 v

oi
d

-
PD

():
 v

oi
d

-
PD

In
St

at
us

(b
oo

l):
 v

oi
d

-
se

nd
Se

ri
al

D
at

a(
ui

nt
8_

t*
, u

in
t8

_t
):

vo
id

-
se

nd
U

AR
TF

ra
m

e(
ui

nt
8_

t)
: v

oi
d

-
se

tu
pC

la
ss

Po
in

te
rs

(io
Li

nk
_A

L*
, i

oL
in

k_
SM

*,
 io

Li
nk

_P
H

Y*
, i

oL
in

k_
PM

*)
: v

oi
d

-
se

tu
pT

im
er

_U
AR

T(
):

vo
id

-
up

da
te

Sy
st

em
Co

m
m

an
d(

):
vo

id

«f
ri

en
d»

-
TI

M
ER

1_
CO

M
PA

_v
ec

t(
):

vo
id

-
U

SA
RT

_R
X_

ve
ct

():
 v

oi
d

io
Li

nk
_D

L:
:

D
L_

IS
D

U
Tr

an
sp

or
t_

in
d

+
da

ta
: u

in
t8

_t
*

+
da

ta
Le

ng
th

: u
in

t8
_t

+
di

re
ct

io
n:

 u
in

t8
_t

+
in

de
x:

 u
in

t1
6_

t
+

su
bi

nd
ex

: u
in

t8
_t

W
ri

te
Pa

ra
m

_i
nd

+
ad

dr
es

s:
 u

in
t8

_t
+

va
lu

e:
 u

in
t8

_t

io
Li

nk
_D

L:
:

IS
D

U
Tr

an
sp

or
t_

rs
p

+
da

ta
: u

in
t8

_t
*

+
er

ro
rC

od
e:

 u
in

t1
6_

t
+

i_
se

rv
ic

e:
 u

in
t8

_t
+

le
ng

th
: u

in
t1

6_
t

io
Li

nk
_D

L:
:P

D
m

sg

+
in

: u
in

t8
_t

 ([
SI

ZE
_P

D
IN

])
+

ou
t:

 u
in

t8
_t

 ([
SI

ZE
_P

D
O

U
T]

)

io
Li

nk
_D

L:
:O

D
in

d

+
Ad

dr
es

sC
tr

l:
ui

nt
8_

t
+

Co
m

Ch
an

ne
l:

ui
nt

8_
t

+
le

ng
th

: u
in

t8
_t

+
RW

D
ir

ec
ti

on
: u

in
t8

_t

io
Li

nk
_D

L:
:e

ve
nt

M
em

or
y

+
ev

en
tD

at
a:

 e
ve

nt
D

at
a

([m
ax

Ev
en

ts
])

+
St

at
us

Co
de

: u
in

t8
_t

io
Li

nk
_D

L:
:e

ve
nt

D
at

a

+
ev

en
tC

od
eL

SB
: u

in
t8

_t
+

ev
en

tC
od

eM
SB

: u
in

t8
_t

+
ev

en
tQ

ua
lif

ie
r:

 u
in

t8
_t

io
Li

nk
_D

S

+
AL

: i
oL

in
k_

AL
*

-
D

S_
Pa

rU
pl

oa
dr

eq
: b

oo
l =

 fa
ls

e
-

D
S_

st
at

e:
 S

M
_D

S
=

D
SS

ta
te

Ch
ec

k_
0

+
SM

: i
oL

in
k_

SM
*

-
D

S_
St

at
eM

ac
hi

ne
():

 v
oi

d
-

ge
tI

nd
ex

D
S(

ui
nt

8_
t)

: u
in

t8
_t

-
se

tu
pC

la
ss

Po
in

te
rs

(io
Li

nk
_A

L*
, i

oL
in

k_
SM

*)
: v

oi
d

io
Li

nk
_P

H
Y

-
PL

_W
ak

eU
p_

ac
ti

va
te

d:
 v

ol
at

ile
 b

oo
l

-
in

it
_u

ar
tF

ra
m

eT
im

er
():

 v
oi

d
-

PL
_S

et
M

od
e(

in
t)

: v
oi

d
-

PL
_T

ra
ns

fe
r(

ui
nt

8_
t)

: v
oi

d
-

PL
_W

ak
eU

p(
):

vo
id

-
re

ci
ev

eT
IO

LD
at

a(
bo

ol
):

vo
id

«f
ri

en
d»

-
IN

T0
_v

ec
t(

):
vo

id

io
Li

nk
_P

M

-
ne

w
Co

m
m

an
d:

 b
oo

l =
 fa

ls
e

-
ne

w
Pa

ra
m

et
er

: b
oo

l =
 fa

ls
e

-
ne

w
Se

tP
ar

am
et

er
s:

 b
oo

l =
 fa

ls
e

-
pa

ra
m

et
er

Bu
ffe

r:
 u

in
t8

_t
 ([

D
AT

A_
ST

O
RA

G
E_

SI
ZE

])
-

pa
ra

m
et

er
Bu

ffe
rC

ou
nt

: u
in

t8
_t

 =
 0

-
pa

ra
m

et
er

Co
un

tD
S:

 u
in

t8
_t

 =
 0

-
pa

ra
m

et
er

In
de

xB
uf

fe
r:

 u
in

t8
_t

 ([
in

de
xL

is
tS

iz
e]

)
-

pa
ra

m
et

er
Le

ng
th

D
S:

 u
in

t8
_t

 ([
in

de
xL

is
tS

iz
e]

)
-

pa
ra

m
et

er
St

ar
t:

 u
in

t8
_t

 ([
in

de
xL

is
tS

iz
e]

)
-

pa
ra

m
et

er
Su

bi
nd

ex
Bu

ffe
r:

 u
in

t8
_t

 ([
in

de
xL

is
tS

iz
e]

)
-

PM
_s

ta
te

: S
M

_P
M

 =
 P

M
_I

dl
e_

0
-

si
ng

le
Pa

ra
m

et
er

: b
oo

l =
 fa

ls
e

-
st

or
eR

eq
ue

st
: b

oo
l =

 fa
ls

e
-

sy
st

em
Cm

dB
re

ak
: b

oo
l =

 fa
ls

e
-

sy
st

em
Cm

dD
ow

nl
oa

dE
nd

: b
oo

l =
 fa

ls
e

-
sy

st
em

Cm
dD

ow
nl

oa
dS

ta
rt

: b
oo

l =
 fa

ls
e

-
sy

st
em

Cm
dD

ow
nl

oa
dS

to
re

: b
oo

l =
 fa

ls
e

-
sy

st
em

Cm
dU

pl
oa

dE
nd

: b
oo

l =
 fa

ls
e

-
sy

st
em

Cm
dU

pl
oa

dS
ta

rt
: b

oo
l =

 fa
ls

e
-

w
ri

te
Ee

pr
om

: b
oo

l =
 fa

ls
e

-
ar

eN
ew

Pa
ra

m
et

er
sD

iff
er

en
t(

):
bo

ol
-

ch
ec

kP
ar

am
et

er
(u

in
t1

6_
t,

 u
in

t8
_t

, u
in

t8
_t

*,
 u

in
t8

_t
):

ui
nt

16
_t

-
is

In
de

xA
lr

ea
dy

In
Bu

ffe
r(

ui
nt

16
_t

):
bo

ol
-

is
In

de
xi

nD
S(

ui
nt

8_
t)

: b
oo

l
-

PM
_S

ta
te

M
ac

hi
ne

():
 v

oi
d

-
re

vi
si

on
Co

un
te

r(
):

vo
id

-
se

tu
pC

la
ss

Po
in

te
rs

(io
Li

nk
_D

L*
, i

oL
in

k_
AL

*,
 io

Li
nk

_S
M

*,
 io

Li
nk

_D
S*

):
vo

id
-

se
tu

pC
la

ss
Po

in
te

rs
(io

Li
nk

_D
L*

, i
oL

in
k_

AL
*,

 io
Li

nk
_S

M
*)

: v
oi

d
-

w
ri

te
IS

D
U

Pa
ra

m
et

er
(u

in
t1

6_
t,

 u
in

t8
_t

, u
in

t8
_t

*,
 u

in
t8

_t
):

vo
id

-
w

ri
te

Pa
ra

m
et

er
sI

nE
ep

ro
m

():
 v

oi
d

io
Li

nk
_S

M

+
cu

rr
en

tD
ev

ic
eM

od
e:

 d
ev

ic
eM

od
es

 =
 S

M
_I

dl
e

+
D

L:
 io

Li
nk

_D
L*

-
m

in
Cy

cl
eT

im
eR

ea
d:

 b
oo

l =
 fa

ls
e

+
PH

Y:
 io

Li
nk

_P
H

Y*
-

SM
_D

ev
ic

eC
om

Pa
ra

m
: S

M
_D

ev
ic

eC
om

Pa
ra

m
 =

 { #
if		d

ef
in

ed
...

