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Abstract

The field of robotics nowadays continues to grow and new applications are being developed.
One limiting factor for the development of research of robotics is the closed architecture of
robot systems. In particular, the closed architecture of robot controllers only allows basic lev-
els of integration of robotic systems with external applications. In this thesis, it is developed
a generic robot controller with an open architecture, and a modular approach. The methodol-
ogy followed for this was the Systems Engineering’s V Model. The Concept of Operations and
system requirements are the starting point for the development work. The system is designed,
considering available technologies, components, etc. In the implementation stage of the sys-
tem, the hardware and software components are developed. Finally, testing and validation is
performed, in order to ensure that the requirements are met. As an immediate result, it was
achieved a controller that fulfills the requirements for a prototype with basic functionality. The
open architecture of the model, and the modular design of the software makes it possible to
extend and adapt the controller for future developments of the system, as well as for different
applications.
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Kurzfassung

Die Forschung dem Gebiet der Robotik wächst heute weiter und neue Anwendungen wer-
den entwickelt. Ein limitierender Faktor für die Entwicklung der Robotik Forschung ist die
geschlossene Architektur von Robotersystemen. Dies limitiert die Erweitung durch externen
Zusatzfunktionen auf ein niedriges Integrationsniveau. In dieser Arbeit wird eine generische
Robotersteuerung mit einer offenen Architektur und einem modularen Ansatz entwickelt. Die
dafür verwendete Methodik ist das V-Modell aus dem Systems Engineering. Das Betrieb-
skonzept und die Systemanforderungen sind der Ausgangspunkt für die Entwicklungsarbeit.
Das System wurde unter Berücksichtigung der verfügbaren Technologien, Komponenten usw.
entwickelt. In der Implementierungsphase des Systems wurden die Hardware- und Softwarekom-
ponenten entwickelt. Schließlich wurden Validierungstests sowie Validierungen durchgeführt,
um sicherzustellen, dass die Anforderungen erfüllt werden. Als unmittelbares Ergebnis wurde
ein Controller entwickelt der die Anforderungen an einen Prototyp mit Basisfunktionalitäten
zufrieden stellt. Die offene Architektur des Modells und der modulare Aufbau der Software
ermöglichen es, den Controller für zukünftige Entwicklungen des Systems und für verschiedene
Anwendungen zu erweitern und anzupassen.
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Resumen

El campo de la robótica continúa creciendo y nuevas aplicaciones siguen siendo desarrolladas.
Un factor limitante para el desarrollo de la investigación en la robótica es la arquitectura cerrada
de los sistemas robóticos. En particular, la arquitectura cerrada de los controladores para robots
sólo permiten niveles básicos de integración con aplicaciones externas. En este trabajo de tesis
se desarrolla un controlador genérico para un robot con una arquitectura abierta, y un enfoque
modular. Para ello, se siguió la metodologı́a V-model de Sistemas de Ingenierı́a (Systems En-
gineering). Los conceptos de operación y requerimientos del sistema son el punto inicial para
el desarrollo de este trabajo. El sistema fue diseñado, considerando tecnoloǵias y componentes
disponibles, etc. En la etapa de implementación del sistema, los componentes de hardware y
software fueron desarrollados. Finalmente, se realizaron pruebas, y el sistema fue validado,
para asegurar que los requerimientos hayan sido alcanzados. Como resultado inmediato, se
logró desarrollar un controlador que cumple con los requerimientos para un prototipo con fun-
cionalidad básica. La arquitectura abierta del sistema, y el diseño modular del software, hacen
posible extender y adaptar el controlador para futuros desarrollos del sistema, ası́ como para
diferentes aplicaciones.
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Chapter 1

Introduction

Robotics nowadays continues to be an important developing field within engineering and related
areas such as software for Artificial Intelligence (AI). It is true that industrial robotics has been
used in many industries for the last three decades; nevertheless, new approaches for robotics are
being developed, such as collaborative robotics, reconfigurable manufacturing systems, industry
4.0, among others.

The two most widely used types of industrial robotic systems are serial manipulators, such as
robot arms, and parallel manipulators, such as delta robots. Parallel manipulators offer some
advantages, compared with serial robots, such as higher load capacity, mechanical stiffness and
precision, due to its parallel structure.

One important type of parallel manipulator is the Stewart-Gough platform, also called Hexapod.
It consists of a fixed platform and a mobile platform, connected by six prismatic actuators. This
configuration provides six degrees of freedom (three translational and three rotational) on its
mobile platform.

Stewart-Gough platforms are finding an increasing number of applications, due to their low
inertia and high precision. Some interesting examples for applications are:

• Process automation: Hexapods are used for aligning the smallest optical components in
the latest Silicon Photonics production processes, as controlling automated labeling ma-
chines, and positioning entire body parts for automotive production.

• Manufacturing and Quality Assurance: Hexapods are used in micro assembly processes,
where automated 6D alignment systems take care of important tasks during testing and
manufacturing of accessories for Microelectomechanical Systems (MEMS) based camera
sensors and photonics components, including the alignment of optical fibers and fiber
arrays, for the production of optical lenses.

• Motion Simulators: Motion simulators make high demands on motion dynamics. They
repeatedly perform defined motion cycles, for example, for quality assurance and function
monitoring of products in mobile use. Typical examples for this include inspection sys-
tems for acceleration or gyroscopic sensors, like those used in smartphones, cell phones,
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and cameras for detecting changes in position. They are tested by means of a specified
motion pattern.

• Astronomy: A typical radio telescope antenna consists of a main reflector (the large dish)
and a secondary, sub-reflector that needs to be aligned properly in regard to the main
dish for maximum efficiency. This precision alignment task is carried out by special
Hexapod 6-axis parallel positioning systems from PI in the Atacama Large Millimeter
Array (ALMA) telescope [1].

An essential component of any robotic system is the robot controller. This is, the electrical,
electronic, and software components that allow the robot to move and perform different actions.
All of the industrial robot controllers have a closed architecture, i.e. their technical specifications
are not made public, and any extension or modification of the system’s functionalities are not
allowed.

The aforementioned issues, combined with the high price of industrial robotic systems, become
a challenge for researchers in the area of robotics, especially in developing countries.

One way to overcome these challenges is with the development of a generic controller with an
open architecture, which can be modified and extended to suit many different applications. This
way, affordable robotic systems could be used by researchers and institutions to further develop
the area of robotics.

This thesis project consists in the design and implementation of a basic functional controller
prototype, with an open architecture, for a Stewart-Gough robot, which can be used for demon-
stration and research purposes.

1.1 Motivation

Industrial robotics are designed and manufactured by a few world-wide companies, all of them
provide high-tech and costly proprietary technology. It is true that such products are suitable
for many industrial applications, especially those that involve repetitive, dangerous tasks or high
loads. Nevertheless, for most applications with less stringent requirements (of accuracy, for ex-
ample) these solutions result impractical because of their cost or the impossibility to be adapted
to a specific need. For research and academy an industrial robot is suitable only for integration
with other technologies, but almost impossible to modify or improve at the design level. Thus,
the development of a robot system with own technology allows a wide range of possibilities for
researchers, academics and others to adapt the system to many more applications, such as indus-
try, instrumentation and many others. Moreover, this kind of developments impact immediately
in engineering capabilities for those institutions and people involved in such projects.

For this reason, since the year 2015, it is being developed at CIDESI a research project, consist-
ing on a Stewart-Gough platform made with self-developed technology that has an acceptable
quality-price relation for national as well as industry applications. This project is called the
CIDESI Hexapod and is currently in Phase 1 of development. In order to complete this phase, a
software controller for the robot was required.
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1.2 Objectives

This section presents the general and specific objectives of the thesis project.

1.2.1 General objective

Design and implement a functional controller prototype for the CIDESI Hexapod, capable of
performing basic tasks of a robotic system, with an open architecture, using available open-
source software, and with consideration on scalability to add more functionalities in future de-
velopments of the system.

1.2.2 Specific objectives

Several specific objectives are defined, in order to provide milestones that ultimately lead to the
fulfillment of the general objective.

• Thesis protocol document

• Research of the state of the art and the technique

• Controller design

• Implement Controller Software

• Test software modules

• Pass the System validation

• Master Thesis

• Thesis dissertation

1.3 Hypothesis

A software controller for the CIDESI Hexapod robot with basic functionalities can be designed
with available technology primarily for experimental, research and demonstration purposes, with
an open architecture, and using open-source software development tools, able to perform basic
tasks in the area of robotics.

1.4 Methodology

In order to ensure the quality and success of the project, the “CIDESI Systems Engineering’s
V-model” was used. It is a system development process, which emphasizes the relationship
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between the design phases and the testing phases of the system. It is shown in Fig. 1.1.

Figure 1.1: CIDESI Systems Engineering’s V-Model [2].
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First, the Concept of Operations (ConOps) and system’s requirements were established. They
describe the expected functionalities for the system in terms of its users. After this, ConOps
and requirements were analyzed in order to develop a concept design. In this stage, some im-
portant decisions had to be made, such as the selection of hardware components, programming
languages, software development tools, etc.

The analysis of requirements, as well as available technologies and constrains led to the design of
the system, taking into account hardware components, communication interfaces and software
architecture.

The software architecture was designed as a set of individual software modules, and its develop-
ment was the bulk of this project. Each software module was written and tested separately (unit
testing). Once a logical or related group of software modules had been written, integration tests
were performed: the software modules and their mutual interaction were tested and validated
together. Since a small number of modules was being tested at once, the testing process was
automated, using a unit test framework. Once the integration testing was successful, the system
verification was performed, in order to assure that the system requirements were met.

Finally, the project was documented. Two types of documentation were created: one is the
documentation for the user and operator of the robot, in the form of a user manual. The other
type of documentation is for future developers of the software. This is the documentation of the
source code, and it was done as a browser-based documentation.
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Chapter 2

Theoretical background

This section presents an introduction to the topics of Parallel robots, the Stewart-Gough plat-
form, and robot controllers, followed by a literature review of scientific publications and related
works.

2.1 Parallel robots

Parallel robots, also sometimes called hexapods or Parallel Kinematic Machines, are closed
loop mechanisms presenting very good performances in terms of accuracy, rigidity and abi-
lity to manipulate large loads. They have been used in a large number of applications ranging
from astronomy to flight simulators, and are becoming increasingly popular in the machine-tool
industry.

Formally, parallel robots have been defined as follows:

A parallel robot is made up of an end-effector with n degrees of freedom, and of a fixed base,
linked together by at least two kinematic chains. Actuation takes place through n simple actua-
tors [3].

Some examples for parallel robots include:

• FlexPicker robot from ABB

• Adept Quattro robot from Omron

• F-200iB robot from FANUC

• Agile Eye from from Laboratoire de robotique, Université LAVAL
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2.2 The Stewart-Gough Platform

The Stewart-Gough Platform is a spatial 6-degree of freedom parallel manipulator. A general
Stewart-Gough platform is shown in Fig. 2.1. Six identical limbs connect the moving platform
to the fixed base by spherical joints at points Bi and Ai, i = 1,2, ...,6, respectively.

Figure 2.1: General Stewart-Gough Platform, taken from [4].

2.3 Inverse Kinematics of the Stewart-Gough Platform

The inverse Kinematics consists in establishing the value of the joint coordinates corresponding
to the end-effector configuration. This relation is usually simple for parallel robots.

In Fig.2.1, two coordinate systems, frames A(x,y,z) and B(u,v,w), are attached to the fixed
base and moving platform, respectively. The transformation from the moving platform to the
fixed base can be described by the position vector p and the rotation matrix RA

B of the moving
platform. Let ai and bi be the position vectors of points Ai and Bi in the coordinate frames A and
B, respectively. These vectors are defined by the geometry of the Stewart-Gough platform. We
can write a vector loop equation for the ith limb of the manipulator as follows:

AiBi = p+RA
Bbi −ai

The position vector p and rotation matrix RA
B of frame B with respect to A are given (this is the

desired pose) and the limb lengths correspond to the actuator lengths.
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2.4 Review of Literature

This section presents the literature review of scientific publications. First, it was researched
topics related to the Stewart-Gough Platform, robot controllers, and their architectures. It was
found that many of these applications have real-time constraints. As a consequence, many pub-
lications focus on the development of real-time controllers for robotics applications. This led to
an additional research on the topics of real-time controllers and real-time operating systems.

2.4.1 A platform with six degrees of freedom

In 1965, D. Stewart [5] described a platform with six degrees of freedom, controlled by six
independent motors. Stewart proposed that this platform could be used for flight simulation, as
a basis of design for a machine tool, and as a platform for training helicopter pilots.

Since the publication of Stewart’s paper, the Stewart-Gough platform has been a very popular
research topic, and has been applied in various fields, such as flight simulation, mechanical
testing, telescopes, machine tool technology, and orthopedic surgery.

2.4.2 Position control of a Stewart platform using inverse dynamics con-
trol with approximate dynamics

Se-Han Lee et al. [6], realized the position control based on the inverse dynamics controller.
Based on the characteristics of small motion range, the motion matrices can be approximated
to constant ones. The modeling errors caused by such approximation are compensated by H∞

controller that treats the error as disturbance.

The results in this paper show that the inverse dynamics control with approximate dynamics
combined with the H∞ controller provide better results than that with a full dynamics and a
simple PID controller.

2.4.3 A Real-Time Control System For Industrial Robots And Control
Applications Based On Real-Time Linux

In [7], a real-time control system for an industrial manipulator is presented. This control system
was developed under the RealTime Application Interface for Linux (RTAI).The main goal was
to build a flexible and highly configurable robotic setup to quickly test new control algorithms
and to easily (and safely) use the robot in different manipulation tasks. The software developed
for the control of the robot was divided into two modules: a real-time module, which executes
the control algorithms and communicates directly with the plant (robot), and a non real-time
application that provided a user interface for the real-time module.
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2.4.4 Real-time control systems: a tutorial

In [8], Gambier presents a general introduction to the design of real-time control systems, and
highlights important issues about real-time systems that should be taken into account at the
moment to implement digital control. Gambier provides a definition for a real-time system:

A real-time system is one in which the correctness of a result not only depends on the logical
correctness of the calculation but also upon the time at which the result is made available.

Other important topics are discussed, such as real-time operating systems, schedulers, and com-
mon mistakes when programming real-time operating systems.