-
SM

_D
ev

ic
eI

de
nt

Pa
ra

m
: S

M
_D

ev
ic

eI
de

nt
Pa

ra
m

-
SM

_s
ta

te
: S

M
_S

M
 =

 S
M

_I
dl

e_
0

-
se

tu
pC

la
ss

Po
in

te
rs

(io
Li

nk
_D

L*
, i

oL
in

k_
PH

Y*
):

vo
id

-
SM

_D
ev

ic
eM

od
e(

de
vi

ce
M

od
es

):
vo

id
-

SM
_G

et
D

ev
ic

eC
om

():
 s

tr
uc

t S
M

_D
ev

ic
eC

om
Pa

ra
m

-
SM

_G
et

D
ev

ic
eI

de
nt

():
 s

tr
uc

t S
M

_D
ev

ic
eI

de
nt

Pa
ra

m
-

SM
_S

et
D

ev
ic

eC
om

(s
tr

uc
t S

M
_D

ev
ic

eC
om

Pa
ra

m
):

bo
ol

-
SM

_S
et

D
ev

ic
eI

de
nt

(s
tr

uc
t S

M
_D

ev
ic

eI
de

nt
Pa

ra
m

):
in

t
-

SM
_S

et
D

ev
ic

eM
od

e(
de

vi
ce

M
od

es
):

vo
id

-
SM

_S
ta

te
M

ac
hi

ne
():

 v
oi

d

io
Li

nk
_S

M
::

SM
_D

ev
ic

eC
om

Pa
ra

m

+
M

_s
eq

_C
ap

: u
in

t8
_t

+
M

in
Cy

cl
eT

im
e:

 u
in

t8
_t

+
Pr

oc
es

sD
at

aI
n:

 u
in

t8
_t

+
Pr

oc
es

sD
at

aO
ut

: u
in

t8
_t

+
Re

vi
si

on
ID

: u
in

t8
_t

<a
no

ny
m

ou
s>

+
cu

rr
en

tD
ev

ic
eM

od
e:

 d
ev

ic
eM

od
es

+
Su

pp
or

te
d:

 u
in

t8
_t

 ([
2]

)

de
vi

ce
M

od
es

SM

_I
dl

e

SM
_S

IO

SM
_E

st
ab

Co
m

SM

_S
ta

rt
up

SM

_C
O

M

SM
_I

de
nt

St
ar

tu
p

SM

_I
de

nt
Ch

an
ge

SM

_P
re

op
er

at
e

SM

_O
pe

ra
te

tr
an

sm
is

si
on

M
od

es

SM

_C
O

M
1

SM

_C
O

M
2

SM

_C
O

M
3

+t
yp

e

-S
M

+D
L

-A
L

-O
D

in
d

+e
ve

nt
D

at
a

+S
M

-D
L_

IS
D

U
Tr

an
sp

or
t_

in
d

+A
L

+D
S

-D
L

-D
S

+c
ur

re
nt

D
ev

ic
eM

od
e

-P
H

Y

-S
M

_D
ev

ic
eC

om
Pa

ra
m

-IS
D

U
Tr

an
sp

or
t_

rs
p

+P
H

Y

-A
L

+c
ur

re
nt

D
ev

ic
eM

od
e

+D
L

+P
M

-W
ri

te
Pa

ra
m

_i
nd

+S
M

+D
L

-e
ve

nt
M

em
or

y

+A
L

+S
M

-P
M

-u
pl

oa
dR

eq
_S

D
CI

+m
od

e

-S
M

-P
H

Y

-P
M

-P
D

m
sg

Methodology

26

Example application for firmware API

This section describes how the API of the firmware (see Annexure 3

API for IO-Link firmware) works with an application example to demonstrate the workflow for

developing any application.

Firmware Setup

Firstly, as seen in Figure 21, an object of the type “io_link_device” shall be initialized which

contains the available methods from the API. The next step is to declare all the custom parameters

that the user might occupy as variables, for this example it is assumed the device has one custom

parameter of 8 bits. Afterward, if the application shall send data to the master (i.e. process input

data), a global variable that will contain device data must be declared.

#include <IO-Link Device.h>

io_link_device arduinoIOLink; //IO-Link object

uint8_t customParameter; //Declaration of user custom parameter

uint8_t deviceData; //Global to send device data to Master

Secondly, the firmware must be initialized as seen in Figure 22. For this example, the method

“addParameter” shall be called once for each custom parameter, this allows the framework to know

which variable shall be used for read/write operations performed by the IO-Link master.

After initializing the custom parameters, the method “begin” notifies the framework that it’s the

first time the program is running with the purpose of loading or not the default values of custom

parameters. Then the method “initDevice” is called, the first parameter that this method accepts

indicates the user function that should be called each time a cyclic process is completed by the IO-

Link master. In this function, the user shall implement its specific application. The second

parameter for this method is optional and indicates whether process input data is available from the

device (for this example the variable “deviceData” is used).

Figure 21 Code snippet of variable declarations for the firmware

Methodology

27

arduinoIOLink.addParameter(&customParameter,sizeof(customParameter),true);

arduinoIOLink.begin(); //Should be uploaded only once and then removed on next upload

arduinoIOLink.initDevice(sensorTask,deviceData); //Init IO-Link Device Settings

Firmware operation

The firmware operation consists of executing the firmware’s function that takes control over the

IO-Link protocol and ensures the proper communication with the IO-Link master (see Figure 23).

To simplify this process the method “ioLink_Task" shall be called once for each time in the main

loop of the program. Additionally, the user can call the method “isComLost” to check at any time

if the IO-Link master is disconnected to perform any specific task.

void loop() {

 arduinoIOLink.ioLink_Task();

 if(arduinoIOLink.isCOMLost()){

 //Do something if communication with IO-Link master is lost

 }

}

The other part of the firmware operation consists of the execution of the user function that is called

per cycle process (see Figure 24). If the user application has process output data (i.e. data sent to

the device) the user may use the method “getPDOut” to retrieve data that the IO-Link master sends

on each process cycle. To ensure the process output data is valid, the user can use the method

“isPDOutValid”.

void sensorTask(){

 deviceData=120; //Simulated sensor value

 if(!sensorReady)

 arduinoIOLink.controlPDIn(false);

 else arduinoIOLink.controlPDIn(true);

 uint8_t masterData;

 arduinoIOLink.getPDOut(&masterData);

 if(arduinoIOLink.isPDOutValid())

 //Do something with master data

}

Figure 23 Firmware operation in main loop

Figure 22 Firmware initialization

Figure 24 Code snippet of user function for each cycle process

Methodology

28

IODD GUI generator design and development

GUI Design

The necessity of a tool capable of modifying intuitively the framework parameters and reducing

developing time brought the incorporation of a GUI into the project.

Furthermore, the advantages of the implementation of a GUI according to [12] are:

• Symbols are recognized faster than text

• Faster learning

• Faster use

• Exploits visual cues

• Fewer errors

The requirements for the GUI are as follows (Figure 25):

• Creation of an IODD file

• Creation of a configuration file for the IO-Link firmware

• Save and load feature

Figure 25 Requirements diagram for the GUI

The use case model presented in Figure 26 shows the functionality of the whole GUI application

and how the interaction with the user shall be implemented.

custom GUI

Graphical user interface

notes
Design and development of GUI for dynamic IO-Link framework.

Creation of Configuration file Create an IODD
file

Save and load feature

Methodology

29

Figure 26 Use case diagram for the GUI based on the requirements

Use case Description

Save/Save as init File Save/Save as Init file with user-defined

values

Load init File Load init file with user-defined values

Generate Files Creation of output files

Create Config File Create header file used for firmware

compilation

Create IODD File Create IODD File with user-defined

parameters

uc GUI

GUI

User

Save/Save as init File

Load init File

Generate Files

Create config File

Create IODD File

Set IO-Link
Framework
parameters

«extend»

«extend»

Methodology

30

Set IO-Link Framework parameters Set parameters IO-Link parameters:

• Identification parameters

• Process data structure

• Custom Parameters

• Events

Table 4 Use case description of GUI

Requirements of the configuration file generator

The configuration file for the IO-Link firmware has the appropriate initial values that the device

should load when booting up. Since these parameters are stored in a header file it turns out to be

quite tedious to modify this file each time. The purpose of including this task in a GUI is to make

the process of writing the configuration file as simple as possible. Figure 27 shows the specific

requirements that this task should meet.

Figure 27 Requirements for the Creation of the configuration file

req [requirement] Creation of Configuration file [Creation of Configuration file]

Initialization of parameters
Requirement

The parameters the user can
initialize are:

⦁ Vendor ID

⦁ Device ID

⦁ Vendor name

⦁ Product name

⦁ Product ID

⦁ Serial number

⦁ Hardware revision

⦁ Firmware revision

⦁ Application specific tag

⦁ Function tag

⦁ Location tag

⦁ On request data size for
Operation Mode

⦁ Smart sensor profile mode

⦁ Process data descriptors

⦁ Sample time of sensor

⦁ Custom parameters

Size and value limits for user input
Requirement

The GUI should have a size
constraint for texts and values
according to:

⦁ IO-Link interface specification
v1.1.2

⦁ IO-Link Common Profile
specification v1.0

⦁ IO-Link Smart Sensor Profile 2
edition v1.0

⦁ Hardware Limitations of
atmega328p

Methodology

31

Requirements of the IODD file generator

The creation of the IODD file is essential for the device since it describes its parameters which can

be later modified by an IODD tool. These parameters are defined according to the user’s device

and should follow the IO-Link IODD specification, the specific requirements for this task are

shown in Figure 28.

Figure 28 Requirements for the creation of the IODD file

req [requirement] Create an IODD file [Create an IODD file]

Initialize IODD parameters
Requirement

The parameters the user can intialize
for the creation of the IODD file are:

⦁ Parameters described in
configuration File task

⦁ Process data type

⦁ Process data size

⦁ Process data name

⦁ IODD File version

⦁ Events supported by device

⦁ Vendor Logo

Size and value limits for user inputs
Requirement «functionalRequirement»

The GUI should have a size constraint for texts
and values according to:

⦁ IO-Link interface specification v1.1.2

⦁ IO-Link Common Profile specification v1.0

⦁ IO-Link Smart Sensor Profile 2 edition v1.0

⦁ Hardware Limitations of atmega328p

IODD based on specification
Requirement

IODD file should follow IO Device
Description specification v1.1

Methodology

32

Requirements of save and load feature

The purpose of this function is to reduce the time the user needs to configure a new or similar

device which incorporates more or fewer features. The requirements diagram for this task is shown

in Figure 29.

Figure 29 Requirements for Save and load feature task

Development of the GUI

Software dependencies

The development of this GUI was done with the Python interpreter (v3.6) programming language

and the aid of the PyQt 5 library. PyQt is a set of bindings for the Qt application framework, which

its purpose is the creation of graphical user interfaces capable of running on Windows, OS X,

Linux, iOS and Android [13].

The GUI is based on the library PyQt 5, which has all the required elements for developing a

complete GUI with abstract classes so the programmer only needs to focus on the design.

Additionally, the software Qt Designer was used to manually set the location of objects, buttons,

and widgets inside the GUI instead of coding each single GUI element.

req [requirement] Save and load feature [Save and load feature]

Display current file name
Requirement

Display the name of the current
configuration file that has been saved
or has been loaded.

Save button
Requirement

Add buttons for

⦁ Save as

⦁ Save

Load button
Requirement

Load button for the GUI

Methodology

33

File dependencies

The program includes a file directory with files occupied internally, which consist of:

• File templates

These files are related to the configuration file and Qt Designer file.

• IODD Checker

Software used for checking the validity of the IODD file

• Icons

Icons used for buttons and main window application

GUI overview

The GUI consists of one single window (see Figure 30) that allow the end-user to fill in the

parameters for its application through the next tabs:

• Identification parameters: Device parameters that identify uniquely the user application.

• Process Data: Describes the type and size of data which is sent from the device to the

master and vice-versa.

• Custom parameters: Parameters that a user can configure with the help of an IODD tool

such as a PLC.

• Events: Indicates standard and custom events the device can support

Methodology

34

Figure 30 Main window of GUI

Additionally, from the Qt Designer software, it´s possible to define size restrictions (see Figure

31). Hence, the values for strings of texts were constrained according to the IO-Link specification

and hardware limitations within it.

Figure 31 Qt Designer properties dialog

File generator

The generation of the files works by having the user fill the parameters its device will have and

afterward, a button can be clicked to generate the files needed for the firmware and the IODD.

Considering that the files need to comply with the IO-Link specification certain restrictions were

implemented to avoid errors originated from a wrong input of the user.

Methodology

35

The GUI notifies the user if the files cannot be created through a notification window that describes

any specific error if it does not comply with the expected input or allowed range of values. The

flowchart in Figure 32. shows an outline of how the verification system of user input works.

The way this error notification system works is by first checking if the identification parameters

such as vendor ID and device ID are in the correct range. Subsequently, the process is checked if

it’s less than the maximum allowed size (32 bytes) and if both process data (output/input) are

greater than 1 byte. Afterward, the smart sensor profile values are verified according to [11]. In

addition, the custom parameters and events are checked if they are in range. Finally, if the cycle

time is less than the maximum cycle time permitted in [3] then the program proceeds to create the

files. Figure 33 shows some examples of how these error windows look like when they are

activated.

Since the GUI also implements the feature of loading an image for the vendor, logo of the IODD

file. The user can upload an image of any size and then the program will resize it to the size

specified in [14]. If the image is not supported or is corrupted, it will not be loaded and referenced

in the IODD file (see Figure 34).

The creation of the configuration file and sketch example for the framework are based on template

files. These template files have defined strings, which serve as a cue to know where to write each

parameter the user has defined in the GUI. Figure 35 shows a snippet of how these files look before

and after the user modifies them with the GUI.

Methodology

36

Figure 32 Flowchart for displaying errors when generating a file

Methodology

37

Figure 33 Examples of error notifications

Figure 34 Image not supported error

Methodology

38

Figure 35 Snippet of configuration file template (left) and final output (right)

For the creation of the IODD file, the IODD specification requires to check the file with a

proprietary software of the IO-Link Consortium group called IODD Checker, which can be found

in [15]. If the file does not contain errors the IODD Checker, it writes a cyclic redundancy check

(CRC) and a stamp code which indicates that the XML file complies with the IO-Link specification.

Hence, as a final step, the IODD Checker is executed within the GUI program to comply with [14].

Furthermore, since the purpose of the firmware is to be used with the Arduino framework an

additional task was implemented to create an example sketch with API reference so the final user

can have an example for its application (see Figure 36). The general overview of the GUI program

is described through the class diagram of Figure 37, where the relations between the objects that

interact with the GUI and its methods are specified.

Methodology

39

Figure 36 Example of Sketch file for API reference

Methodology

40

Figure 37 GUI Class diagram

cl
as

s
m

ai
n

u
se

rE
rr

o
rs

+
__

in
it

__
(s

e
lf

, g
u

i)
+

cu
st

o
m

Ev
e

n
tE

rr
o

r(
se

lf
)

+
cu

st
o

m
P

a
ra

m
e

te
rE

rr
o

r(
se

lf
)

+
cy

cl
e

Ti
m

e
Er

ro
r(

se
lf

)
+

d
e

vi
ce

ID
Er

ro
r(

se
lf

)
+

im
a

ge
Er

ro
r(

se
lf

)
+

sa
m

p
le

Ti
m

e
Se

n
so

rE
rr

o
r(

se
lf

)
+

si
ze

P
D

Er
ro

r(
se

lf
)

+
sm

a
rt

Se
n

so
rP

ro
fi

le
Er

ro
r(

se
lf

)
+

ve
n

d
o

rI
D

Er
ro

r(
se

lf
)

+
ve

n
d

o
rN

a
m

e
Er

ro
r(

se
lf

)

u
se

rP
ar

am
e

te
rs

+
__

in
it

__
(s

e
lf

, Q
t,

 fo
rm

La
yo

u
t)

+
a

d
d

(s
e

lf
)

+
ch

a
n

ge
D

e
fa

u
lt

V
a

lu
e

(s
e

lf
, i

n
d

e
x,

 v
a

lu
e

)
+

ch
a

n
ge

N
a

m
e

(s
e

lf
, i

n
d

e
x,

 n
a

m
e

)
+

ch
a

n
ge

Ty
p

e
(s

e
lf

, e
le

m
e

n
t,

 in
d

e
x)