2.4.5 A real-time walking robot control system based on Linux RTAI

Deng Liming [9] developed a real-time control system for a walking robot. The Linux RTAI was
selected as the operating system. The control system consisted of a motion controller, connected
with an industrial Personal Computer (PC), and several amplifiers and motors.

Figure 2.2: The architecture of the control system developed by Deng Liming, taken from [9].

The industrial PC responds to the high level planning and calculation, such as trajectory genera-
tion, status monitoring and process sensor information.

The real-time control software consists of four kinds of threads. The main thread is responsible
for initialization and deletion of all other threads. The signal gathering threads try to gather
signals from the sensors at a fixed frequency. The trajectory planning thread is the core of the
control software. It incorporates all the relative sensors’ signals, processing them as desired, and
it also receives and responds to commands from a remote GUI.
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Figure 2.3: The architecture of the control software developed by Deng Liming, taken from [9].

2.4.6 Performance Comparison of VxWorks, Linux, RTAI, and Xenomai
in a Hard Real-Time Application

In [10], A. Barbalace et al reported a set of performance measurements executed on VMEbus
MVME5500 boards equipped with MPC7455 PowerPC processor, running four different operat-
ing systems: Wind River VxWorks, Linux, RTAI, and Xenomai. Interrupt latency, rescheduling
and inter-process communication times are compared in the framework of a sample real-time
application.

For evaluating the performance, they used a test program, which acquires 64 channels from an
ADC converter via the VME bus and produces a single output on a DAC board. This simple
program allows testing of interrupt latency and rescheduling time, since the ADC generates an
interrupt when a new set of digitized data is ready. By measuring with an oscilloscope the delay
between an input signal and the output of the system, it is possible to perform a non-perturbative
measurement of the overall system performance.

Overall the performance measurements are similar with about 5% difference between the fastest
(VxWorks) and the slowest (Xenomai). Results show that both RTAI and Xenomai represent
valid alternatives to VxWorks for the implementation of real-time control systems.

2.4.7 RT-ROS: A real-time ROS architecture on multi-core processors

In [11] it is presented a real-time software architecture based on the Robot Operating System
(ROS) called RT-ROS on multi-core processors. RT-ROS provides an integrated real-time/non-
real-time task execution environment so that real-time and non-real-time ROS nodes can be
separately run on a real-time OS and Linux, respectively, with different processor cores. This
way, real-time tasks can be supported by real-time ROS nodes on a real-time OS, while non-
real-time ROS nodes on Linux can provide other functions to ROS.
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Nuttx was used as the real-time platform, and Linux as the general-purpose OS. The architecture
of RT-ROS is shown in Fig. 2.4.

At the application layer, ROS nodes are divided into real-time and non-real-time nodes. ROS
nodes communicate with each other via shared memory. At the hardrware level, hardware re-
sources are divided so non-real-time ROS nodes and real-time ROS nodes are separately run
based on General Purpose Operating System (GPOS) or RTOS, respectively.

RT-ROS was applied to control a 6-DOF modular manipulator. The experimental results show
that RT-ROS can effectively provide real-time support for the ROS platform with high perfor-
mance.

Figure 2.4: The system architecture of RT-ROS, taken from [11].

2.4.8 Control System Based on FreeRTOS for Data Acquisition and Dis-
tribution on Swarm Robotics Platform

In Docekal’s [12], the real-time operating system FreeRTOS is implemented into a 32 bit ARM
microcontroller for the control system of a swarm robotics platform. The main task is to ensure
the communication with different types of sensors, data processing, and also motion control of
the robot. The system architecture is shown in Fig. 2.5.

Hardware description. The low level control, interfacing with sensors and actuators in the sys-
tem was realized with the use of the 32 bit microcontroller STM32F4 with core ARM Cortex
M4. The high level processing of the system, which includes swarm algorithm and path plan-
ning, was formed by the Raspberry Pi 3. The Raspberry Pi 3 includes the WiFi and Bluetooth
modules. An external camera module with a resolution of 8 Megapixel was connected to the
Raspberry Pi.

Firmware description. The FreeRTOS was selected for the programming of the microcontroller
in order to ensure timely execution of all tasks. The interaction between tasks was realized using
the facilities provided by FreeRTOS: queues, mutexes, and shared memory, etc. Each task was
assigned different priority. There are different threads related to interfacing with the sensors.
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Figure 2.5: Docekal’s system architecture, taken from [12].

These threads write the sensor information to a shared memory, and another thread can read this
memory and send it to the Raspberry Pi.

Communication with Raspberry Pi. The data exchange between the microcontroller and the
Raspberry Pi was realized using the UART periphery. When a new character (byte) is received,
a hardware interrupt is triggered, and the character is saved into a frame buffer. The message
frame is described in Fig. 2.6.

Figure 2.6: Message Frame description for communication, taken from [12].

Additionally, an application for smartphones was used for data visualization and for robot con-
trol.
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2.4.9 An FPGA-Based Open Architecture Industrial Robot Controller

In [13], a field programmable gate array-based motion control system is developed as part of an
open-architecture and vendor-independent control system.

The proposed robot control architecture comprises a standard PC and a Field Programmable
Gate Array (FPGA) based interface which involves a lower cost. Additionally, the Linux OS in
addition with the real-time application interface (RTAI) is used.

The FPGA is responsible for decoding feedback position data, computing the control output, and
communication signals, and transmitting such data to the actuators, whereas the PC interpolates
movements, computes kinematics solutions, and transmits the position reference for each joint
while it receives its current position. The complete system is shown in Fig. 2.7.

Figure 2.7: Robot controller hardware setup developed by Martı́nez-Prado, taken from [13].
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2.5 Commercial Study on the field of Stewart Gough Plat-
form

This section covers a commercial study on robotics and Stewart Gough Platforms, as well as
different applications for this kind of robots.

2.5.1 Robot sales and market forecast

According to the International Federation of Robotics (IFR), the automotive industry is the major
customer of industrial robots with a share of 35% of the total supply in 2016. It is forecasted
that 521,000 industrial robot units will be sold world-wide in 2020, as shown in Fig. 2.8.

Figure 2.8: Estimated annual worldwide supply of industrial robots 2008-2016 and 2017-2020
[14].

2.5.2 Commercially available Stewart Gough Platforms

This section describes commercially available Stewart Gough Platforms from two large compa-
nies. These have been used in many different industrial, scientific, research, and medical fields,
as will be described next.

2.5.2.1 Physik Instrumente

Physik Instrumente (PI) is one of the largest producers of Hexapods in the world. Their hexapods
solutions range from tiny hexapods with workspace dimensions of 40 x 40 x 13 mm and a load
capacity of 5 kg, up to hexapods with a load capacity larger than 1000 kg [15].
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2.5.2.2 FANUC F-200iB

The F-200iB is a six degrees of freedom servo-driven parallel link robot designed for use in a
variety of manufacturing and automotive assembly processes.

This robot has six degrees of freedom, powered by six Alternating Current (AC) servo motors
and precision gear drives. It contains a fail-safe brake on each leg. It has a mechanical weight of
190 kg and a payload of 100 kg, allowing a motion speed of 300 mm/s in the vertical direction
and 1500 mm/s in horizontal (X & Y) direction. It can be mounted in floor or inverted (upside-
down) positions [16].

Figure 2.9: The FANUC F-200iB robot [16].

This chapter presented the theoretical background of the project followed by the review of lit-
erature. For the review of literature, it was searched for relevant papers and information related
to the development of robot controllers, in particular for the Stewart-Gough platform, includ-
ing the operating systems, software architecture structures, and hardware platforms used for the
system. It was found that there are almost no publications related to the internal structures of
industrial robot controllers. In contrast, a lot of the research is related to the implementation of
real-time operating systems, their use in embedded devices, and different control techniques and
algorithms for robotics applications.
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Chapter 3

CIDESI Hexapod project

This chapter presents the CIDESI Hexapod project, the different phases of development, the pre-
vious work that has been done by members of the Automated Systems Department at CIDESI,
and finally the concept of operations and requirements for the development of this thesis project.

3.1 The CIDESI Hexapod robotic system

The CIDESI Hexapod robotic system is a project that aims to develop an industrial grade robotic
system that provides functionalities similar to those usually found in an industrial robot.

Similar to most commercial robotic systems, the CIDESI Hexapod is designed to be operated
by a human operator (the User), or by another system or device (the Application) like, e.g., a
vision system, as shown in Fig. 3.1.

Environment   

Hexapod

Application

User

Figure 3.1: The CIDESI Hexapod system

The Hexapod robot system consists of the Robot (mechanical structure), the controller, a Teach
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Pendant, and a user Documentation, as shown in Fig. 3.2. These are the basic components that
are generally included in a commercial robotic system.

The preliminary as well as detailed mechanical design of the robot has already been developed,
and in order to achieve a functional prototype, a robot controller is needed. This thesis project
involves the development of the robot controller (and its corresponding Documentation) for the
Phase I of the CIDESI Hexapod. It includes the hardware elements of the controller and the
controller software, which runs in a PC.

Robot

Controller

Teach
Pendant

DocumentationHexapod System

Hardware

PC

OS

SW

Previous work

Thesis contribution

Figure 3.2: The components included in the Hexapod System

The robot component (mechanical structure and electrical wiring) is a Stewart-Gough Platform,
consisting of a fixed base and a movable platform, see Fig. 3.3. The base and platform are
connected by six linear actuators.

Figure 3.3: CIDESI Hexapod Robot.
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3.2 CIDESI Hexapod development phases

The CIDESI Hexapod is a large project, and for its development, it is divided in four phases, as
shown in Table 3.1.

Phases
Parameter I II III IV

Accuracy 1mm 100um 1um
Payload 10Kg 100Kg 500Kg

Actuator
GlideForce
(LACTP6P-
12V-20)

To be Decided
CIDESI
Linear
Actuator

Estimated cost
(MXN) <80,000 <300,000 <900,000

Objective
Experimental
prototype

Low capa-
bilities app. Normal app.

High capa-
bilities app.

Table 3.1: Development phases for the CIDESI Hexapod project, adapted from [17].

In the Phase I, the robot is mainly intended as an experimental prototype, and the use of actuators
GlideForce LACTP6P-12V-20 is one of the requirements for this project. In future developments
of the system, it is planned to replace these actuators with CIDESI’s own linear actuators, as well
as the development of a Teach Pendant.

3.3 Previous work on the CIDESI Hexapod System

This section describes the research and development work that existed on the CIDESI Hexapod
system previous to the development of this thesis project.

3.3.1 Industrial Robot project proposal

In 2012, Gengis K. Toledo-Ramirez proposed the design of a six degree-of-freedom industrial
robot at CIDESI Nuevo León, Mexico. The goal was to aid national industry with the reduction
of manufacturing costs and by increasing the quality and efficiency. In the year 2015, he also
proposed a research project named “Development of technologies for a Stewart-Gough Plat-
form”, to be developed by the Research and Development group of the Automated Systems
Division at CIDESI Querétaro. The goal was to develop a robotic platform at an experimental
level with enough efficiency to be of interest to the research, academic and industrial sectors.

The Automated Systems Division director, Noé Reyes, has supported this project since.
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3.3.2 Development of a Demo for a Hexapod robot

This work was done by Ernesto Salazar Joya [18]. The main activity was to develop the pro-
gramming of three demos(programs) for the FANUC F-200ib robot. In the first program, the
objective was to visualize the maximal positions of displacement and rotation of the robot, as
a first demonstration. In the second program, it is shown how to program the robot to per-
form industrial tasks, using simulated digital inputs. Finally, the third program consisted in the
communication of a robot with an industrial vision system.

3.3.3 Hexapod system for motion simulator

Vı́ctor David Acosta-Abraham [19] developed a study and preliminar draft for a truck simulator
mechanism. This mechanism is based on a Stewart-Gough platform and its purpose is to train
truck drivers in a simulated environment that recreates the forces to which a truck is subject
when operating. A prototype using servo-motors and an Arduino was developed. A LabVIEW
interface was used to solve the inverse kinematics equations and communicating the data to the
Arduino to drive the servomotors of the prototype.

3.3.4 Development of an alpha prototype for a Hexapod robot

Gerson Andrés Dı́az López [20] developed a concept design for the Hexapod system. This
concept design included ideas for the mechanical structure of the robot, the control system for
the robot and communication possibilities for the system.

3.3.5 Preliminary Design of a Stewart-Gough platform

Rubén Ordaz Madrigal [21] developed the preliminary design for the mechanical structure of
the CIDESI Hexapod system. In this work, the mechanical parts were selected, including the
joints and actuators, and a preliminary design was developed with these components.

3.3.6 Detailed Design of a Stewart-Gough platform

José Ramón Barajas-Fletes [22], based on the works by Ordaz and guided by Noé Reyes, de-
veloped the detailed design for the CIDESI Hexapod. In his design, some parts were changed,
and the CAD model was refined. Additionally, motion simulations were performed in order to
determine the workspace capabilities of the robot.
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3.3.7 Robot assembly

The robot components were fabricated according to the detailed design by Barajas. The robot
assembly, as well as the main mechanical parts, are shown in Fig. 3.4. Once all components
were ready, the robot was assembled.

First, the mechanical components of the robot were assembled: the parts that form the universal
joints were assembled and fixed to the base platform of the robot. Then the actuators were
assembled to the universal joints and secured in place, and the head couplings were installed on
the top of the shaft of the actuators. After this, the spherical joints were screwed in the mobile
platform and secured with bolts, and the coupling disc was assembled to the mobile platform.
Finally, all the actuators were assembled to the spherical joints and secured in place with screws.

Universal
Joint

assembly

Spherical
joint

Actuator
Head

coupling

Base
platform

Mobile
platform

Joint and
Coupling

Fixation screw

Figure 3.4: Hexapod assembly
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3.4 Concept of Operations

In this section, the system’s ConOps are presented. They describe the expected functionalities
and operation policies for a system in terms of its users. The complete ConOps were developed
in [17]. Here, only the concepts relevant to the robot controller are retrieved.

3.4.1 Operation policies and constrains

The system, in phase I, is not intended to be operated continuously, but for short time cycles,
executing sample tasks and never continuous production cycles.

3.4.2 Usage

The prototype will be used in Laboratory or similar environments for demonstration, experi-
mentation and testing purposes. The robot software and its programming tools must be simple
but at the same time provide programming power on different levels, from high level (user or
application level), intermediate level, and low level. It is desired to integrate as user inter-
faces, augmented reality systems, virtual reality, cyber-physical systems, Industry 4.0, Internet
of Things, as well as applications for the Android operating system.

3.4.3 Final users and related persons

Operators. The direct users of the robot are its operators. They are capable of starting, moving
and programming the robot by means of a “Teach Pendant”, and perform basic maintenance
tasks. They are required to have technical knowledge in robotics and specific training.

Technicians. In addition to operating the robot, a technician is capable of mounting applications
for the robot; program the robot via a programming language; dismount the robot for transporta-
tion and mount it again; disassembly and reassembly of the robot; part replacing. For this, it
is required robotics knowledge at the graduate level as well as training and the corresponding
documentation.

Administrators. They may or may not be operators or technicians, but they have the responsi-
bility of the robot, and therefore they can and must allow other users to work on the robot.

3.5 System Requirements

This section presents the requirements for the CIDESI Hexapod controller. These requirements
were the main input and starting point for the thesis project.
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According to the Systems Engineering’s V-model, one of the initial phases in the lifecycle pro-
cess for a system is the establishment of the system requirements.

The system requirements are formal statements that establish the characteristics of a system, and
what the system must be able to accomplish. The system requirements were established in [17]
and, together with an analysis of possible solutions and available technologies and resources,
they lead to a concept design.

3.5.1 List of controller-related requirements

[Req 6.3.2] The system must be able to move each of its actuators independently within the
maximum specified limits.

[Req 6.3.4] The system must be able to execute translational movements on its mobile base in
the three coordinated axis within its specified limits.

[Req 6.3.5] The system must be able to execute rotational movements on its mobile base with
respect to the three coordinated axis within its specified limits.

[Req 6.3.6] The system must have two working modes: 1) Manual mode and 2) Automatic
Mode. In the “Manual mode” the prototype will receive direct commands from the user and
execute them immediately. In “Automatic mode” the prototype will execute a previously pro-
grammed routine.

[Req 6.3.7] The prototype must indicate at least visually the following states: 1) On, 2) Moving,
3) Alarmed.

[Req 6.3.8] The prototype shall have six degrees of freedom (three translational and three rota-
tional) within its workspace and mechanical limits.

[Req 6.3.9] Every valid point in the workspace shall be defined by six coordinates (three trans-
lational and three rotational).

[Req 6.3.10] Translational dimensions shall be given in millimeters (mm) and rotational dimen-
sions shall be given in degrees (°).

[Req 6.3.11] The actuators shall be moved individually by absolute or relative values (millime-
ters for linear actuators).

[Req 6.3.12] It shall be defined a Universal-HOME position which provides repeatability, the
most stiffness, stability, safety, and makes the system as compact as possible. This position shall
not be changed by any user, only by developers.

[Req 6.3.13] Before being turned off or de-energized the prototype must be moved to its Universal-
HOME position. Once it is turned on, and before any other movement, during its power up
procedure and initial configuration, the prototype should be in its HOME position. If the sys-
tem is not already in this position, it must automatically move to it before finishing its start and
configuration procedure.
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[Req 6.3.14] The user shall be able to define a User-HOME position within the mechanical
limits of the prototype. If this position is not defined, it shall be equal to the Universal-HOME
position. The User-HOME position shall be lost when de-energizing the prototype.

[Req 6.3.15] There shall exist a universal coordinate system (UCS), which cannot be changed
by any user, only the developers of the system. This system shall comply with the following:
1) Its XY plane shall be parallel to the lower platform’s plane, 2) Its positive Z axis must point
upwards (opposite to the gravity vector), 3) Its origin must be at the center of the prototype (seen
from above), either over or near its fixed platform.

[Req 6.3.16] The user shall be able to define one or more coordinate systems (CS) within the
mechanical limits of the prototype.

[Req 6.3.17] The user shall be able to activate one coordinate system among the ones that have
been previously defined (including the universal). When no coordinate system has been defined,
the universal coordinate system shall be used.

[Req 6.3.18] The system must allow relative movements, which are movements that add or
subtract to the actual position. These must be preceded by a double plus or minus sign (++/--).

[Req 6.3.19] The system shall allow four types of movement:

1. Absolute: These movements will be applied directly with relation to the current coordinate
system.

2. Relative: These movements will be applied with respect to the current position.

3. Combined: They are a combination between absolute and relative movements. This means
that some coordinates are indicated as absolute while others as relative.

4. Labeled: A labeled move is any of the previous moves, but its definition has been stored
with a label, which is used to refer to the position instead of its coordinates.

[Req 6.3.20] Every absolute movement of the robot shall be performed with respect to the active
coordinate system. In order to perform movements with respect to another coordinate system, it
shall be activated first.

[Req 6.3.21] Additional to the type of movement of the robot, it shall allow two modes:

1. Linear mode: The movement between two points is executed in two stages: first, the
robot moves in a straight line following only translational motion, and when it reaches the
translational position, the rotational movements are executed.

2. Actuator mode: In this mode, the translational and rotational movements are performed
simultaneously without any trajectory (the final positions for every actuator will be calcu-
lated and these will follow the positions at the same time).

[Req 6.3.22] The following basic functions shall be available in Manual mode as well as au-
tomatic mode: 1) Label and store the robot’s current position, 2) Move the robot to a stored
position, 3) Move each of the six actuators independently, 4) Define, edit, or delete coordinate
systems, 5) Define, edit or delete the user-HOME.
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[Req 6.3.24] The actuators shall be able to move in three ways: 1) Absolute, 2) Relative, 3)
Percentage. The absolute form shall receive a scalar parameter (in millimeters) and the actuator
will move with respect to its minimal absolute value. The relative form, is the same concept
as for moving the robot, this is a parameter that adds or subtracts from the actuator’s actual
value. The percentage is a value between 0 and 100, and must be followed by a percentage sign
“%”, (e.g. 30%) which indicates a percent value with respect to the total allowed stroke of the
actuator.

[Req 6.3.25] The system shall have protection in order not to exceed the recommended work
cycles.

[Req 6.3.26] The system must register all important events with a timestamp. Examples: on-
procedure, off-procedure, alarms, mode changes and state changes.

[Req 6.3.27] The prototype should contemplate digital and analog input/output, at least prepa-
ration for these in phase I. They are aimed for communication of external applications or other
systems with the prototype and they should be configurable by the user.

[Req 6.3.28] The prototype shall contemplate preparation to add communication ports as those
in an industrial robot, such as ethernet, CAN, USB, etc. Its type and quantity shall be defined
according to an analysis of similar products, ConOps and all requirements.

[Req 6.3.29] The prototype shall incorporate interfaces, or at least preparation to work with
concepts such as Industry 4.0, Internet of Things (IoT), Cyber-physical systems, Virtual Reality
and Augmented Reality.

[Req 6.3.30] An Android device should be able to function as teach pendant, by way of an
android application running on a tablet or cellphone.

[Req 6.3.31] The robot controller shall be as compact and modular as possible.

[Req 6.3.32] The robot software should be based on free software in order to lower costs and
have an open architecture. The cases in which this is not possible should be minimal and justi-
fied.

This chapter introduced the CIDESI Hexapod project, its development phases, the previous
developments related to the system, the ConOps and the system requirements. These two latter
concepts are crucial in the development of this thesis project, since the design of the system was
based on the fulfillment of the ConOps and the system requirements.
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Chapter 4

Controller concept design

In this chapter it is described the concept design of the controller. This involves all the activities
and design decisions that led to a viable design. First, it is described the PC and the hardware
components of the system. Then, the system functionality from the users’ point of view is
given. Finally, the design decisions about the selection of the operating system and programming
language are presented.

The concept design for the controller is shown in Fig. 4.1. The Controller is mainly divided in
a PC, and the Hardware components. They are described next.

PC Hardware components

Controller Concept

OS (Linux)

Hardware (CPU)

      Drivers

USB1

U
S

B
1

          Controller
          Software

User

C
LI

USB2

LED (On)

LED (Moving)

LED (Alarmed)A
rd

ui
n

o

Robot

LED Interface

Power
supply

5VDC
12VDC

Figure 4.1: Concept design for the Controller.

4.1 PC

The PC is the main platform on which the robot software runs. The hardware components
include the peripherals, CPU, and communication ports. On top of the hardware, the operating
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system runs. The selection of the operating system was an important design decision, and will
be described in more detail in the following sections.

For this project, it was used a PC with the following characteristics: Intel i5 processor, 64-bit
architecture. The default operating system on the PC is Windows 10. However, it is possible to
install other operating systems in additional partitions on the hard drive of the PC.

The controller software is the program responsible for receiving input commands from the user
or system, displaying log information, and sending motor commands to the drivers via a serial
interface, as well as operating the LED Interface. For communicating with the user, a Command
Line Interface (CLI) is provided. In order for the user to interact with the software via the CLI,
a keyboard, mouse and monitor are used.

4.2 Hardware components

The “Hardware components” is divided in three parts: the Power supply, the Drivers, and the
LED Interface.

4.2.1 Power supply

The power supply should be able to power the LED Interface, and the drivers. The PC is powered
separately. In order to provide current to the actuators and drivers, it is required a DC power
supply able to deliver at least 18 Amp at 12V. The Arduino only requires a 5V supply, and its
current consumption is negligible.

4.2.2 Drivers

For phase I of the project, each linear actuator is activated by a Pololu jrk21v3 driver. The
jrk21v3 is a general-purpose motor controller, which supports various interfaces, including USB.
It is shown in Fig. 4.2.

This driver works with supply voltage in the range 5V to 28V, and 3 Amp maximum continuous
current (5 A peak). It also provides a lot of features, such as driver shutdown on under-voltage,
over-current, and other conditions.

The following communication options are provided:

• USB interface for direct connection to a PC.

• Full-duplex, asynchronous serial interface for direct connection to microcontroller or other
embedded devices.

• Hobby radio control (RC) pulse width modulated (PWM) interface for direct connection
to an RC receiver or RC controller.
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Figure 4.2: The jrk21v3 driver.

More information on the communication interfaces is provided in section 4.3.

4.2.3 LED Interface

This component displays visual information about the robot current state. This is done with three
LEDs, powered by an Arduino. The Arduino receives commands from the Controller software
via a USB-Serial interface, and turns the LEDs On and Off, accordingly.

4.3 Communication Interface

In order to send commands to and receive information from the driver, the jrk has three serial
interfaces: USB Dual Port, USB Chained, and UART. In order to drive the six actuators using
only one communication port, the modes USB Chained and UART are required. They are
described next.

4.3.0.1 USB Chained connection mode

In this mode, the Command Port is used to both transmit bytes on the TX line and send com-
mands to the jrk. The jrk’s responses to those commands will be sent to the Command Port but
not the TX line. In this mode, TTL Port is not used. This mode allows a single COM port on a
computer to control multiple jrks.

4.3.0.2 UART connection mode

In this mode, the TX and RX lines can be used to send commands to the jrk and receive responses
from it. Any byte received on RX will be sent to the Command Port, but bytes sent from
the Command Port will be ignored. The TTL Port is not used. This mode allows a jrk to be
controlled using a microcontroller or other TTL serial device.
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4.3.1 Connection of the drivers

In order to control multiple jrks with a single COM port, the jrks must be connected forming a
network of one master device and multiple slave devices:

• Every jrk must be assigned a different device number so that they can be individually
addressed. This can be done using the jrk configuration utility.

• The master device is the one connected to the PC via USB cable and is configured in USB
Chained mode.

• All slave devices are configured in UART connection mode.

• The TX line of the master device is connected to the RX line of all slave devices.

• When using more than one slave device in the network, an AND gate is used to join all
the TX lines of the slave devices. The output of the AND gate is connected to the RX line
of the master device.

The connections for the serial communication is shown in Fig. 4.3.

Figure 4.3: Connection of multiple jrks [23].

4.4 System functionality

In the system’s requirements analysis a set of desired functions was established. Additionally,
the ConOps describes the desired way in which the robot should be operated, the persons in-
volved with the robot and their responsibilities.

All of these elements lead to the development of a general use case diagram of the system,
shown in Fig. 4.4. In this diagram, the Hexapod system is divided into three subsystems:
the software subsystem, the drivers subsystem, and the Mechanical structure. The mechanical
structure includes the actuators.

There are two actors in the system, one is the operator, who is responsible for operating the robot
through the software. The operator is restricted only to use the robot via the software.The other
actor is the technician. Only he is allowed to make modifications to the controller, configure the
drivers, assemble or disassemble the robot.
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This is the way in which the CIDESI Hexapod system is intended to be operated.

Operator

Save/delete robot
positions

Restore robot
position

Execute
task

Define/delete
task

Move actuators
individually

Define/delete Coordinate
Systems

Software

Read actuators
position

Activate a Coordinate
System

Technician

Drivers

Configure Drivers

Mechanical structure

Make / change
connections

Send
Driver

commands

Assemble/
Disassemble

Move Robot

Command
Actuators

Actuators

Read
position

Figure 4.4: Functions to implement in Phase I of the project

4.5 Selection of the operating system

According to requirement [Req 6.3.32], it is desired to use free software for building the project.
For this reason, the Ubuntu Linux operating system was selected as the operating system. In
addition to being an open source platform, the use of Linux has additional advantages:
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• It is possible to apply a patch to the Linux Kernel, in order to implement hard real-time
modules, e.g. RTAI.

• It comes with compilers and interpreters for different languages pre-installed.

• Many Robotics middlewares are based on Linux, e.g. ROS.

Therefore, the use of Linux will be useful in future development of the system, if real-time
support, or integration with ROS is required.

4.6 Programming language selection

The main criteria for selection of a programming language were:

• Object orientation: The ability to implement classes allows for a modular design, where
each module can be tested separately before integration.

• Portability: It is desired to use a language that can be supported by many different hard-
ware platforms.

The C++ programming language was selected because it is an object oriented programming lan-
guage, many microcontroller and other embedded devices provide a C++ compiler to program
them.

4.7 The Command Line Interface

The user interface is based on a command line approach. This interface was selected for the
following reasons:

• It provides a generic interface. It can be used by humans and external systems.