+
ch

a
n

ge
W

ri
te

O
p

ti
o

n
(s

e
lf

, i
n

d
e

x,
 o

p
ti

o
n

)
+

ch
e

ck
V

a
lu

e
R

a
n

ge
(s

e
lf

, i
n

d
e

x)
+

d
e

le
te

(s
e

lf
)

+
d

e
le

te
A

ll
(s

e
lf

)
+

ge
tD

e
fa

u
lt

V
a

lu
e

(s
e

lf
, i

n
d

e
x)

+
ge

tD
S_

si
ze

(s
e

lf
)

+
ge

tT
o

ta
l_

va
ri

a
b

le
sT

o
W

ri
te

(s
e

lf
)

+
ge

tV
a

ri
a

b
le

N
a

m
e

(s
e

lf
, i

n
d

e
x)

+
te

xt
(s

e
lf

, e
le

m
e

n
t)

+
ty

p
e

V
a

ri
a

b
le

(s
e

lf
, e

le
m

e
n

t)
+

u
p

d
a

te
M

a
xS

a
m

p
le

Ti
m

e
(s

e
lf

)
+

w
ri

te
O

p
ti

o
n

(s
e

lf
, e

le
m

e
n

t)

u
se

rP
D

_D
at

a

+
__

in
it

__
(s

e
lf

, Q
t,

 la
yo

u
t1

, l
a

yo
u

t2
, l

a
yo

u
t3

, t
e

xt
O

b
je

ct
)

+
a

d
d

(s
e

lf
)

+
ch

a
n

ge
C

o
m

b
o

B
o

xS
iz

e
(s

e
lf

, e
le

m
e

n
t)

+
ch

a
n

ge
N

a
m

e
(s

e
lf

, e
le

m
e

n
t,

 n
a

m
e

)
+

ch
a

n
ge

Si
ze

(s
e

lf
, e

le
m

e
n

t,
 in

d
e

x)
+

ch
a

n
ge

Ty
p

e
(s

e
lf

, e
le

m
e

n
t,

 in
d

e
x)

+
ch

e
ck

Ty
p

e
s(

se
lf

)
+

cl
e

a
rL

a
st

Ty
p

e
(s

e
lf

)
+

co
m

b
o

Si
ze

C
h

a
n

ge
d

(s
e

lf
)

+
d

e
le

te
(s

e
lf

)
+

d
e

le
te

A
ll

(s
e

lf
)

+
ge

tD
a

ta
Ty

p
e

(s
e

lf
, e

le
m

e
n

t)
+

ge
tP

D
D

e
sc

ri
p

to
rV

a
lu

e
s(

se
lf

)
+

ge
tS

iz
e

(s
e

lf
, e

le
m

e
n

t)
+

ge
tT

o
ta

lB
yt

e
s(

se
lf

)
+

re
m

o
ve

(s
e

lf
, r

o
w

)
+

u
p

d
a

te
Te

xt
D

is
p

la
y(

se
lf

)

sm
ar

tP
ro

fi
le

+
__

in
it

__
(s

e
lf

, g
u

i)
+

ch
a

n
ge

Q
O

b
je

ct
s(

se
lf

)
+

ch
a

n
ge

R
e

so
lu

ti
o

n
(s

e
lf

)
+

d
is

a
b

le
Fu

n
ct

io
n

_c
li

ck
e

d
(s

e
lf

)
+

e
n

a
b

le
P

a
ra

m
e

te
rs

(s
e

lf
, m

o
d

e
)

+
ge

tD
M

SU
n

it
C

o
d

e
(s

e
lf

)
+

h
id

e
D

M
S(

se
lf

)
+

h
id

e
FS

S(
se

lf
)

+
sh

o
w

D
M

S(
se

lf
)

+
sh

o
w

FS
S(

se
lf

)

St
an

d
ar

d
Ev

e
n

t

+
__

in
it

__
(s

e
lf

, Q
t,

 la
yo

u
t)

+
a

ct
iv

a
te

d
Ev

e
n

ts
(s

e
lf

)
+

ge
tC

o
d

e
(s

e
lf

, i
n

d
e

x)
+

is
A

ct
iv

a
te

d
(s

e
lf

, i
n

d
e

x)
+

lo
a

d
Ev

e
n

ts
(s

e
lf

, c
o

n
fi

g)

C
u

st
o

m
Ev

e
n

t

+
__

in
it

__
(s

e
lf

, Q
t,

 la
yo

u
t)

+
a

d
d

(s
e

lf
)

+
d

e
le

te
(s

e
lf

)
+

d
e

le
te

A
ll

(s
e

lf
)

+
ge

tC
o

d
e

(s
e

lf
, i

n
d

e
x)

+
ge

tN
a

m
e

(s
e

lf
, i

n
d

e
x)

+
ge

tT
yp

e
(s

e
lf

, i
n

d
e

x)
+

ge
tT

yp
e

Te
xt

(s
e

lf
, i

n
d

e
x)

+
h

a
sV

a
li

d
C

o
d

e
(s

e
lf

, i
n

d
e

x)
+

se
tC

o
d

e
(s

e
lf

, i
n

d
e

x,
 t

e
xt

)
+

se
tN

a
m

e
(s

e
lf

, i
n

d
e

x,
 t

e
xt

)
+

se
tT

yp
e

(s
e

lf
, e

le
m

e
n

t,
 in

d
e

x)

Q
D

ia
lo

g

io
Li

n
kD

yn
am

ic
G

e
n

e
ra

to
r

+
__

in
it

__
(s

e
lf

)
+

a
d

d
P

D
_c

li
ck

e
d

(s
e

lf
)

+
a

d
d

U
se

rP
a

ra
m

e
te

r_
cl

ic
ke

d
(s

e
lf

)
+

ca
lc

u
la

te
M

a
xS

a
m

p
le

Ti
m

e
(s

e
lf

)
+

ca
lc

u
la

te
M

in
C

yc
le

Ti
m

e
(s

e
lf

, P
D

O
u

tS
iz

e
, P

D
In

Si
ze

, d
e

vi
ce

Sa
m

p
li

n
gT

im
e

, s
iz

e
O

D
_O

p
e

ra
te

, t
b

it
)

+
cr

e
a

te
C

o
n

fi
gF

il
e

(s
e

lf
, s

iz
e

P
D

O
u

t,
 s

iz
e

P
D

In
)

+
cr

e
a

te
V

e
n

d
o

rL
o

go
(s

e
lf

)
+

d
e

le
te

P
D

_c
li

ck
e

d
(s

e
lf

)
+

d
e

le
te

U
se

rP
a

ra
m

e
te

r_
cl

ic
ke

d
(s

e
lf

)
+

ge
n

e
ra

te
Fi

le
s(

se
lf

)
+

ge
n

e
ra

te
Fi

le
s_

cl
ic

ke
d

(s
e

lf
)

+
ge

tM
Se

q
C

a
p

(s
e

lf
, s

iz
e

O
D

_P
re

o
p

e
ra

te
, s

iz
e

O
D

_O
p

e
ra

te
, s

iz
e

P
D

In
, s

iz
e

P
D

O
u

t)
+

lo
a

d
Im

a
ge

_c
li

ck
e

d
(s

e
lf

)
+

lo
a

d
Im

a
ge

G
ra

p
h

ic
s(

se
lf

)
+

lo
a

d
In

it
Fi

le
(s

e
lf

, d
ir

e
ct

o
ry

)
+

sa
ve

IN
IT

Fi
le

(s
e

lf
, d

ir
e

ct
o

ry
)

+
to

o
lB

a
r_

B
tn

P
re

ss
(s

e
lf

, b
u

tt
o

n
)

+
w

ri
te

C
o

n
fi

gF
il

e
(s

e
lf

)
+

w
ri

te
Sk

e
tc

h
Te

m
p

la
te

(s
e

lf
)

Methodology

41

GUI operation example

In this section, a practical example demonstrates the use of the GUI for the creation of an IODD

file and the setup file for the IO-Link firmware. A full description of the GUI is available in

Annexure 4

GUI user manual.

The setup for this example consists of a potentiometer whose value from the analog-to-digital

converter (ADC) of the microcontroller is sent to the IO-Link master (see Table 5).

Characteristics Description

Process input data (2 Bytes) ADC value from the potentiometer (2

Bytes)

Range of ADC is from 0

to 1023

Device specific parameters Enable (1 Byte) Enable sensor

ON=1,OFF=0

Table 5 IO-Link potentiometer description

The first step is to open the GUI, in the identification parameters tab the related information from

the vendor is set (e.g. name of the vendor, product name). In addition, the sample time of the sensor

is set in this tab, for this example, it is assumed that the sensor task takes 1 millisecond for this

device application (see Figure 38).