• The lower resource usage of a CLI allows it to be embedded in a microcontroller or mi-
crocomputer and is more portable than a Graphical User Interface (GUI).

• It is faster to implement a CLI than a GUI.
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Chapter 5

Controller detailed design

This chapter presents the detailed design of the CIDESI Hexapod controller. In this stage of
development, the concept design was refined and all the subsystems (hardware, software), were
designed in detail. In particular, defining the hardware setup, and communication protocols
was crucial to design the software. Therefore, the connection diagram and hardware setup is
presented first.

Next, the detailed software architecture is presented, which takes into consideration the pro-
gramming language(s) capabilities, the hardware, communication interface, and the interaction
with the operating system, decisions that were made in the concept design.

Finally, the design of the user interface is presented, as well as the set of commands available to
the user.

5.1 Hardware setup

The hardware components are connected as shown in Fig. 5.3. It shows the connections of the
actuators (1), drivers (2), an AND gate circuit (3), power supply (4), and PC (5). This setup
allows communication with the drivers via serial commands, coming from a PC connected to
one of the drivers, via a USB connection.

As shown in Fig. 5.3, the driver connected to the PC is configured as a master device, while
the other drivers are configured as slave devices. This is achieved by connecting the RX line of
all slave devices to the TX line of the master device, so that all slave devices receive messages
from the master device. Additionally, when the devices are not transmitting data, their TX line
is driven HIGH. For this reason, in order to connect the TX lines of the slave devices to the RX
line of the master device, an AND circuit must be used, as shown Fig. 5.1.
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TX2
TX3
TX4

TX6

RX1
TX5

AND

Figure 5.1: Logic circuit for data communication.

The integrated circuit 74LS08 was selected for this purpose. It provides four 2-input AND gates,
which allows the implementation of an equivalent logic circuit as shown in Fig. 5.2.

TX2
TX3
TX4

TX6

AND

RX1
AND

ANDTX5
AND

Figure 5.2: Equivalent logic circuit using four 2-input AND gates.

All drivers are connected to a 12 VDC line for providing current to the motors.
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5.2 Software detailed design

This section presents the detailed design of the software for the system.

5.2.1 Software architecture

It is one of the most important elements of the system. In addition to satisfying all requirements
established in chapter 3.5, the architecture is designed based on the following criteria:

• Modular design. The software was divided in modules, in order to allow unit testing on
each of its modules.

• Reutilization of existing code base and knowledge in order to increase development speed.

• Ability to easily extend/replace software modules.

The software architecture is shown in Fig. 5.4. This figure shows the way in which information
is provided to the program in the User interface, the way in which information is exchanged and
processed in the Controller Core, and finally, the way information is sent to the drivers in the
Robot interface.

The software is divided into several modules, which are described next:

• Command Control Module: This module has the task of taking commands from the user
as input, process them, and perform the appropriate action, depending on the contents of
the command. Depending on the command, one of the many functions are called. Most
of the software functionality is provided to the user by way of one of the functions in this
module.

• CS Manager: The transformations between different coordinate systems are handled by
this module. The user can define different coordinate systems with the function define CS.
These coordinate systems will be stored in a file, and the user can activate one of the
previously defined coordinate systems by calling the function activate CS. When a move
command is issued by the user, the provided coordinates will be transformed to the current
coordinate system before being sent to the Motion Control Module.

• Motion Control Module: This module is in charge of providing high level control for
moving the individual actuators. The functions it provides allow to send commands to
move the robot, and also to monitor if the actuators have reached their target positions.
Only this module has access to the drivers and the serial port.

• Inverse Kinematics: This module calculates the inverse kinematics of the robot, with the
function poseToAct. It requires the robot’s geometric parameters, as well as the actuators’
limits.

• Drivers [1...6]: The MotionControlUnit contains an array of six instances of the Lin-
earDriver class. The LinearDriver class implements the communication to the drivers, via
the serial port, and the six classes are managed by the MotionControlUnit.
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• TaskStorage: This module will provide methods for creating, searching, and adding com-
mand to tasks. The tasks will be stored in a file, called the Task database.

• PositionStorage: Similar to TaskStorage, the PositionStorage module will allow the user
to work with robot positions, which will be stored in a file.

• Utility functions: This module contains some helper functions that can be used by all
other modules, such as parsing numbers from strings, or logging information into a log
file.

• The Industrial Interfaces module is not implemented for this project, but it is proposed
for implementing I/O and communication of the controller software with other devices via
different communication protocols.

The arrows that connect the modules indicate the different function calls from one module to
another, and the information that is transmitted between modules.
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Figure 5.4: Detailed software architecture.
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5.3 Use cases

This section provides a detailed description of the use-cases, which were introduced in Fig. 4.4.
Each use-case is described with a table, that shows the following information:

• Use Case: The name of the use case that is being described.

• Goal in Context: A brief description of the main goal of the use case.

• Preconditions: A list with activities that must take place, of conditions that must be satis-
fied, before the use-case can be started.

• Success End Condition: Describes the state of the system after the use-case was executed
in the way that it was intended (No errors).

• Failed End Condition: Describes the state of the system after the use-case execution, in
case that an error is produced, or an unexpected situation is encountered.

In addition to the use-case table, a sequence diagram showing the flow of events and execution is
presented for each use-case. In the sequence diagram, the main components (software, hardware,
and human) involved in the use-case are shown.
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5.3.1 Description of Use Case “Read actuators position”

Use Case Read actuators position
Goal in Context Display the position of all actuators.
Preconditions The robot and controller must be connected and powered. The

communication port must be open.
Success End Condition The actuators positions are displayed on the monitor.
Failed End Condition The actuators positions are not displayed on the monitor and a

non-success message should be returned.

Table 5.1: Use case “Read actuators positions”.

Motion
Control

Command
Control

User

read_actuators()

getActuatorsPositions()

Message received

ActuatorsPosition

read actuators
command

Figure 5.5: Sequence diagram for “Read actuators positions”.
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5.3.2 Description of Use Case “Move Robot”

Use Case Move robot
Goal in Context Move the robot to a specified position.
Preconditions The robot and controller must be connected and powered. The

robot is not moving.
Success End Condition The robot reaches the specified position.
Failed End Condition The robot does not reach the specified position and a non-success

message should be returned.

Table 5.2: Use case “Move robot”.

CS
manager

Inverse
Kinematics

loop

[position not reached]

Motion
Control

Command
Control

User

transformed pose tp

CSTransform(pose)

getActuatorsPositions()

send positions to drivers

actuator positions

poseToAct(tp)

move_robot(pose)

                        move(tp)

Message received
                    Success message

move robot
command

Figure 5.6: Sequence diagram for “Move robot”.
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5.3.3 Description of Use Case “Move Actuator”

Use Case Move Actuator
Goal in Context Move an individual actuator to a specified position.
Preconditions The robot and controller must be connected and powered. The

robot is not moving.
Success End Condition The actuator reaches the specified position.
Failed End Condition The actuator does not reach the specified position and a non-

success message should be returned.

Table 5.3: Use case “Move actuator”.

loop

                      [position not reached]

Motion
Control

Command
Control

User

send move command

send move command

move_actuator(n,d)

move_actuator(n,d)

Message received
Success message

move actuator
command

Figure 5.7: Sequence diagram for “Move actuator”.
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5.3.4 Description of Use Case “Save robot position”

Use Case Save robot position
Goal in Context Save current robot position and store it in memory
Preconditions The robot and controller must be connected and powered. The

robot is not moving.
Success End Condition The position is stored.
Failed End Condition The position is not stored and a non-success message should be

returned.

Table 5.4: Use case “Save robot position”.

Position
Storage

Command
Control

User

save_robot_position(label)

writePosInFile(label, position)

Message received
position saved

Request to save
robot position

Figure 5.8: Sequence diagram for “Save robot position”.
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5.3.5 Description of Use Case “Restore robot position”

Use Case Restore robot position
Goal in Context A previous robot position of the robot is restored.
Preconditions The robot and controller must be connected and powered. The

communication port is open.
Success End Condition The position is restored.
Failed End Condition The position is not restored and a non-success message should be

returned.

Table 5.5: Use case “Restore robot position”.

loop

[position not reached]

Position
Storage

Inverse
Kinematics

Motion
Control

Command
Control

User

getActuatorsPositions()

send positions 
to drivers

actuators positions

poseToAct(label)

pose

searchPosition(label)

restore_pos(label)

                      move(pose)

Message received

                   Success message

Restore robot
to a previoulsy
defined position

Figure 5.9: Sequence diagram for “Restore robot position”.
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5.3.6 Description of Use Case “Define task”

Use Case Define a new task
Goal in Context A robot task is defined and stored in memory.
Preconditions None.
Success End Condition The task is defined and stored in memory.
Failed End Condition The task is not defined and a non-success message is returned.

Table 5.6: Use case “Define task”.

Task
Storage

Command
Control

User

task created

createTask(name)

Define_task(name)

Success message

Request to define
a task with  

a given name

Figure 5.10: Sequence diagram for “Define task”.
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5.3.7 Description of Use Case “Execute task”

Use Case Execute task
Goal in Context A preprogrammed task is executed.
Preconditions The robot and driver should be already connected and powered.

The communication port is open. The given task is already de-
fined.

Success End Condition The task is executed completely.
Failed End Condition The task is not executed completely and a non-success message

should be returned.

Table 5.7: Use case “Execute task”.

Task
Storage

Command
Control

User

Command n
executed message

Command  2
executed message

Command  1
executed message

execute command n

execute command 2

execute command 1

command_list

searchTask(label)

execute_task(label)

Success message

Request to execute
a programmed task
with a given name

Figure 5.11: Sequence diagram for “Execute task”.
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5.3.8 Description of Use Case “Define coordinate system”

Use Case Define coordinate system
Goal in Context A coordinate system is defined.
Preconditions The robot and driver should be already connected and powered.

The communication port is open. The robot is not moving.
Success End Condition The coordinate system is defined and stored in memory.
Failed End Condition The coordinate system is not defined and a non-success message

should be returned.

Table 5.8: Use case “Define coordinate system”.

CS
Storage

Command
Control

User

CS added

define_CS(name, pose)

define_CS(name)

Success message

Request to define
a coordinate system
with  a given name

Figure 5.12: Sequence diagram for “Define coordinate system”.
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5.3.9 Description of Use Case “Activate coordinate system”

Use Case Activate coordinate system
Goal in Context A previously defined coordinate system is activated.
Preconditions The robot and driver should be already connected and powered.

The communication port is open. The robot is not moving. The
coordinate system must be previously defined.

Success End Condition The coordinate system is activated.
Failed End Condition The coordinate system is not activated and a non-success message

should be returned.

Table 5.9: Use case “Activate coordinate system”.

CS
Storage

Command
Control

User

CS pose

searchCS(name)

activateCS(name)

Success message

Request to activate
the CS with 

a given name

Figure 5.13: Sequence diagram for “Activate coordinate system”.
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5.3.10 Description of Use Case “Define user home position”

Use Case Define user home position
Goal in Context The current position of the robot is defined as the user home posi-

tion.
Preconditions The robot and driver should be already connected and powered.

The communication port is open. The robot is not moving.
Success End Condition The user home position is defined.
Failed End Condition The user home position is not defined and a non-success message

should be returned.

Table 5.10: Use case “Define user home position”.

Command
Control

User

define_userhome(pose)

Success message

Request to define
current position

as user home position

Figure 5.14: Sequence diagram for “Define user home position”.
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5.4 User Interface Concept

This section describes the user interface provided for stage 1 of the CIDESI Hexapod robot. It
is a CLI and its characteristics are presented next.

5.4.1 Elements of the User Interface

The principal elements in the CLI are the commands and their arguments. With a command, the
user indicates the action that must be executed by the controller. The arguments specify how the
command should be executed.

5.4.2 Structure of command

A command is a string of text, which contains tokens separated by spaces. A token can be the
name of a command, a number, an identifier, an option, etc.

The command structure is as follows:

<command name> <argument 1> <argument 2> ... <argument n>

The first token in every command must always be the name of the command. All remaining to-
kens are arguments of a command. Some commands take no arguments, while other commands,
may require up to six different arguments. All the commands available to the user are described
in section 5.5.

5.4.3 Design of dialogues

The controller communicates the results of all operations, errors, warnings, failure conditions,
etc., through text messages (displayed on the terminal) or log files when the program is running.
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5.5 Controller commands

The functions provided to the user are called via commands. The commands are divided into
logical groups, and each command is described in detail, explaining the command’s function, it’s
input parameters. Because the command will be entered as a text string by the user or external
system, a command parser able to define multiple parameters and flags is considered.

5.5.1 List of user commands

Table 5.11 shows the commands that were implemented in this project, as well as the require-
ment they fulfill. Some commands are not related to a particular requirement, they were added
to the system in order to allow for testing, measurement and calibration of the robot and the
actuators.

Table 5.11: List of Controller Commands

Requirement Command name and description
Information and help commands
help - Print help
info - Print info

6.3.6 Manual mode commands
6.3.3, 6.3.4, 6.3.5,
6.3.8, 6.3.9,

move - Move robot

6.3.1, 6.3.11,
6.3.24

move-actuator - Move individual actuator

move-csv - Move to positions indicated in CSV file.
move-lengths - Move actuators to specified lengths.
Robot positions commands
read-actuator - Read actuator values

6.3.19, 6.3.22 save-position - Save robot position
6.3.19, 6.3.22 restore-position - Restore robot position
6.3.22 delete-pos - Delete position from database
6.3.19 list-saved-pos - List saved robot positions

Home position commands
6.3.12 move-uhome - Move robot to user-defined HOME position
6.3.14 move-home - Move robot to universal HOME position
6.3.14 save-position-home - Define current position as user-HOME position
6.3.6 Automatic mode commands
6.3.6 task-define - Define task with a given name
6.3.6 task-execute - Execute task
6.3.6 task-list - List declared tasks

Coordinate systems commands
6.3.16 cs-define - Define coordinate system

Continued on next page

51



CHAPTER 5. CONTROLLER DETAILED DESIGN

6.3.17, 6.3.20 cs-set - Activate coordinate system
6.3.16 cs-list - List coordinate systems
6.3.16 cs-delete - Delete coordinate system

Additional commands
6.3.13 exit - Exit (Power off procedure)

sleep - Wait for specified amount of milliseconds.
driver-info - Display information of a driver device.

This chapter presented the design stage of the controller. This included hardware, software, and
the design of the system operation, by means of use-cases and a set of software commands. After
the design phase was completed, the implementation phase is presented in the next chapter.
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Chapter 6

Controller implementation

This chapter describes the implementation of the system. First, it is described the wiring and
connection of hardware components. Then, the software implementation is presented. It is
given a detailed description of the classes that were developed, as well as additional tools for
generating the source code.

6.1 Controller electrical connections and wiring

In this section it is described the controller board prototype that was developed, and its related
connections with the power supply, and the robot.

6.1.1 Controller board connections

The connection diagram of the actuators, drivers, power supply, and PC was presented in sec-
tion 4.2. In order to connect and wire all these components, an experimental prototype was
developed. It is shown in Fig. 6.1.

A plastic plate was used to fix all components. This material was used because, unlike wood,
acrylic, or metal, it is easy and fast to cut and make holes to fix components to it. The larger
components were placed and fixed to the plate, making sure that there is enough space for wires
and that the USB cable can be plugged to every driver, for configuration of the drivers.

For the connection of the power supply channels, the communication lines of the jrk drivers, and
the AND gate circuit, three protoboards were used.

Every actuator requires five wires, which must come from the drivers in the controller board. The
controller board and the robot are joined together by two 20-wire cables. In order to connect the
actuators with the cable, and the controller to the cable, six 12-point terminals were used: three
on the robot side, and three on the controller side. This provides 36 connections, but only 30
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Power
Supply 1

Power
Supply 2

AND
gate

Connection
terminals

USB
connection

Figure 6.1: Preliminary assembly of critical components of the CIDESI Hexapod controller.

are needed for the six actuators. The remaining connections can be used for other purposes in
future development of the system.

6.1.2 Power supply connections

At the time of testing the actuators and testing the robot, a power supply able to deliver the
current for all actuators at maximum load was not available. Therefore, two Laboratory DC
power supplies were used together to power the actuators. Together, they are able to supply 12
Amp at 12 V, which is enough for the purposes of basic testing of the system without load.

6.1.3 Robot electrical connections

The bottom part of the robot’s base frame is designed to contain the electrical connections that
will go from the actuators to the controller board. In order to connect the actuators to the 20-wire
cables, three 12-point terminals were used, as shown in Fig. 6.2. One cable connects actuators
1,2, and 3, and the other cable connects actuators 4, 5, and 6. The remaining cables were not
cut, because they may be used in future development of the system.
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5 6

1

23

4

Figure 6.2: Robot electrical connections

6.2 Software implementation

In this section it is presented the implementation of the software modules for this thesis project.
These modules were implemented as C++ classes, whose internal parameters can be read from
a configuration file and initialized inside a class constructor. Communication between classes is
achieved by allowing class methods to call other methods from other classes.

Additionally, there are other software modules which only contain helper functions, such as
those needed for parsing strings, or logging events and errors in a log file. The functions provided
by these modules are available to all classes. The software modules are:

• CommandControlModule

• CS Manager

• TaskStorage

• PositionStorage

• InverseKinematics

• MotionControlUnit

• Parameter

• Driver family:

– DeviceDriver

– AxisDriver
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– LinearDriver

• arduinoDriver

• rotatorDriver (additional module not used in this work)

The next section presents a class diagram of each module, as well as a description of the most
important class members. Methods such as getters/setters or debugging information methods
are not shown.

6.2.1 Software module “CommandControlModule”

This module implements all the commands available to the user. As its name suggests, its func-
tion is to receive commands from the user, process them, and perform the appropriate functions.

This module provides the function CLInterpreter, which receives commands in the form of text
strings. The command is analyzed, and depending on its contents, one of the different available
functions is called. Most of the functions return a message code, which informs the Command
Line Interpreter if the command was executed successfully, or if there was a problem or error.
This message code is then taken by the Message Interpreter, which writes detailed information
about the program execution to a Log File, and displays the information back to the user’s
terminal.
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CS_ManagerPositionStorageTaskStorageMotionControlUnit

CommandControlModule
- MCU: MotionControlUnit*
- TS: TaskStorage*
- PS: PositionStorage*
- CS: CS_Manager*
- lastPos: vector<double>
- universalHome: vector<double>
- userHome: vector<double>
- lastCommand: string
+ CommandControlModule(
          MCU: MotionControlUnit*,
          TS: TaskStorage*,
          PS: PositionStorage*,
          CS: CS_Manager*)
+ CLInterpreter(str_cmd: string): unsigned int
+ printInfo(): void
+ MoveRobot(
          x: double,
          y: double,
          z: double,
          r: double,
          p: double,
          w: double): unsigned int
+ MoveLengths(
          l1: double,
          l2: double,
          l3: double,
          l4: double,
          l5: double,
          l6: double): unsigned int
+ move_actuator(n: string, d: string): unsigned int
+ ReadActuatorsValues(void): unsigned int
+ SaveRobotPosition(name: string): unsigned int
+ DeleteRobotPosition(name: string): unsigned int
+ RestoreRobotPosition(name: string): unsigned int
+ ListPositions(void): unsigned int
+ MoveCSV(pos_filename: string, dt: string): unsigned int
+ GoToUniversalHome(void): unsigned int
+ GoToUserHome(void): unsigned int
+ DefineUserHome(void): unsigned int
+ DeleteUserHome(void): unsigned int
+ DefineTask(name: string): unsigned int
+ AddToTask(name: string): unsigned int
+ ExecuteTask(name: string): unsigned int
+ ListTasks(void): unsigned int
+ DeleteTask(name: string): unsigned int
+ DefineCS(name: string): unsigned int
+ RedefineCS(void): unsigned int
+ ActivateCS(void): unsigned int
+ ListCS(void): unsigned int
+ DeleteCS(name: string): unsigned int

 «uses»«uses»«uses»«uses»

Figure 6.3: Class diagram for module CommandControlModule
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6.2.2 Software module “CS Manager”

The Coordinate System Manager transforms the coordinates given by the user in the active
coordinate system to absolute or world coordinates. Internally, this module stores a coordinate
system, called the active coordinate system. The private field active cs name contains the name
of the active coordinate system, and the coordinates of the coordinate system are stored as a
vector of real numbers. This module provides the three important functions:

• define CS: The user calls this command providing a name, and the current pose of the
robot is stored as a coordinate system with the given name as identifier in the Coordinate
System Database file.

• activate CS: The user calls this command providing the name of a previously defined
coordinate system. The coordinate system is searched in the Coordinate System Database,
and if it is found, it is set as the active coordinate system.

• CSTransform: This function takes a pose object in the active coordinate system, and trans-
forms it to a pose in absolute coordinates.

The coordinate systems are stored in a file, whose contents are read when the class is constructed,
with the method read CS file. This method stores the contents of the file in the private member
w, as a 2D vector of strings. Other methods for getting the active CS and deleting CS from the
file are also provided.

< < t y p e d e f > >
v2Dstr ing: vector<vector<str ing>>

CS_Manager
- CS_filename: string
- active_CS: vector<double>
- active_CS_name: string
- w: v2Dstring
+ CS_Manager(filename: string)
+ define_CS(label: string, position: vector<double>): void
+ read_CS_file(): unsigned int
+ activate_CS(label: string): bool
+ CSTransform(&pose_in: vector<double>, 
                         &pose_out: vector<double>): unsigned int
+ getCSData(&CSs: v2Dstring): unsigned int
+ getActiveCS(&name: string, &coords: vector<double>)
+ deleteCS(label: string)

< < u s e s > >

Figure 6.4: Class diagram for module CS Manager.
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6.2.3 Software module “TaskStorage”

This class provides the facilities for defining tasks, executing tasks, and adding commands to
tasks. This was accomplished by using the class TaskStorage and providing three basic functions
to the user:

• CreateTask: This function takes a name as argument. A new task is saved in the Task
Database with the given name as the name of the task.

• TaskEntry: After executing a command, such as moving the robot or activating a coordi-
nate system, the user may call this function, providing the name of a previously defined
task. This will add the last executed command as an entry to the body of the given task.

• SearchTask: The user provides the name of a previously defined task, and the function
returns all the commands that have been stored for this task.

The tasks are stored in a file, whose contents are read and loaded into the private member file-
Contents when the constructor of the class is called. There are methods for creating, deleting,
and searching tasks. The method taskEntry allows to associate string commands under a given
task.

< < t y p e d e f > >
v2Dstr ing: vector<vector<str ing>>

TaskStorage
- filename: string
- fileContents: v2Dstring
+ TaskStorage(filename: string)
+ createTask(taskName: string): unsigned int
+ taskEntry(taskName: string, 
            command: string): unsigned int
+ readTaskFile(): unsigned int
+ searchTask(taskName: string, 
             &commands: vector<string>): bool
+ deleteTask(label: string): bool

< < u s e s > >

Figure 6.5: Class diagram for module TaskStorage.
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6.2.4 Software module “PositionStorage”

This module provides functions for storing and searching robot positions.

Similar to the TaskStorage class, its contents are loaded from a file and stored in the private
variable w.

The PositionStorage class supports addition, search and deletion of positions from the database,
with the public methods writePosInFile, searchLabel, and deletePosition, respectively.

Before a position is added to the file, it is first searched, and if it is found, an error is reported.
If the position is not found, only then it is added to the file. In order to delete a position, it is
searched by iterating the w vector, not the file. If it is found in the w vector, it is removed from
there, and then the new vector without this position is stored in the file.

The method readCSVPos was not considered in the original software architecture nor in the
requirements, but it was added for testing purposes. This method allows reading positions from
a file as comma-separated-values (csv).

< < t y p e d e f > >
v2Dstr ing: vector<vector<str ing>>

PositionStorage
- filename: string
- w: v2Dstring
+ PositionStorage(filename: string)
+ writePosInFile(label: string, 
                 servoposition: vector<double>): void
+ readPosFile(): unsigned int
+ searchLabel(label: string,
              &servos_position: vector<double>): bool
+ getPosData(&positions: v2Dstring): unsigned int
+ deletePosition(label: string): bool
+ readCSVPos(pos_filename: string, 
             &positions: v2Dstring): unsigned int

                    <<uses>>

Figure 6.6: Class diagram for module PositionStorage.
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6.2.5 Software module “InverseKinematics”

This module applies the inverse kinematic algorithm in order to calculate the required actuator
lengths for a desired robot pose. To do this, the module requires the geometry of the robot and
other data. This information can be loaded to the class with the public method loadParameters,
or with the provided constructor.

The function poseToAct converts a pose of the robot (in cartesian coordinates) to the required
actuator lengths. The implementation of this function is described in more detail in section
6.2.11.

«struct»
hex_config

+lengths: double[0..5]

«struct»
pose

+x: double
+y: double
+z: double
+roll: double
+pitch: double
+yaw: double

InverseKinematics
- rp: double
- rb: double
- tP: double
- tB: double
- min_length: double
- max_length: double
+ InverseKinematics(
          rp: double,
          rb: double,
          tP: double,
          tB: double,
          min_length: double,
          max_length: double)
+ loadParameters(
          rp: double,
          rb: double,
          tP: double,
          tB: double,
          min_length: double,
          max_length: double): unsigned int
+ poseToAct(p: pose, &out: hex_config): unsigned int

«uses»
«uses»

Figure 6.7: Class diagram for module InverseKinematics
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6.2.6 Software module “MotionControlUnit”

This module provides an interface between high level commands, such as move, and the required
low level implementation of the drivers. This is done by creating one instance of the linearDriver
class for each actuator, and storing a reference to each instance in an array, so that the drivers
can be accessed with a loop. This class calls the poseToAct method from the inverse kinematics
module in order to convert the pose to actuator lengths. For this reason, a reference to the
InverseKinematics class must be defined.

The interface consists of six public methods:

• getActuatorsPositions: This method reads the position of the six drivers, and then returns
this information.

• move check: This function receives a pose object in cartesian coordinates, and calls the
poseToAct method to calculate the required actuator lengths. After obtaining the lengths,
this method will make the appropriate low level driver calls to ensure that the robot has
moved to the desired position, before returning.

• move noCheck: This function works similar to move check. The only difference is that
after sending the drivers their target positions, the function returns immediately and does
not check if the actuators reached their goal positions.

• move actuator: This function takes as arguments the name of an actuator (1 to 6) and a
distance in millimeters. Then the robot moves the actuator to the specified position, and
waits until the actuators reached their destination.

• displayDriverErrors: This function reads the error flags on the drivers, in order to provide
the user with diagnostic information in the case of errors.

• move l: Moves the robot providing the actuators lengths instead of cartesian coordinates.
This function was added to the system for testing purposes.
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InverseKinematicslinearDriver

«struct»
hex_config

+lengths: double[0..5]

MotionControlUnit
- drivers: linearDriver*[6]
- inv_kin: InverseKinematics*
+ MotionControlUnit(*invkin: InverseKinematics, 
                    serialPortNum: int)
+ getActuatorsPositions(void): hex_config
+ move_check(config: hex_config): unsigned int
+ move_noCheck(config: hex_config): unsigned int
+ move_actuator(n: int, d: double): unsigned int
+ displayDriverErrors(n: int): void
+ move_l(lengths: vector<double>): unsigned int

«uses»

«uses»«uses»

Figure 6.8: Class diagram for module MotionControlUnit.

6.2.7 Software module “Parameter”

This module allows parsing numerical parameter values from a file. The way it works is by
calling its public method readList, which accepts the name of a file containing parameters and
their respective values. When called, readList creates and initializes one instance of the para-
meter class for each parameter in the given file. Each instance of this class contains the private
members name and value. These are the name of the parameter, and its associated numerical
value. These instances are then pushed into the static vector list.

A static private iterator allows the methods of the class to iterate over the class instances (where
each instance is one parameter). In order to get the value of a particular parameter, the public
method getValOf is provided. The method show params displays all the parameters that have
been pushed into the list vector.

For this class, the only constructor of the class is declared private. This means that this class
cannot be instantiated from outside of itself. Only its static method readList can create instances
of this class.
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Parameter

- l ist:  vector<parameter*>
- i t :  vector<parameter*>:: i terator
- name: string
- value: double

- Parameter(name: string, value: double)
- info(void): void
+ readList(configFile: string): unsigned int
+ getValOf(name: string): double
+ show_params(void): void

Figure 6.9: Class diagram for module Parameter.