Figure 38 Identification parameters tab for the potentiometer device

Methodology

42

The next step consists of setting the process data structure for the IO-Link device through the

“Process Data” tab. For this example, a value of type unsigned integer and size of 2 bytes is selected

(see Figure 39).

Figure 39 Process data tab for potentiometer device

Since the device has one custom parameter, it must be set on the “Custom Parameters” of the GUI.

The parameter will be of type uint8_t, with write access and a default value of 1 (see Figure 40).

Figure 40 Custom Parameters tab for potentiometer device

Methodology

43

Afterward, the end-user may save the current IO-Link device settings by clicking the button “Save”

or “Save as” for future work or modifications. As a final step, the IODD file and the header file are

generated by clicking the “Generate Files” button. Once the files have been generated, the file

explorer opens the folder where they are saved (see Figure 41).

Figure 41 File explorer showing the GUI folder output

The folder “IODD” contains the XML file with the description of the device (see Figure 42).

Additionally, the folder “arduinoFiles” contains the header file (see Figure 43), which must be

compiled with the IO-Link firmware, and a sketch file (see Figure 44) which presents an example

program of how to use the API for its device application.

Methodology

44

Figure 42 Snippet of IODD file of the potentiometer device

Figure 43 Snippet of header file of the potentiometer device

Methodology

45

Figure 44 Snippet of sketch example for the potentiometer device

Software distribution

The final step of the development consisted of choosing the way the software would be distributed

to the end-user. Since the software is based on the python language and needs external

dependencies each time it is installed on an operating system, it made sense to compile the

dependencies and the python interpreter in a single file with the source code.

The operating system that would be used for the distribution of the program was Windows since

one of the software dependencies that it uses (i.e. IODD checker v1.4) is only distributed for

Windows systems. For this purpose, the software “Pyinstaller” was used. This software allows

compiling the source code of python program and all its python dependencies in a single executable

File. Figure 45 shows the file structure of the software distribution for Windows-based systems.

Figure 45 File structure for final distribution of GUI

Methodology

46

Hardware design and development

The hardware components of the framework are the IO-Link transceiver and the microcontroller.

Since there are already development board kits that include the atmega328p microcontroller for the

Arduino framework only the IO-Link transceiver with the appropriate setup was designed.

The software used for the design of this project is EAGLE from Autodesk. EAGLE is capable of

the design of electronic schematics, libraries, footprints for integrated circuits, printed circuit board

designs and computer-aided manufacturing files.

The transceiver used for the physical communication layer is the TIOL111-5 from Texas

Instruments; the manufacturer indicates that the following considerations should be taken in to

account for the correct operation of the device:

• Each digital TTL output (WAKE and NFAULT) should have a 10 KΩ pull-up resistor.

• Minimum 100 nF capacitor between L+ and L-

• Minimum 1 µF capacitor between VCC_IN/OUT and L-

As [3] indicates, the maximum current an IO-Link master can deliver to an IO-Link device is 200

mA. Due to the fact that the TIOL111-5 chip has a maximum output current of 300 mA, a resistor

of 15kΩ is connected to pin ILIM_ADJ to limit the current approximately to 200mA as specified

in [9]. In addition, the transceiver’s VCC_IN pin has a 5V output, so it’s used as the power supply

of the atmega328p. Furthermore, an M12 class A male connector was added to comply with the

electric input connection specified in [3].

Another point to consider for the design is that when the Arduino board is programmed its internal

voltage regulator is powered up and its output is connected to the low-dropout (LDO) regulator

output of the transceiver. A Schottky diode is implemented as input protection for the LDO

regulator of the transceiver because it may be damaged if it receives a reverse polarity voltage from

the Arduino board.

Methodology

47

Figure 46 shows the electronic schematic designed in EAGLE based on the previous

considerations. The PCB size factor is compatible with any Arduino NANO board (i.e. its final

size is 21.7mm x 52.5mm). The PCB design consists of two layers (see Figure 47 and Figure 48),

and a 3D preview of the final assembly is shown in Figure 49.

Figure 46 Electronic schematic of the transceiver module

Parts Description Package Value Qty

C6 X7R 16V 0603 0.1uF 1

C3 X7R 100V 1206 0.1uF 1

C5 X7R 35V 0805 1.0uF 1

C2 X7R 100V 1206 1.0uF 1

R1, R2 1/4W 0603 10k 2

C1, C4 X7R 25V 1206 10uF 2

R3 1/4W 0603 15k 1

D1 Schottky diode 10V SOD-323 BAT60J 1

M12_1
M4-12 A Male

Connector

Conec 43-

01204
N/A 1

U2 Female Header N/A
2.54 mm

pitch/15 pos
2

U1 TIOL111-5 VSON-10 N/A 1

Table 6 BOM of electronic schematic

Methodology

48

Figure 47 Top layer PCB preview

Figure 48 Bottom layer PCB preview

Figure 49 3D preview of PCB design

Results

49

Results

This section provides the implementation of the framework with different examples. All of the tests

included the use of the following hardware:

• IO-Link transceiver PCB

• WAGO 4-Channel IO-Link Master 750-657

• WAGO PLC 750-8206

• Arduino NANO (atmega328p) development board

Joystick with LED control

Device description

This example consists of a joystick with two analog axes output and the control of an RGB LED

(see Figure 50). Further information about the general description of this device is shown in Table

7.

Figure 50 Data flow for joystick example

Results

50

Characteristics Description

Process input data (16 bits) Axis 1 8-bit Value (0-100)

Axis 2 8-bit Value (0-100)

Process output data(8 bits) Control Controls the state of the

current selected LED.

1=ON

0=OFF

Device specific parameters Color Indicates which LED is

controlled.

Value range 1-3

Table 7 Joystick with LED control device description

IODD file generation

The IO-Link device is created with the help of the GUI (see Figure 51). The parameters that

describe the device are located in the Process data Tab and Custom Parameters Tab as seen in

Figure 52 and Figure 53 respectively. Once these parameters are set, the IODD file and the

configuration file are generated.

Figure 51 Identification Parameters in GUI for example 1

Results

51

Figure 52 Process data Tab input for Joystick device

Figure 53 Custom parameters Tab input for joystick device

Arduino sketch

The program for the Arduino Framework is shown in Figure 54. The program consists of reading

the process output data from the IO-Link master and reading the custom parameter “color” to know

which digital output from the microcontroller should be controlled.

Afterward, the program is compiled and tested with an IO-Link Master. The first test is to read the

IO-Link device parameters. As seen in Figure 55 the identification parameters tab set in the GUI

are the same and indicate that the framework is operating correctly. Consequently, the custom

parameter “color” is changed to control a specific digital output for the RGB LED (see Figure 56).

Results

52

#include <IO-Link Device.h>

io_link_device arduinoIOLink;
uint8_t deviceData[2]; //User must use this variable to update its sensor data
uint8_t masterData[1];//User can use this variable to read data from master device
//Digital output LEDs declaration
uint8_t pinGreen =6;
uint8_t pinRed=5;
uint8_t pinBlue=7;
//User Parameter Variables declaration
uint8_t color;//R-W variable Included in Data storage

void colorOutput(uint8_t g,uint8_t b,uint8_t r){
 digitalWrite(pinRed,r);
 digitalWrite(pinBlue,b);
 digitalWrite(pinGreen,g);
}

void sensorTask(){
 deviceData[0]=map(analogRead(0),0,1023,0,100);
 deviceData[1]=map(analogRead(1),0,1023,0,100);
 arduinoIOLink.getPDOut(masterData);
 if(masterData[0]==1){
 if(color==1)
 colorOutput(1,0,0);
 if(color==2)
 colorOutput(0,1,0);
 if(color==3)
 colorOutput(0,0,1);
 }
 else{
 colorOutput(0,0,0);
 }
}

void setup() {
pinMode(pinGreen,OUTPUT);
pinMode(pinRed,OUTPUT);
pinMode(pinBlue,OUTPUT);
colorOutput(0,0,0);
arduinoIOLink.addParameter(&color,sizeof(color),true);
arduinoIOLink.initDevice(sensorTask,deviceData) //Init IO-Link Device Settings
}

void loop() {
arduinoIOLink.ioLink_Task();
}

Figure 54 Arduino sketch for Joystick device

Results

53

Figure 55 Validation of parameters for joystick device

Figure 56 Changing custom parameter for joystick device

Results

54

Gateway application

As a means of reading the IO-Link master information, a PLC acts as a gateway to test the values

from the joystick. Figure 57 shows a small program using the WAGO IO-Link library that allows

testing the IO-Link communication with the master module. From the WAGO function block, it

can be seen that the number of bytes that it receives (i.e. variable udiRecievedBytes) from the

device is 2, which corresponds to the same number as shown in Figure 52.

Figure 57 Snippet of PLC program for joystick device

Results

55

Figure 58 Reading axes information from PLC GUI

LED strip controller

Device description

In this example, data from the IO-Link master is sent to control a LED strip (see Figure 59). The

master has control of the brightness of the LED strip, the number of LEDs (pixels) to control and

individual control of each LED. Table 8 describes the behavior for this IO-Link device.

Figure 59 Data flow of LED strip controller

Results

56

Characteristics Description

Process output data (12 bytes) Pixel control

(8bytes)

Control individual pixels in a

LED strip (each bit value

position controls one

individual pixel)

1=ON

0=OFF

Brightness (1

Byte)

General brightness of LED

strip (1-255)

Color R Value for red value

Color G Value for Green value

Color B Value for Blue value

Device specific parameters Number of

pixels

 Number of pixels in the LED

strip (1 to 64)

Table 8 LED strip controller device description

IODD file generation

Accordingly, the GUI parameters are set to match the required aforementioned description (see

Figure 60). This IO-Link device will not have a smart sensor profile, therefore, the “DISABLE”

option is selected in the “Process data Tab” (see Figure 61). In addition, to control the number of

pixels a custom parameter is added to the device (see Figure 62).

Results

57

Figure 60 LED strip description in GUI

Figure 61 Process data tab for LED strip

Results

58

Figure 62 Custom parameters tab for LED strip

Arduino sketch

The main program for the Arduino framework (see Figure 63) reads the process output data from

the master and then processes it. The first 8 bytes control each “pixel” connected to the LED strip,

the next byte has the brightness value for the whole LED strip and the last three bytes indicate the

RGB (red, green, blue) color for the LEDs.

Results

59

#include <Adafruit_NeoPixel.h>

#include <IO-Link Device.h> //IO-Link library

#define PIN 7

io_link_device arduinoIOLink; //IO-Link device

uint8_t masterData[12];//User can use this variable to read data from master device

//Custom Parameters

uint8_t Number_pixels;//R-W variable Included in Data storage

Adafruit_NeoPixel pixels = Adafruit_NeoPixel();

bool isPixelEnabled(uint8_t pixelPosition) {

 uint64_t controlData = 0;

 for (int i = 0; i < 8; i++)

 controlData |= masterData[i] << (8 * i);

 return (controlData >> pixelPosition) & 1;

}

//User task for reading sensor and updating deviceData Variable

void sensorTask() {

 arduinoIOLink.getPDOut(masterData);//Use this method to update PDOut data from master device

 pixels.setBrightness(masterData[8]);

 for (int i = 0; i < Number_pixels; i++) {

 if (isPixelEnabled(i))

 pixels.setPixelColor(i, pixels.Color(masterData[9], masterData[10], masterData[11])); // Set RGB for

current LED

 else

 pixels.setPixelColor(i, pixels.Color(0, 0, 0));

 }

 pixels.show(); // This sends the updated pixel color to the hardware.

}

void setup() {

 arduinoIOLink.addParameter(&Number_pixels, sizeof(Number_pixels),true);

 arduinoIOLink.initDevice(sensorTask);

 pixels.begin(); // This initializes the NeoPixel library.

 pixels.updateLength(Number_pixels);

 pixels.updateType(NEO_GRB + NEO_KHZ800);

 pixels.setPin(PIN);

}

void loop() {

 arduinoIOLink.ioLink_Task();

}

Figure 63 Arduino sketch for LED strip

Results

60

Gateway application

To validate the IO-Link device the parameter “Number_pixels” set in the GUI is overwritten in the

IODD tool of the IO-Link master (see Figure 64). Then a WAGO PLC test program is used to send

the process output data to the device and control the LED strip (see Figure 65 and Figure 66).

Figure 64 Reading and writing parameters to led strip device

Results

61

Figure 65 PLC Program for the control of the LED strip

Figure 66 GUI for PLC program of LED strip control

Results

62

Distance sensor

Device description

For this example, a distance sensor from Sharp model GP2Y0A21YK0F was implemented. This

sensor has an analog output, which corresponds proportionally to the distance measured. For

purposes of testing different functionalities of the framework, this sensor was implemented with

the smart sensor profile for digital measuring sensors described in [11]. Table 9 describes the

requirements for this IO-Link device.

Figure 67 Data flow for distance sensor device

Characteristics Description

Process input data (4 bytes) Vendor-specific

byte (1 byte)

8-bit Value for the specific

vendor application.

Scale (1 byte) Scale of the measurement value.

i.e. Value*10^(scale)

Measurement value

(2 bytes)

16 bit value from sensor

Table 9 Distance sensor device description

The parameters of identification and process data were set to match the required sensor as seen in

Figure 68 and Figure 69. In addition, since the sensor values reliability decrease if the object is to

close or far from the object, the addition of diagnostic events was used (see Figure 70).

Results

63

Figure 68 GUI Identification parameters for distance sensor

Figure 69 GUI Process data tab for distance sensor

Results

64

Figure 70 GUI Event tab for distance sensor

Arduino sketch

The main routine for the microcontroller consists of reading the analog value of the sensor and

converting it to the distance measured in centimeters (see Figure 71). Due to the low range and far

range limitation, standard events from the IO-Link specification were implemented so each time a

certain threshold is overrun or underrun the IO-Link master can be notified (see Figure 72).

Results

65

#include <IO-Link Device.h> //IO-Link library

io_link_device arduinoIOLink; //IO-Link device
uint8_t deviceData[4]; //User must use this variable to update its sensor data

IOLink_event measurementUnderrun{singleShot, warning, 0x8C30};
IOLink_event measurementOverrun{singleShot, warning, 0x8C10};

//User task for reading sensor and updating deviceData Variable
void sensorTask() {
 int sharpDistance = distance();
 arduinoIOLink.updateDMSMeasurement(sharpDistance);
 if (sharpDistance < 10){
 arduinoIOLink.setEvent(&measurementUnderrun, 1);
 arduinoIOLink.setDeviceStatus(outOfSpec);
 }
 else if (sharpDistance > 80){
 arduinoIOLink.setEvent(&measurementOverrun, 1);
 arduinoIOLink.setDeviceStatus(outOfSpec);
 }
 else arduinoIOLink.setDeviceStatus(operating);

}

void setup() {
 arduinoIOLink.initDevice(sensorTask, deviceData); //Init IO-Link Device Settings

}

void loop() {
 arduinoIOLink.ioLink_Task();
}

int distance()
{
 int samples = 20;
 long sum = 0;
 for (int i = 0; i < samples; i++)
 {
 sum = sum + analogRead(A0);
 }
 float average = sum / samples;
 float distance_cm = 17569.7 * pow(average, -1.2062);
 return (int)distance_cm;
}

 Figure 71 Arduino sketch for distance sensor

Results

66

Figure 72 Test of IO-Link events triggered by the distance sensor

Gateway application

For this example, we use the PLC utility to read the parameters from the IO-Link device (see Figure

73). Afterward, the distance values from the sensor are read as seen in Figure 74 and then displayed

in a GUI (see Figure 75). From the main program of the PLC, it can be seen that the size of input

data received is the same as the one set in the GUI.

Results

67

Figure 73 Reading IO-Link parameters of the distance sensor

Figure 74 WAGO PLC program for the distance sensor

Results

68

Figure 75 GUI for PLC program of the distance sensor

Conclusions

69

Conclusions

The creation of this framework allowed creating a development environment for low-cost IO-Link

devices. Its implementation with example applications has demonstrated the simplicity of the

workflow required for its operation. In addition, the end-user only needs to have a general overview

of the IO-Link protocol without understanding the protocol’s internal layers.

Furthermore, if the end-user needs to change any parameter of its IO-Link device it is only required

to generate a new file configuration for the firmware and the IODD. Thus, it offers a versatile

approach for the creation or modification of an IO-Link device on the fly.

Moreover, the firmware’s API allows integrating any standalone sensor application seamlessly

since it just requires adding a subroutine that will handle its sensor data in each IO-Link cycle.

The aforementioned advantages result in a real practical low-cost tool that can reduce development

time of IO-Link sensors. Consequently, it contributes to an effortless incorporation of sensor

applications to the latest set of integrating technologies known as Industry 4.0.