6.2.8 Software module “LinearDriver” and its superclasses

The current phase in the development of the controller software only requires one serial con-
nection to the jrk drivers. However, the complexity of the system is expected to increase as the
project develops, with the addition of multiple devices, and communication interfaces. In order
to manage the code for different devices, different classes were developed in a family of classes
that consists of three classes: DeviceDriver, AxisDriver, and LinearDriver. This family is shown
in Fig. 6.10.

The class that implements communication with the jrk drivers is the class LinearDriver. It is a
derived class from AxisDriver, which at the same time is a derived class from DeviceDriver.

This family of classes has been designed as part of the CIDESI Hexapod project by the research
and development group at CIDESI. The development of this family of classes is intended for
future development of the system as well as integration with other devices.

6.2.8.1 DeviceDriver class

The base class, DeviceDriver, has the purpose to manage hardware devices. It provides methods
which are general to any type of device, such as installation, uninstallation, isAvailable, etc. It
also provides protected members in order to restrict access to them only to itself and its derived
classes. Since the implementation of these general methods is still specific to each device, they
are declared virtual, which means that the class DeviceDriver expects to find implementations
of these methods in its derived classes.

6.2.8.2 AxisDriver class

This class is responsible for managing specifically axis type devices, e.g. linear actuators, mo-
tors, etc. Therefore, it provides methods that are specific to axis devices, such as those for
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obtaining position readings, and conversions from digital readings to actual position interpreta-
tion of those readings. Similar to DeviceDriver, the actual implementations of these methods
are specific to the axis device, and for these reason, these methods are declared virtual, and their
implementations are delegated its derived classes.

6.2.8.3 LinearDriver class

This class contains the implementations of all methods that are specific to the jrk21v3 drivers.
It inherits all fields and methods from its parent classes, and is responsible for implementing
virtual methods that were declared in its super classes.

One important aspect of this class is that, while six instances of this class are required for the six
actuators, only one serial port is used between them. Moreover, installation and uninstallation
procedures require the port to be open if at least one actuator is installed, and closed when no
more actuators are installed. This means that some fields and methods are not specific to one
instance of the LinearDriver class, but rather are common to all instances. These class members
are declared static, which will allow to have only one copy of them, shared among all instances
of the class.

Some public methods are provided by this class, such as servo2axisLowLevel, moveServo, etc.
However, for the actual use of the drivers, it is more convenient to call the methods of its super
classes AxisDriver and DeviceDriver: move, getPos, isMoving, On, Off, installation, etc.

The private methods jrkGetVariable, jrkGetInput, etc., are low level functions that write to and
read from the serial port.
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Figure 6.10: The driver class hierarchy.
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6.2.9 Software module “arduinoDriver”

This class is aimed to manage an Arduino board as LED panel. It is a derived class from
DeviceDriver. In addition to the implementation of the virtual methods declared in its parent
class, the arduinoDriver class provides one additional method called dwrite, which allows to
write digital values to the ports of the Arduino.

arduinoDriver

+ deviceIndex: int
- device: string
- fd: int

+ onProcedure(void): bool
+ offProcedure(void): bool
+ testProcedure(void): bool
+ installationProcedure(void): bool
+ uninstallationProcedure(void): bool
+ dwrite(pin: int, bit: bool): bool

DeviceDriver

#name: str ing
#isEnabled: bool
#isInstalled: bool
#isCalibrated: bool
#isOn: bool
#*pCronOn: Chronometer

+DeviceDriver()
+installation(): int
+uninstallation(): int
+calibration(): int
+On(): int
+Off(): int
+basicInfo(): void
+test(): bool
+testProcedure(): bool
+installationProcedure(): bool
+unInstallationProcedure(): bool
+calibrationProcedure(): bool
+onProcedure(): bool
+offProcedure(): bool
+isAvailable(): bool

Figure 6.11: Class diagram for module arduinoDriver

6.2.10 Additional class “rotatorDriver”

This class was not used in this project, but it has been used in other projects that use devices with
rotary movements. It can be suitable for future robotics projects such as robot arms or mobile
robots.

The class rotatorDriver is a derived class from DeviceDriver.
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DeviceDriver

#name: str ing
#isEnabled: bool
#isInstalled: bool
#isCalibrated: bool
#isOn: bool
#*pCronOn: Chronometer

+DeviceDriver()
+installation(): int
+uninstallation(): int
+calibration(): int
+On(): int
+Off(): int
+basicInfo(): void
+test(): bool
+testProcedure(): bool
+installationProcedure(): bool
+unInstallationProcedure(): bool
+calibrationProcedure(): bool
+onProcedure(): bool
+offProcedure(): bool
+isAvailable(): bool

rotatorDriver

- baudNum: int
- deviceIndex: int
- CommStatus: int
- A: double
- B: double
- speed: int
- speedPercentage: int
- lastReadPos: double
- moving: bool

+ rotate(goalPosition: double,
         speedAsPercentage: double): bool
+ getPos(void): double
+ isMoving(void): bool
+ stop(void): bool
- getServoPos(void): int
- servo2rotator(pos: int): int
- rotator2servo(pos: double): int
- installationProcedure(void): bool
- uninstallationProcedure(void): bool
- testProcedure(void): bool
- isAvailable(void): bool

Figure 6.12: Additional class rotatorDriver

6.2.11 Automatic C/C++ Code Generation with MatLab Coder

Some of the controller’s software modules, like the inverse kinematics, require the use of ad-
vanced mathematical functions, such as matrix multiplication, norm and vector product. While
there exist libraries for C++ that provide functions to perform these operations, their use is
somewhat difficult, and their syntax is complicated.

MatLab has a tool called Coder, which allows the generation of C/C++ source code from stan-
dard .m files. Coder takes a matlab function as input, and produces a header file with the function
declaration, a source file with the function definition, a sample test program, and other header
files with data types definitions, for use in different platforms.

The function that calculates the inverse kinematics was generated using this approach. The
inverse kinematics is programmed as a function in an m-file. The inputs for this function are the
parameters of the robot and the desired position. The outputs of the function are the actuators’
lengths.

Some considerations must be taken into account when generating source code from .m files:

• There are some MatLab functions for which code generation is not supported.

• The function must be programmed in a particular way to let MatLab infer the data types
for the function arguments and local variables used in the code. For instance, matrices and
vectors with constant dimensions should be initialized (pre-allocated) inside the function
before being used.
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• Arrays and matrices that change their size dynamically can be used. However, the result-
ing code is more complicated and, where possible, should be replaced by fixed size arrays
and matrices.

• If the function returns more than one value or number, the generated C function will be of
type void and the return values will be listed as input values passed by reference.

After running Coder, the resulting header file was integrated in the inverse kinematics class
header file (inverse kinematics.h), and the implementation of the function was added to the
source file (inverse kinematics.cc). The MatLab funtion that implements the inverse kinematics
algorithm is shown in Appendix B.

In this chapter, the implementation of the controller was presented. The mechanical structure
was assembled, and an experimental connection board was developed. The software modules
had the required functions that were presented in the software architecture, plus additional me-
thods that were necessary for initialization, testing, etc. Finally it was described the code gene-
ration for the inverse kinematics function, using MatLab Coder.
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Chapter 7

System testing and documentation

This chapter describes the testing and documentation phases of the project, as well as the tools
that were used to accomplish these tasks.

7.1 Testing of the source code

Following the V Model for the project development, when the architecture has been designed, it
is time to move to writing the code for the software. One of the most important activities in the
later phases of development is performing tests on the hardware and software.

Testing consists of conducting specific actions in order to verify the operability, supportability,
or performance capability of an item when subjected to real or simulated controlled conditions.
The results obtained are then compared with the anticipated or expected ones [24].

7.1.1 Testing levels

Software development involves different abstraction levels: modules or components which may
be developed for the specific system or reused from previous systems or libraries, subsystems,
which are obtained by integrating sets of related components, and the final system, which is
obtained by assembling components and subsystems in an application that satisfies initial re-
quirements. Testing is performed at different levels [25]. The following testing levels are distin-
guished:

1. Module (unit) testing: Modules or components are first verified in isolation usually by the
developers who check that the single modules behave as expected.

2. Integration testing: It may happen that subtle failures are caused by unexpected interac-
tions among well-designed modules. Integration testing deals with many communicating
modules. Most integration testing strategies suggest testing integrated modules incremen-
tally.
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3. System testing: Module and integration testing can provide confidence on the quality of
the single modules and on their interactions, but not about the behavior of the overall sys-
tem. Therefore, it is needed to complete the verification and validation process by testing
the overall system against its specifications and requirements. System testing verifies the
correspondence between the overall system and its specifications.

4. System Validation: Also called Acceptance testing. While system testing verifies the
correspondence between the overall system and its specifications, the System Validation
verifies the correspondence between the system and the user’s expectations.

System and acceptance testing consider the behavior of the overall system in its functional and
non-functional aspects. Module and integration testing are largely based on the internals of the
software, which is hardly accessible to the user.

7.1.2 Unit and integration tests framework

Google Test is a testing library for the C++ programming language. Some of the features of
Google Test include a rich set of assertions, ability to run some or all tests at once, fatal and
non-fatal failures, and XML test report generation.

This framework was used to perform unit and integration tests for the different software modules.

7.1.2.1 An example of a test program

The following example demonstrates how to write a test program using the Google Test frame-
work.

1 // foo.h provides function addInts.

2 #include "foo.h"

3 #include <gtest/gtest.h>

4

5 // Declare a test

6 TEST(TestSuite , addPositiveInts) {

7 ASSERT_EQ (5, addInts(2, 3));

8 }

9 // Declare another test

10 TEST(TestSuite , addNegativeInts) {

11 ASSERT_EQ(-2, addInts(-2, 0));

12 }

13

14 // Run all tests declared with TEST()

15 int main(int argc , char ** argv) {

16 testing :: InitGoogleTest (&argc ,argv);

17 return RUN_ALL_TESTS ();

18 }

Listing 7.1: Example code for writing test with Google Test

After compiling and running the program, we get the output shown in Fig. 7.1:
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Figure 7.1: Results of running a test program

Google Test runs all the test cases, and summarizes the results of all tests. The advantage of
Google Test is that whenever a change is made to the source code, or a new feature is added, the
tests can be executed again and if one or more tests fail, this means that an error was introduced
in the code. The process of unit testing the software can be automated by writing a test program
for every software module (unit testing), and rerunning all tests whenever the source code is
recompiled.

7.1.2.2 Automated tests for the project

Table 7.1 describes all the automated tests that were written for this project using Google Test.
Most modules were tested with different types of valid and invalid input, and under many dif-
ferent conditions, such as attempting to open non-existent files.

The module LinearDriver was not tested with Google Test, because its functions are closely
related to the communication interface, serial port, and the jrk21v3 drivers. Instead, it was
tested manually.
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Table 7.1: Automated tests for the software modules

Function name Test summary
Module: PositionStorage
PositionStorage Invalid constructor parameters.
writePosInFile Write to an existent file.
readPosFile Read from existing file.
searchLabel Search an existing label.
searchLabel Search a non-existing label.
getPosDB load the contents of the database to RAM.
deletePosition Delete an existing position from the DB.
deletePosition Attempt to delete a non existing position from the DB.
readCSVPos read robots positions contained in a CSV file.
Module: TaskStorage
TaskStorage Empty constructor.
TaskStorage Non-empty constructor.
readTaskFile Read the contents of a file and load them to the objects list.
searchTask Search an existing task.
searchTask Search a task that does not exist in the task DB.
createTask Create a new task.
Stringlist.TruncateToFile Method added to add commands to tasks.
deleteTask Delete a task and all its contents.
Module: InverseKinematics
InverseKinematics Default constructor.
InverseKinematics Non-empty constructor.
loadParameters Set parameters after construction.
poseToAct Inverse kinematics algorithm calculation. Results are compared

with MatLab script results.
poseToAct Calculating the inverse kinematics with an unreachable position.
Module: parameter
readList Read an existing configuration file.
readList Read a non-existing configuration file.
readList Reading an existing file more than once.
readList Reading a file with the wrong format.
getValOf Attempt to find the value of a parameter that was not defined.
show params Display parameters and their values.
Module: CommandControlModule
CLInterpreter Testing command with no arguments.
CLInterpreter Testing command with more than once arguments.
CLinterpreter Testing appropriate call to move robot function.
CLinterpreter Testing command with wrong number of arguments.
CLInterpreter Testing command with correct number of arguments.
Module: CS Manager
CS Manager Non-empty constructor

Continued on next page
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define CS Define correct CS.
activate CS Activate CS given an existing label.
activate CS Attempt to activate a non-existing CS.
getActiveCS Get the name and definition of the active CS, when one has been

defined.
getCSData Read all the CS data from a file.
Module: utilities
isRelative Parse numbers written as relative (Total 17 test cases).
isPercent Parse number written as percent (Total 8 test cases).
Module: MotionControlUnit
MotionControlUnit Constructor.

7.1.3 Manual testing

While it is easy and convenient to write automatic tests for individual modules, this is not always
the case for higher levels of testing, such as system and acceptance testing. This is because in
those levels, many things happen in a test case, or because there are interactions with other
hardware components. For instance, when executing a robot task, there are multiple events
that happen, such as searching for a given task, calculating inverse kinematics, moving the
actuators, etc. It would be very time consuming and difficult to write a program that keeps track
of execution and ensures all these operations are performed.

Instead, the preferred approach is to perform system and integration tests manually, and verify
that the system behavior corresponds with the expected one. This was done by testing the fea-
tures of the system manually, and ensuring that the behavior of the system matches the behavior
specified in the different use cases and sequence diagrams.

However, the use case diagrams only specify best-case scenarios and show a flow of execution
where all elements work correctly. Additional conditions were tested, such as running the soft-
ware without powering the drivers, or when a wrong port is specified. This information was
added to the user manual (Appendix A) as troubleshooting information.

7.2 Documentation of the source code

Technical systems and engineering projects are usually upgraded to add new functionality to an
existing system, repurposed to fit a similar need, or have their components reused for a different
application. For this reason, it is very important in the projects development lifecycle to write
documentation. When the system is upgraded, changed, or a component is reused, reading the
documentation will provide an understanding of how the system works, and what actions need
to be done in the source code.

Traditionally, software documentation is written in the form of comments in the source code
files of a project.
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For this thesis project, the program Doxygen was used to document the code [26]. Doxygen
reads the comments in the source files, and generates an online documentation browser (in
HTML) and/or an off-line reference manual (in LATEX).

7.2.1 Different types of documentation

With Doxygen, it is possible to document source files, classes, structs, class members (methods
and fields), etc. In addition to this, Doxygen automatically generates inheritance diagrams,
dependency graphs, and collaboration diagrams, in order to visualize the relationships between
various elements.

It is also possible to create documentation in formats other than C/C++ comments. For example,
a mainpage can be created in a separate file, using markdown syntax.

7.2.2 Documentation Example

The following example shows how to write comments in order for Doxygen to generate the
documentation from them.

1 /**

2 * \file doxy_example.cpp

3 * \brief Example of Doxygen style comments.

4 *

5 * This file shows how to write comments in a source code file in order

for Doxygen to correctly generate documentation from them.

6 * \author Jose Luis German Felix

7 */

8

9 #include <stdio >

10

11 /**

12 * \class ExampleClass

13 * \brief A class for demonstrating Doxygen comments.

14 */

15 class ExampleClass {

16 public:

17 /**

18 * Add two numbers.

19 * \param a the first number to add.

20 * \param b the second number to add.

21 * \return the sum a + b.

22 */

23 int add(int a, int b) {

24 this ->n++;

25 return a + b;

26 }

27 private:

28 /**

29 * Counts the number of times the function add has been called.
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30 */

31 int n {};

32 };

Listing 7.2: Example code for writing Doxygen style comments

7.2.3 Source code documentation

The main page for the source code documentation is shown in Fig. 7.2. It is useful for document-
ing general information, such as an introduction to the code, instructions on how to compile, run
and modify the code.

Figure 7.2: Main page for the source code documentation.

There is a menu bar with five buttons: Main Page, Related Pages, Namespaces, Classes, and
Files. The Main Page, as its name suggests, directs the user to the start page of the documenta-
tion. The Related Pages button displays a list of files that are not source code files, but contain
documentation. The Namespaces button displays all namespaces that are used in the project.
The most important is the Classes section, shown in Figure 7.3. It contains a list and brief
description of all classes in the project. It is possible to list the classes alphabetically or as a
Hierarchy diagram, which shows the inheritance relation between the different classes. Addi-
tionally, the browser allows to list all class members in the project.
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Figure 7.3: Classes section for the project documentation.
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Finally, the Files section, shown in Figure 7.4, displays all the files that were parsed by doxygen,
and the directory structure. It shows the documentation of files that don’t implement classes, but
implement useful functions for other classes to use.

Figure 7.4: Files section for the project documentation.

This chapter described the two important activities that in the development of the system. Many
forms of testing were performed in order to assure that the software has as few errors as possible,
and that the overall system fulfills the requirements.

Documentation involved the creation of documents that can be used as reference for the user
of the system, and for future developers of the system. The different software tests that were
developed are also an effective form of documentation, because the developers can see what
features the modules have, how they are used initialized, and how the modules react against
errors. The development of tests also ensures that new features can be added to the code base,
without breaking the existing ones.
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Chapter 8

Results

In this chapter, the results achieved are presented, as well as some problems and limitations that
were encountered during the system development.

8.1 Software highlighted features

Regarding the development of the controller software, the following results were achieved:

• The controller software manages the movement of the robot by communicating with the
jrk21v3 drivers via the serial port.

• The positions for the robot can be specified with coordinates, from a previously stored
robot position, or by reading a file that contains robot positions. Additionally, the actuators
lengths can be specified.

• The user can program robot tasks. These are based on previously executed commands and
they are stored in a task database.

• The user is able to define a user home position and move the robot to the user or the
universal home position.

• The user is able to define, edit and delete coordinate systems. However, the coordinate
system transformation was not implemented, and only the base coordinate system is used.

• The user is able to define, edit, and delete robot positions.

• Different functionalities were added for setting parameters, and for calibrating the actua-
tors.

• A user manual was created (see Appendix A), as well as an online source code documen-
tation, for future developers of the software.

• The source code is thoroughly documented in the form of a web browser, which contains
useful information about the different modules, as well as instructions on how to compile,
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CHAPTER 8. RESULTS

run, modify and extend the functionality of the program.

8.2 Path following of the robot

A function was developed to read robot positions from a file, and send them to the drivers at a
given time interval between each move command. The robot positions for a given trajectory are
calculated in MatLab and saved as a csv file, which is then read by the controller.

This function allows to test the possibilities of the robot to follow different paths. The different
robot positions can be precomputed in MatLab, and by selecting a suitable time interval, the
robot can follow the desired path. By commanding a precomputed trajectory, and measuring the
robot’s actual positions, it is possible to use this functionality for parameter identification of the
actuators.

8.3 Robot workspace

The robot workspace was explored by moving the robot to extreme positions, where the me-
chanical elements (joints) are close to colliding with each other. The mobility tests show that
the robot workspace is not only limited by the actuators’ lengths, but also by the mechanical
limits of the joints. For this reason, it is needed to develop code that prevents the robot from
positions that might damage its mechanical components, even if the actuators are capable to
reach this position. This work is still in progress.
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Chapter 9

Conclusion

In this chapter, the thesis conclusion is presented, and then future work advice is given.

9.1 Project Conclusion

The aim of this thesis project was the design and implementation of a robot controller. This
included hardware, software, and communication interfaces.

However, the main contribution in this project was in the development of the controller software.

This was achieved by using a Systems Engineering approach and applying the V Model. The
systems requirements and concept of operations were the input to this thesis work. The ana-
lysis of the requirements, and consideration of available resources led to the development of a
preliminary software design.

This preliminary design was then refined into a detailed software architecture. The software, as
well as the system, was developed, tested, and a system verification was performed.

As a summary, most of the requirements were fulfilled given the time and resources available.
There were some problems related to the mechanical design, as well as some limitations with
the current drivers. Nevertheless, the controller accomplished its objective to provide basic
functionalities for demonstration and experimental purposes.

9.2 Future Work

The following are possible future tasks related to the development of the CIDESI Hexapod
project. Some of these tasks are needed in order to solve some of the problems and limitations
that were discussed in chapter 8, while other are related to providing additional functionality to
the system.
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CHAPTER 9. CONCLUSION

• Addition of Real Time support in Linux by way of using a real time patch for the Linux
kernel, e.g. RTAI. The review of literature showed that a lot of research in robotics is
being focused in the use of real-time operating systems. Moreover, specific applications
(medical, safety), have hard-real time requirements of the system. The addition of real-
time support will allow the application of the system in real-time applications.

• Integration of the software with ROS. Some applications, such as collaborative robotics,
require the use of simulated environments, in order to test that the robots behave as ex-
pected. ROS may be required for some of these applications, especially if the Hexapod is
expected to work together with another robot.

• Integration of the robot with the CIDESI Linear actuator. Improved actuators and drivers
are considered for the following phases of the system.

• Implementation of a Teach Pendant, by way of an Android application. This task is con-
sidered for future phases of the system.

• Integration of the robot with different technologies. With a working prototype of the robot,
it is possible to research different applications and integration with different technologies,
such as Industry 4.0, and Internet of Things, by using an external or automated system to
command the robot to perform different tasks.

• Implementation of a GUI to facilitate the system usage. A GUI may be implemented in
order to facilitate the use of the robot to an operator and make the software more intu-
itive to use. Some previous works in this area have been developed by members of the
automated systems department, in CIDESI.
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Table 1: Document version control

Version Date Notes/changes
0.1 2018.08.18 First version
0.6 2018.17.18 Added section: SW installation and minor

changes in structure

1 Introduction

The CIDESI Hexapod is a robotic system based on the Stewart Gough platform design.

This user manual contains all information needed to operate the robotic system. This information
includes hardware connections, power-up procedure, robot operation via the controller software,
power-off procedure, and troubleshooting.

2 Hexapod system components

The Hexapod Robotic System includes the following components:

• Mechanical structure

• Robot controller

• Power supply

• Controller software (PC not included)

3 Hardware setup and connection

Before powering any device, please make sure that all devices and sub-systems are correctly
connected.

Unless the controller cabinet is rewired or the robot is disassembled and reassembled, the usual
connections that must be checked are the USB cable from the master driver, the cable and con-
nections between the mechanical structure and controller, and the power supply connection.

4 Power ON procedure

The systems should be started in the following sequence in order to avoid errors in the drivers.

1. Turn ON the PC.
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5. Command Line operation

2. Turn ON the power supply for the actuators.

3. If using an additional power supply for the 5V line, turn in ON.

At this point, the jrk drivers should be in the “Awaiting command” mode, and the orange light
of the drivers should be blinking.

5 Command Line operation

The program provides a Command Line Interface for interacting with the robot operator. The
user types a command, and the software parses and executes the command. As the command
is executed, information related to the execution and state of the system is displayed. When the
command has been executed, the user can type another command.

6 Program start

The controller software was developed for the Linux operating system. Therefore, it is assumed
that the robot operator is familiar with Linux and has basic knowledge with using the terminal.

In order to start the software, follow the next instructions:

• Make sure all specified parameters in the configuration file are correct.

• Navigate to the directory of the software controller, usually HxCController/.

• Navigate to the sub-directory HxCController/bin contains the executable program, as well
as other files which will be described later.

• Execute the program by running: ./HxCController.

When the software starts, a number of steps are performed:

• Software modules are initialized with the parameters.

• The serial port is open.

• The drivers are initialized.

Detailed information about the start sequence is displayed on the screen when the program starts.
When the start sequence finishes, the user is prompted for input. If the program fails to finish
the start sequence or an error is displayed, see section 10.

7 Commands description

This section describes the commands that are offered to the user.
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7.1 Structure of a command

A command is a string of text, which contains tokens separated by spaces. A token can be the
name of a command, a number, an identifier, an option, etc.

The command structure is as follows:

<command name> <argument 1> <argument 2> ... <argument n>

The first token in every command must always be the name of the command. All remaining to-
kens are arguments of a command. Some commands take no arguments, while other commands,
may require up to six different arguments.

The commands have a short and a long name, and either can be used as the name of a command.
In the following section, the long name of the command is shown, and the short name is shown
in parenthesis for each command.

7.2 Information and help commands

7.2.1 help (h)

• Arguments: None

• Description: This command displays a list of all available commands, as well as the max-
imum arguments it can take, and a short description of the command.

7.2.2 info (i)

• Arguments: None

• Description: This command displays information on the current state of the system, such
as the program’s parameters, the robot’s current position, and other data which will be
explained in the following sections.

7.2.3 version (v)

• Arguments: None

• Description: This command displays the current version of the software.

7.3 Manual Mode Commands

7.3.1 move-actuator (mva)

• Arguments: n d
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7.3 Manual Mode Commands

• Description: Moves the actuator n a distance d millimeters. The distance can be speci-
fied as an absolute distance, or as a percentage. The following are valid examples for a
Hexapod robot with actuators with a minimal length of 10 mm and maximal length of 140
mm:

– mva 1 50

– move-actuator 6 35%

– mva 4 140

7.3.2 move (mv)

• Arguments: -x -y -z -r -p -w

• Description: Moves the robot to the position specified by the coordinates. The coordinates
x, y, and z are specified in millimeters, while the coordinates r (roll), p (pitch), and w
(yaw) are specified in degrees.

This command accepts the six coordinates in the order x, y, z, r, p, w, all of them separated
by spaces.

The following are valid examples of the move command, when six coordinates are speci-
fied:

– mv 0 0 450 0 0 0

– mv 75 -75.5 450 0 0 7.2

It is also possible to specify only some coordinates. In this mode, coordinates must be
preceded by a dash (-) and the coordinate identifier. All unspecified coordinates are set to
0.

The coordinates can be specified as absolute or relative coordinates. Absolute coordinates
are simply written as their value, such as -x450 (450 mm in x direction). Relative coor-
dinates are written with two signs preceding the number, which indicate if the distance is
added to or subtracted from the robot’s current position. E.g. -z--22.5 (subtract 22.5 mm
from the robot’s current z coordinate).

The following are valid examples for a Hexapod robot with actuators with a minimal
length of 10 mm and maximal length of 140 mm, specifying only some coordinates:

– mv -z450

– mv -z450 -w15

– move -z450 -x100 -w15

– move -z++30.5 -x--20.5 -w-10.0

• Additional information:
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– If a position cannot be reached by the actuators, an error will be displayed and the
command will be ignored.

– If the command is correctly executed (a valid position is provided and the robot
reaches the position), the command will be stored in the last command variable.

– The program will check the position of the robot, and the user will be able to intro-
duce another command only after the robot has reached the target position.

7.3.3 move-csv (mcsv)

• Arguments: filename dt

• Description: Move the robot to the positions specified in filename, with a time dt (mil-
liseconds) between each move command.

• Additional information:

– The file must consist of six comma-separated-values, corresponding to the six coor-
dinates (x, y, z, r, p, w).

– The software does not check whether the previous position was reached, before is-
suing the next command.

– After the command is completed, it will be stored in the last command variable.

7.3.4 move-lengths (ml)

• Arguments: l1 l2 l3 l4 l5 l6

• Description: Move the robot actuators to the specified lengths l1, ..., l6, in that order. The
following is a valid example of this command, which will move the first three actuators to
a length of 50 mm and the last three actuators to a length of 80 mm:

– ml 50 50 50 80 80 80

• Additional information:

– It is necessary to provide all six actuator lengths.

– If one of the lengths is out of the specified limits, an error message will be displayed
and the command will be ignored.

– If the command is correctly executed (valid lengths are provided and the robot
reaches the position), the command will be stored in the last command variable.
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7.4 Robot positions commands

7.4 Robot positions commands

7.4.1 read-actuator (ra)

• Arguments: None

• Description: Display the position of all actuators.

7.4.2 save-position (sp)

• Arguments: name

• Description: Saves the robot’s current position to the robot’s position database under the
given name. The robot’s current position can be displayed with the info (i) command.

7.4.3 restore-pos (rp)

• Arguments: name

• Description: Move the robot to the position specified by name. The argument name must
be a previously stored label in the robot positions database. In order to see all stored robot
positions, run the command list-saved-pos (lp).