Future work

70

Future work

The present work has the possibility of several improvements. For instance, the framework

capabilities were designed to bring a low-cost solution but could be expanded by porting the

firmware to a microcontroller with more resources.

Likewise, the number of custom parameters the framework supports depends on the writing time

of the built-in EEPROM of the microcontroller. The use of an external non-volatile memory with

a faster response could solve this issue. Additionally, the available memory for the end-user could

be increased if the firmware code is further optimized.

Finally, the GUI could be improved in two ways. The first one is adding an option so the IODD

file could be created for other languages as described in [14]. The second improvement consists of

porting the GUI software to other operating systems with the purpose of making it a cross-platform

solution.

Bibliography

71

Bibliography

[1] F. Mosconi, The New European Industrial Policy: Global Competitiveness and the

Manufacturing Renaissance. London: Routledge, 2015.

[2] A. Ustundag and E. Cevikcan, Industry 4.0: Managing The Digital Transformation. 2018.

[3] IO-link Community, “IO-Link Interface and System Specification v1.1.2,” no. July. IO

Link Community, Karlsruhe, 2013.

[4] J. F. Wollert, “IO-Link for smart sensors,” 2015. [Online]. Available:

https://www.elektroniknet.de/elektronik/automation/fuer-smarte-sensoren-119458.html.

[Accessed: 23-Jul-2018].

[5] IO-Link, “IO-Link System Description.” IO-Link Community, Karlsruhe, 2013.

[6] IO-link Community, “IO-Link Common Profile v1.0,” no. March. IO-Link Community,

Karlsruhe, 2017.

[7] T. Instruments, “TIOL111-5 and TIOS101-5 Evaluation Modules.” 2017.

[8] J. L. Maria Soto, Marc Sevaux, André Rossi, Memory Allocation Problems in Embedded

Systems. Wiley-ISTE, 2012.

[9] Atmel, “ATmega328 / P,” AVR Microcontrollers, p. 442, 2016.

[10] Reema Thareja, Data Structure Using C, 2nd ed. New Delhi: Oxford University Press,

2014.

[11] IO-Link Smart sensor profile group, “IO-Link Smart Sensor profile 2nd Edition.” IO Link

Community, Karlsruhe, 2017.

[12] Wilbert O. Galitz, The Essential Guide to User Interface Design: An Introduction to GUI

Design Principles and Techniques, 3rd ed. Indiana: John Wiley & Sons, 2007.

[13] Riverbank, “What is PyQT?” [Online]. Available:

https://riverbankcomputing.com/software/pyqt/intro. [Accessed: 30-Apr-2018].

[14] I.-L. Consortium, “IO-Link Device Description v1.1.” Karlsruhe, 2011.

[15] “IO-Link Downloads,” 2018. [Online]. Available: http://www.io-

link.com/en/Download/Download.php. [Accessed: 02-May-2018].

Annexure 1

Thesis Proposal Outline

72

Annexure 1

Thesis Proposal Outline

Annexure 1

Thesis Proposal Outline

73

Annexure 1

Thesis Proposal Outline

74

Annexure 1

Thesis Proposal Outline

75

Annexure 2

Zulassung zur Master-Abschlussarbeit

76

Annexure 2

Zulassung zur Master-Abschlussarbeit

Annexure 2

Zulassung zur Master-Abschlussarbeit

77

Annexure 2

Zulassung zur Master-Abschlussarbeit

78

Annexure 3

API for IO-Link firmware

79

Annexure 3

API for IO-Link firmware

Annexure 3

API for IO-Link firmware

80

The API for the firmware consists of methods that the end user may use to initialize the framework,

get any status from the framework, set specific IO-Link configurations, and send process data

through the protocol.

Some of the methods are only available if specific preprocessor directives are set in the

configuration file of the framework. For the correct operation of the framework, the user must not

use Timer 1 from the atmega328p since it will modify the behavior of the framework and will not

function properly.

initDevice

Function Initialization of IO-Link framework should be called only once e.g.

setup function in Arduino framework

Prototype void initDevice(void (*userFunction)(), uint8_t *data)

Parameter void (*userFunction)(): Function that will be executed at the end of each

cycleTime, where the user may use for a sampling of the sensor and

other user-specific operations.

uint8_t *data: User data that is meant to be sent to Master IO-Link i.e.

Process input data. If process input data length equals zero, this

parameter should not be used.

Note: The userFunction execution time may not exceed the device

cycleTime since it will block the device communication with the IO-

Link Master

Return none

Annexure 3

API for IO-Link firmware

81

begin

Function Indicates if it’s the first time the framework is going to be downloaded

to the microcontroller. Must be used only the first time the program

will be uploaded to the microcontroller.

If this method is called each time the microcontroller starts the default

parameters will always be loaded and the EEPROM values will be

ignored.

Prototype void begin(void)

Parameter none

Return none

 addParameter

Function Add a custom parameter to the IO-Link device. Should be called in the

setup section of the program.

Prototype bool addParameter(

 uint8_t * parameterAddress,

 uint8_t length,

 bool writeAvailable

)

Parameter uint8_t * parameterAddress: Address of parameter to be stored.

Note: It should be of type uint8_t or uint16_t

uint8_t length: Length of the parameter in bytes

bool writeAvailable: Indicate whether the parameter is writeable, i.e.

can be saved in EEPROM.

Annexure 3

API for IO-Link firmware

82

Return True if success, False if the framework was not able to add the

parameter (i.e. total number of that can be added is greater

than the ones indicated in the header configuration file).

ioLink_Task

Function Executes all the state machines involved in the framework. It should be

called once inside the main loop of the program.

Prototype void ioLink_Task(void)

Parameter none

Return none

setEvent

Function Notifies the IO-Link master of any event occurred in the device.

Prototype bool setEvent(struct IOLink_event * events,uint8_t numberEvents)

Parameter struct IOLink_event * events: Address in memory of structure of events

that should be sent to IO-Link Master.

Initialization of an event may look as follows:

IOLink_event myEvent{

singleShot,//IO-Link mode(singleShot,appears,disappears)

notification,//IO-Link type (notification,warning,error)

0xFF91 //16 bit code as specified in Annex D of IO-Link spec.

};

uint8_t numberEvents: number of event structures to be sent to IO-Link

Master

Return True if events were able to be sent

Annexure 3

API for IO-Link firmware

83

False if event can’t be sent (i.e. if there are previous Events in the queue

to be sent)

isPDOutValid

Function Checks whether the process output data from Master is valid

Prototype bool isPDOutValid(void)

Parameter none

Return True if Process output data is valid.

False if Process output data is invalid.

getPDOut

Function Get the Process output data from the IO-Link master

Prototype void getPDOut(uint8_t *data)

Parameter uint8_t *data: Address of variable where Process output data will be

copied.

Return none

IsCOMLost

Function Checks if the communication with master has been lost

Prototype bool isCOMLost(void)

Parameter none

Return True if Communication with Master has been interrupted

False if Communication with Master has not been interrupted

Annexure 3

API for IO-Link firmware

84

controlPDIn

Function Indicate to Master whether device data (process input data) is valid or

invalid e.g. User may specify Invalidity of data when sensor data is

corrupted.

Prototype void controlPDIn(bool validity)

Parameter bool validity: True if Process input data is Valid

False if Process input data is Invalid

Return none

setDeviceStatus

Function If any Smart sensor profile is active, change the status of the device as

indicated in the Interface Spec v1.1.2 Annex B.2.18

Prototype void setDeviceStatus(deviceStatusParameters mode)

Parameter deviceStatusParameters mode: Device status mode, permitted values

are:

operating,maintenanceReq,outOfSpec,functionalCheck,failure

Return none

isSensorDisabled

Function If Smart sensor profile FSS is configured in the framework, check if

Master has requested to disable the sensor

Prototype bool isSensorDisabled(void)

Parameter none

Return True if Master requests that the sensor of the device is disabled (e.g.

Sleep or turn off sensor).

False if Master hasn’t requested to disable sensor.

Annexure 3

API for IO-Link firmware

85

setSSC

Function If Smart sensor profile FSS is configured in the framework, set SSC

signal.

Prototype void setSSC(uint64_t measurement,

uint8_t vendorSpecByte=0)

Parameter uint64_t measurement: Measurement value from sensor.

uint8_t vendorSpecByte: Vendor specific bytes set by the user

application (max. 7 bits long).