• Additional information:

– After the robot reaches its target position, the command will be stored in the last
command variable.

– If a robot position with the given name is not found in the database, an error message
will be displayed and the command will be ignored.

7.4.4 delete-pos (dp)

• Arguments: name

• Description: Delete the robot position specified by name from the robot positions database.
The argument name must be a previously stored label in the robot positions database. In
order to see all stored robot positions, run the command list-saved-pos (lp).

• Additional information:

– If a robot position with the given name is not found in the database, an error message
will be displayed and the command will be ignored.
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7.4.5 list-saved-pos (lp)

• Arguments: None

• Description: Display all stored robot positions.

7.5 Home positions commands

7.5.1 move-uhome (mv-uhome)

• Arguments: None

• Description: Move the robot to the user-defined home position.

• Additional information:

– When the program starts, this position is equal to the universal home position.

– This position is lost when the program exits.

7.5.2 move-home (mv-home)

• Arguments: None

• Description: Move the robot to the universal home position.

• Additional information:

– This position cannot be changed by the user.

7.5.3 save-position-home (sp-home)

• Arguments: None

• Description: Save the robot’s current position as the user-home position.

7.6 Automatic Mode commands

7.6.1 task-define (tdef)

• Arguments: name

• Description: Defines a new task with the given name in the task database.
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7.7 Coordinate Systems Commands

7.6.2 task-add (tadd)

• Arguments: name

• Description: Adds the command stored in last command to an existing task with the
provided name.

• Additional information:

– If the task does not exist, an error message will be displayed and the command will
be ignored.

– If the last command variable is empty, an error message will be displayed and the
command will be ignored.

7.6.3 task-list (tls)

• Arguments: None

• Description: Lists all defined tasks and their associated commands.

7.6.4 task-execute (tex)

• Arguments: name

• Description: Execute the task with the given name.

• Additional information:

– Each command associated with the task is executed only after the previous command
has finished executing.

– Information of the execution of each command is displayed as the command is being
executed.

7.7 Coordinate Systems Commands

7.7.1 cs-define (csdef)

• Arguments: name

• Description: Saves the robot’s current position as a coordinate system with the given name
in the coordinate systems database.
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7.7.2 cs-set (csset)

• Arguments: name

• Description: Activates a previously defined coordinate system with the given name as
the current coordinate system. In order to see the current coordinate system name and
definition, run the info (i) command.

7.7.3 cs-list (csls)

• Arguments: None

• Description: Lists all defined coordinate systems in the coordinate systems database.

7.7.4 cs-delete (csdel)

• Arguments: name

• Description: Delete the coordinate system with the given name from the database.

7.8 Additional commands

7.8.1 sleep (slp)

• Arguments: n

• Description: This command makes the software sleep (wait) for n milliseconds, and then
returns.

• Additional information:

– n must be a positive integer.

– After this command is executed, it will be stored in the last command variable.

7.8.2 driver-info (di)

• Arguments: n

• Description: Displays information of the current state of the driver n.

• Additional information:

– If one of the jrks shows an error (red light), running this command will clear the
error flags.
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8. Power OFF procedure

– If the error condition (for example, motor power disconnected) remains after running
this command, the jrk will still show an error.

7.8.3 exit (q)

• Arguments: None

• Description: Performs power-off procedure and exits the software.

8 Power OFF procedure

The preferred way to power off the entire system is as follows:

1. If the HxCController software is executing a command, wait until the command is finished
and then exit the software by running the exit (q) command.

2. The exit command will move the robot to the home position. Please wait for the robot
to reach its home position.

3. Turn OFF the power supply for the drivers.

4. If used, turn OFF the power supply for the 5V line.

5. Turn OFF PC.

9 Configuration parameters

When the program starts, it loads different parameters from a file called configuration, which is
found in the /bin directory. This file contains a set of parameters, followed by their value. The
values should be properly determined and registered in the file before running the program.

These values are described next:

• MOBILE PLATFORM RADIUS: The radius, in millimeters, of the mobile platform.
This parameter is needed in order to calculate the actuator lengths, and their value should
be measured as indicated in Fig. 3.

• BASE PLATFORM RADIUS: The radius, in millimeters, of the base platform. This
parameter, should be measured as indicated in Fig. 2.

• MOBILE PLATFORM THETA P: The angle, in degrees, between a pair of actuators
in the mobile platform. This parameter, should be measured as indicated in Fig. 3.

• BASE PLATFORM THETA B: The angle, in degrees, between a pair of actuators in
the base platform. This parameter, should be measured as indicated in Fig. 2.
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• ACTUATOR CONTRACTED LENGTH: The distance between the joints of the base
frame and the mobile frame of the actuator in its contracted position. This parameter
should be measured as indicated in Fig. 4.

• ACTUATOR MIN LENGTH: The minimal allowed length of the actuators. Any at-
tempt to move an actuator below this length will display an error message, and the com-
mand will be ignored.

• ACTUATOR MAX LENGTH: The maximal allowed length of the actuators. Any at-
tempt to move an actuator beyond this length will display an error message, and the com-
mand will be ignored.

• SERIAL PORT NUMBER: The number that was assigned by the operating system to
the serial port. This value is usually 0 if no other devices have been assigned first. For
problems related to the serial port, and instructions on setting this value, see section 10.

• CALIBRATION ACT N: This parameter is a calibration distance which is added to each
actuator when moving them. This is done to compensate for possible variations in the
dimensions of the joints, or actuators. There is one calibration parameter for each actuator,
from 1 to 6. These values should be obtained experimentally. If on doubt, leave them with
their preconfigured values, or set them to 0.

Mobile platform

Fixed platform

Figure 1: Hexapod platforms identification

12



10. Troubleshooting

x

y

BASE_PLATFORM_THETA_B

BASE_PLATFORM_RADIUS

Figure 2: Base platform parameter identification.

ACTUATOR_CONTRACTED_LENGTH

Figure 4: Actuator length parameter identification.

10 Troubleshooting

Many error conditions may occur during the system operation, and others may even prevent
the system from correctly starting up. Some of them may be caused by incorrect hardware
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MOBILE_PLATFORM_RADIUS

x
Y

MOBILE_PLATFORM_THETA_P

Figure 3: Mobile Platform parameter identification.

connections, others may be due to communication errors, and others can be caused by a problem
with the robot structure, defect on the actuators, or wrong configuration parameters.

This section classifies errors in hardware, software, communication, and robot errors, and pro-
vides possible causes and solutions for these errors.

10.1 Hardware errors

10.1.1 Only one driver is on

• Symptom: All driver have their LED turned off, and the only driver that is on is the one
connected to the PC.

• Cause : The power supply to the drivers is off.

• Solution: Make sure that the drivers are supplied with a 12V connection on their power
supply terminals.

10.2 Driver errors

10.2.1 Blinking red light on driver(s)

• Symptoms: A red light is blinking on one of the drivers

• Cause: The jrk has detected an error condition and will not drive the motor.
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10.3 Communication errors

• Solution: Identify the number (n) of that driver and run the command in the HxCController
software:
>>> di n
This will display the errors associated with that driver, and clear its error flags. Correct
the error causes that are displayed and run the command again.

10.3 Communication errors

10.3.1 Serial port could not be opened.

• Symptoms: When running the program, an error shows on the screen: “Error opening
serial port”.

• Cause: A wrong port number was specified in the configuration file. When plugging
in the USB cable, the jrk drivers appear as two serial ports in Linux, usually under the
names ttyACM0 and ttyACM1. However, if another serial device under the same name is
connected, different names will be assigned to the jrk ports.

• Solution: Unplug the USB cable for the jrk drivers and run the command:
$ ls /dev/ttyACM*
This will return a list with the devices registered under the name ttyACM. Then, plug the
USB cable and run the command again:
$ ls /dev/ttyACM*
Now, two additional devices should be listed. The device with the lower number is the
jrk driver serial port. Now open the file configuration in the software’s /bin directory and
change the corresponding value for the parameter SERIAL PORT NUMBER.

10.3.2 The software fails to receive response from the jrk drivers

• Symptoms: When running the program, it is possible to send commands to the drivers,
but not to read responses from the drivers.

• Cause: A problem with the RX line. This can happen because the 5V supply is discon-
nected, or because there is a wrong connection in the hardware.

• Solution: Ensure that the 5V power supply is ON and ensure all hardware connections are
correctly wired.

10.4 Robot errors

10.4.1 Robot goes to wrong position

• Symptoms: When moving the robot, it moves to the wrong position.
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• Cause: The most likely cause for this is that the geometry parameters in the file configu-
ration have wrong values.

• Solution: Measure the robot’s geometric parameters as indicated in Figures 2-4, and save
those values in the configuration file.

10.5 Additional error reporting and help

If an error does not appear here, please report it to
luisgermanfelix@gmail.com
or
gengiskanhg.geo@yahoo.com
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Appendix B

Inverse kinematics implementation

1 %% function inverse kinematics for the CIDESI Hexapod phase 1.

2

3 % the inputs are the desired pose , and the outputs are the required

4 % actuator lengths.

5

6 % Note: When converting this .m code to C code , the outputs l1 ,...,l6

will

7 % be converted to inputs which are passed by reference.

8

9 % parameters:

10 % rp moving platform radius in millimeters

11 % rb base platform radius in millimeters

12 % tP angle between moving base actuators in degrees

13 % tB angle between base frame actuators in degrees

14 % x, y, z, roll , pitch , yaw: coordinates of desired pose in millimeters

15

16 % outputs:

17 % l1 ,...,l6: actuator lengths in millimeters

18 function [l1, l2, l3, l4, l5, l6] = hxc_inv_kin(rp, rb, tP, tB, x, y, z,

roll , pitch , yaw)

19 % convert input degrees to radians

20 tP=tP*pi/180;

21 tB=tB*pi/180;

22 roll=roll*pi /180;

23 pitch=pitch*pi/180;

24 yaw=yaw*pi /180;

25

26 % Moving platform

27 % Angle of position vectors of Ti in moving frame

28 Lambda1 =(1*pi/3-tP/2);

29 Lambda3 =(3*pi/3-tP/2);

30 Lambda5 =(5*pi/3-tP/2);

31 Lambda2 =( Lambda1+tP);

32 Lambda4 =( Lambda3+tP);

33 Lambda6 =( Lambda5+tP);

34

35 % Base(fixed) platform
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36 % Angle of position vectors of Bi in fixed frame

37 Ipsilon1 =(1*pi/3-tB/2);

38 Ipsilon3 =(3*pi/3-tB/2);

39 Ipsilon5 =(5*pi/3-tB/2);

40 Ipsilon2 =( Ipsilon1+tB);

41 Ipsilon4 =( Ipsilon3+tB);

42 Ipsilon6 =( Ipsilon5+tB);

43

44 % Position vectors for points Ti in moving frame coords

45 GT1=[rp*cos(Lambda1);rp*sin(Lambda1);0];

46 GT3=[rp*cos(Lambda3);rp*sin(Lambda3);0];

47 GT5=[rp*cos(Lambda5);rp*sin(Lambda5);0];

48 GT2=[rp*cos(Lambda2);rp*sin(Lambda2);0];

49 GT4=[rp*cos(Lambda4);rp*sin(Lambda4);0];

50 GT6=[rp*cos(Lambda6);rp*sin(Lambda6);0];

51

52 % Position vectors for points Bi in fixed frame coords

53 B1=[rb*cos(Ipsilon1);rb*sin(Ipsilon1);0];

54 B3=[rb*cos(Ipsilon3);rb*sin(Ipsilon3);0];

55 B5=[rb*cos(Ipsilon5);rb*sin(Ipsilon5);0];

56 B2=[rb*cos(Ipsilon2);rb*sin(Ipsilon2);0];

57 B4=[rb*cos(Ipsilon4);rb*sin(Ipsilon4);0];

58 B6=[rb*cos(Ipsilon6);rb*sin(Ipsilon6);0];

59

60 % Rotation matrix elements

61 a = roll; % alpha

62 b = pitch; % beta

63 g = yaw; % gamma

64 r11=cos(b)*cos(g);

65 r12=cos(g)*sin(a)*sin(b)-cos(a)*sin(g);

66 r13=sin(a)*sin(g)+cos(a)*cos(g)*sin(b);

67 r21=cos(b)*sin(g);

68 r22=cos(a)*cos(g)+sin(a)*sin(b)*sin(g);

69 r23=cos(a)*sin(b)*sin(g)-cos(g)*sin(a);

70 r31=-sin(b);

71 r32=cos(b)*sin(a);

72 r33=cos(a)*cos(b);

73

74 % Rotation matrix

75 Rxyz=[r11 r12 r13;r21 r22 r23;r31 r32 r33];

76

77 % translation vector PO

78 PO = [x; y; z]’;

79

80 % positions of points T

81 T1=PO+(Rxyz*GT1) ’;

82 T2=PO+(Rxyz*GT2) ’;

83 T3=PO+(Rxyz*GT3) ’;

84 T4=PO+(Rxyz*GT4) ’;

85 T5=PO+(Rxyz*GT5) ’;

86 T6=PO+(Rxyz*GT6) ’;

87

88 % actuator vectors L

89 L1 = T1 - B1 ’;

106



90 L2 = T2 - B2 ’;

91 L3 = T3 - B3 ’;

92 L4 = T4 - B4 ’;

93 L5 = T5 - B5 ’;

94 L6 = T6 - B6 ’;

95

96 % lengths (norms) of vectors

97 l1 = sqrt(L1(1)*L1(1)+L1(2)*L1(2)+L1(3)*L1(3));

98 l2 = sqrt(L2(1)*L2(1)+L2(2)*L2(2)+L2(3)*L2(3));

99 l3 = sqrt(L3(1)*L3(1)+L3(2)*L3(2)+L3(3)*L3(3));

100 l4 = sqrt(L4(1)*L4(1)+L4(2)*L4(2)+L4(3)*L4(3));

101 l5 = sqrt(L5(1)*L5(1)+L5(2)*L5(2)+L5(3)*L5(3));

102 l6 = sqrt(L6(1)*L6(1)+L6(2)*L6(2)+L6(3)*L6(3));

103 end

Listing B.1: MatLab function for the calculation of the inverse kinematics.
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