Return none

updateDMSMeasurement

Function If Smart sensor profile DMS is configured in the framework, update

DMS measurement from device sensor

Prototype If high resolution disabled:

void updateDMSMeasurement(int16_t data,

uint8_t vendorSpecByte=0)

If high resolution enabled:

void updateDMSMeasurement(int32_t data,

uint8_t vendorSpecByte=0)

Parameter int16_t/int32_t data: Sensor measurement value can be either 16 or 32-

bits long depending on if the device has high-resolution support.

uint8_t vendorSpecByte: Vendor specific byte (Max. 8-bits long)

Return none

Annexure 4

GUI user manual

86

Annexure 4

GUI user manual

Annexure 4

GUI user manual

87

This section describes the parameters the end-user may modify in the GUI, a description of its

purpose and the values it may take.

General functions

The main window of the GUI contains the general functions that the end-user can use

independent of the parameters of each of the tabs. Figure 76 shows the main functions of this

window.

Figure 76 Main window of GUI

Number Function Description

1 Open File (Ctrl + O) Open previously saved configuration file.

2 Save File (Ctrl + S) Save current configuration.

1

2

3

4

5

6

Annexure 4

GUI user manual

88

3 Save File As (Ctrl +

Alt + S)

Save as current configuration.

4 Generate Files Generate the IODD File, Configuration File for the firmware and a

sketch example as an aid for the User. The output files are generated

in the directory \Output and are subdivided in folders named after the

vendor name.

5 Load Vendor Image Load an image to be used as vendor logo for the IODD file. Accepted

formats are JPG, PNG.

6 Vendor Image

visualizer

Visualize a preview of the loaded image.

Table 10 General functions of GUI

Identification parameters Tab

This tab contains the mandatory identification parameters that an IO-Link device needs in order to

function properly (see Figure 77). If the Smart sensor profile mode is disabled (from Process data

Tab) some of these parameters are not required. The parameters of this tab are described in Table

11.

Figure 77 Identification parameters tab

Annexure 4

GUI user manual

89

Option Description

Vendor ID Unique value corresponding to a vendor. Value must be between the

range of 1 to 65535.

Device ID Identification of device from vendor. Value must be between the range

of 1 to 16777215

IODD File

Version

Contains the version of the concrete instance and not the version of the

IODD specification. The vendor shall increase this version for each

official release of the IODD for a particular device.

Format must be of type “xx.xx” where x is a number between 0 and 9

Vendor name Name of the vendor represented (max. 64 chars).

Product name Name of the product represented (max. 64 chars).

Product ID Vendor-specific product or type identification of the device (max 64

chars).

Serial number Unique vendor specific code for each individual device (max 16

chars).

Hardware

revision

Vendor-specific coding for the hardware revision of the device (max

64 chars).

Firmware

revision

Vendor-specific coding for the firmware revision of the device (max

64 chars).

Vendor URL Vendor’s URL (max 64 chars).

Must have xsd:string with pattern:

[A-Za-z][A-Za-z0-9 _-]*[A-Zaz0-9]

Device name Common name for all variants.

Must have xsd:string with pattern:

[A-Za-z][A-Za-z0-9 _-]*[A-Zaz0-9]

Device Family Vendor-specific classification of the devices

Must have xsd:string with pattern:

[A-Za-z][A-Za-z0-9 _-]*[A-Zaz0-9]

Description

Text

Descriptive text of the device.

Must have xsd:string with pattern:

Annexure 4

GUI user manual

90

[A-Za-z][A-Za-z0-9 _-]*[A-Zaz0-9]

Operation

mode OD Size

Number of On request data bytes to be transmitted from the device.

Sample time

sensor

Time it takes for the specific user application to read sensor and

execute any other operation between a cycle Time in milliseconds.

Max allowed Displays max permitted value for “sample time sensor” depending on

currently configured parameters in milliseconds.

• Application

Specific Tag

• Function

Tag

• Location

Tag

Optional tags for the device, e.g. to describe a specific application of

IO-Link device (max. 3 chars each).

Local user

interface

Select if the device has a local HMI which can modify device

parameters.

Table 11 Parameter identification Tab Options

Process Data Tab

As shown in Figure 78, this tab contains information describing the process data that goes from the

device (input) and to the device (output). If the user wants to create its custom process data

structure, an “add” and “delete” button enables the user to do it dynamically for its application.

The parameters the user may modify for process data are the data type, the name of the parameter

and the size for process data. In addition, the number of bytes that the process data will occupy in

total are displayed as additional information. Further information is described in table Figure 78

Annexure 4

GUI user manual

91

Figure 78 Process data Tab

Option Description

Input/Output

Tab

Process data structure for the corresponding tab. Each individual

element has:

• Type: Type of variable

• Name: Descriptive name of the variable

• Size: Size of variable

+ button Adds a variable in the currently selected Process data tab (Input/output)

- button Deletes a variable in the currently selected Process data tab

(Input/output)

Input bytes Displays total size of Process input data structure (max. allowed 32

bytes)

Output bytes Displays total size of Process output data structure (max. allowed 32

bytes)

Smart Sensor

profile Mode

Depending on the selected mode, it may modify the process data

structure to meet the smart sensor profile mode as described in [11].

Annexure 4

GUI user manual

92

• GENERIC_SENSOR: Process data structure doesn’t have a

standard structure.

• DMS: Digital measuring sensors, it’s purpose is to standardize

the data structures for measuring sensors.

• FSS: Fixed switching sensors, these are Devices offering exactly

one binary output signal (switching signal). The Setpoint of this

switching output is predefined during the manufacturing process

and is, therefore, fixed for the application.

• DISABLE: No smart sensor profile is used, preferred for small

simple applications.

Table 12 Process data Tab options

Custom parameters Tab

In the case, the user wants to add custom parameters this tab allows the user to add or delete

parameters dynamically (see Figure 79). Further information is described in Table 13.

Figure 79 Custom parameters input for the user in GUI

Annexure 4

GUI user manual

93

Option Description

Type Type of variable (uint8_t or uint16_t)

Name Name of the variable (can´t contain spaces and the first character can’t

be a number)

Default Value Default value of variable depending on variable type.

Uint8_t (max. value 255)

Uint16_t (max. value 65535)

Write Access If checked, the parameter will be saved in the data storage mechanism of

the device (non-volatile memory).

+ button Adds a custom parameter.

- button Deletes custom parameter.

Table 13 Custom parameters tab options

Events Tab

The user may specify if the device uses standard or user-specific events as described in [3]. As

shown in Figure 80, two internal tabs are available to the user to either select standard events or

dynamically add custom events. Table 14 describes the available options in this tab.

Figure 80 Events tab

Annexure 4

GUI user manual

94

Option Description

Standard Selection of any standard events the user device may use.

Custom User-specific custom Events (see Figure 81)

Table 14 Events tab options

Figure 81 Custom events tab

Option Description

Type Type of Event (Notification, Warning,

Error)

Code 16-bit event code in hex format e.g. 0x00

Valid range 0x1800 to 0x18FF or 0x8CA0

to 0x8DF

Event Name Custom Event name

+ button Add a custom event

- button Delete a custom event

Table 15 Custom events tab options

	Declaration
	Acknowledgment
	Dedication
	List of Abbreviations
	Abstract
	Contents
	List of Figures
	List of Tables
	Introduction
	Problem Statement
	Justification
	Objective
	Scope
	Requirements
	Functional requirements
	Non-functional requirements

	Conceptual framework
	General overview of IO-Link
	IO-Link system
	IO-Link messages
	IO-Link device
	I/O Device description (IODD)
	IO-Link device profile

	Methodology
	Firmware design and development
	Hardware requirements
	Hardware limitations
	Firmware development
	Example application for firmware API
	Firmware Setup

	Firmware operation

	IODD GUI generator design and development
	GUI Design
	Requirements of the configuration file generator
	Requirements of the IODD file generator
	Requirements of save and load feature
	Development of the GUI
	Software dependencies
	File dependencies
	GUI overview
	File generator
	GUI operation example
	Software distribution

	Hardware design and development

	Results
	Joystick with LED control
	Device description
	IODD file generation
	Arduino sketch
	Gateway application

	LED strip controller
	Device description
	IODD file generation
	Arduino sketch
	Gateway application

	Distance sensor
	Device description
	Arduino sketch
	Gateway application

	Conclusions
	Future work
	Bibliography
	Annexure 1 Thesis Proposal Outline
	Annexure 2 Zulassung zur Master-Abschlussarbeit
	Annexure 3 API for IO-Link firmware
	Annexure 4 GUI user manual

