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Abstract

The redundant autopilot hereby presented is aimed to enhance drone reliability and safety.

This redundant autopilot is based on two Pixhawk autopilots and a companion computer

which supervises the correct operation of the complete system. If one of the autopilots

should fail, there is always a redundant autopilot to take over the control of the drone and

keep it in the air.

The companion computer, runs Ubuntu 16.04, acts as supervisor, deciding which autopi-

lot should control the drone. The communication between autopilots and the companion

computer is made over the already widespread MAVLink protocol and, as a result, the re-

dundant system is compatible with all enabled MAVLink autopilots that may exist within

the market. Furthermore, this project makes use of the Robot Operating System (ROS) to

acquire and process data coming from the autopilots, so that any drone can be enhanced

by taking advantage of the already existing collection of tools and packages from the ROS

community.

In addition, an extra computer can be used as a ground station. This computer can be then

used as an extra means of controlling the drone when the RC controller is not available.

These characteristics, along with the ones that ROS provides, make this a flexible and

highly scalable project, which opens the opportunity to develop further projects with an

enhancement in safety and reliability.
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Kurzfassung

Der hier vorgestellte redundante Autopilot soll die Zuverlässigkeit und Sicherheit der Droh-

nen verbessern. Dieser redundante Autopilot basiert auf zwei Pixhawk-Autopiloten und

einem Computer, der den korrekten Betrieb des gesamten Systems überwacht. Wenn einer

der Autopiloten ausfallen sollte, gibt es jederzeit einen redundanten Autopiloten, der die

Kontrolle über die Drohne übernimmt und sie in der Luft hält.

Der Companion-Computer, der das Betriebssystem Ubuntu 16.04 ausführt, entscheidet,

welcher Autopilot die Drohne kontrollieren soll. Die Kommunikation zwischen Autopilo-

ten und dem zugehörigen Computer erfolgt über das bereits weit verbreitete MAVLink-

Protokoll. Daher ist das redundante System mit allen auf dem Markt erhältlichen MAVLink-

Autopiloten kompatibel. Darüber hinaus nutzt dieses Projekt das Robot Operating Sy-

stem (ROS) zur Erfassung und Verarbeitung von Daten aus dem Autopiloten. So kann

jede Drohne durch Nutzung der bereits vorhandenen Sammlung von Tools und Paketen

der ROS-Community verbessert werden.

Des Weiteren kann ein zusätzlicher Computer als Bodenstation verwendet werden. Dieser

Computer kann dann als zusätzliches Mittel zur Steuerung der Drohne verwendet werden,

wenn der RC-Controller nicht verfügbar ist. Diese Eigenschaften sowie die von ROS be-

reitgestellten Merkmale machen dieses Projekt zu einem flexiblen und hoch skalierbaren

Projekt, das die Möglichkeit eröffnet, komplexere Projekte mit einer verbesserten Sicher-

heit und Zuverlässigkeit zu entwickeln.
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Resumen

El piloto automático redundante aqúı presentado tiene como objetivo mejorar la confiabi-

lidad y seguridad de los drones, este piloto automático redundante se basa en dos pilotos

automáticos Pixhawk y una computadora complementaria que supervisa el funcionamiento

del sistema completo. Si uno de los pilotos automáticos fallara, siempre habra un piloto

automático redundante para tomar el control del drone y mantenerlo en el aire.

La computadora compañera, que corre Ubuntu 16.04, actúa como supervisor y decide qué

piloto automático debe controlar el drone. La comunicación entre los pilotos automáticos y

la computadora de compañ́ıa se realiza a través del ya muy extendido protocolo MAVLink.

Como resultado, el sistema redundante es compatible con todos los pilotos automáticos

MAVLink habilitados que puedan existir dentro del mercado. Además, este proyecto uti-

liza el sistema operativo de robots (ROS) para adquirir y procesar datos provenientes de los

pilotos automáticos. Debido a esta razón, cualquier drone puede mejorarse aprovechando

la colección ya existente de herramientas y paquetes de la comunidad ROS.

Además, se puede utilizar una computadora adicional como estación de tierra. Esta com-

putadora se puede usar como un medio adicional para controlar el drone cuando el radio

control no está disponible. Todas estas caracteŕısticas, junto con las que proporciona ROS,

hacen de este un proyecto flexible y altamente escalable, lo que abre la oportunidad de

desarrollar proyectos mucho más complejos con una mejora en seguridad y confiabilidad
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CHAPTER 1. INTRODUCTION

Chapter 1

Introduction

Over the past years the use of drones or Unmanned Aerial Vehicles (UAVs), have become

an outstanding emergent technology which has already opened opportunities to transform

and alter several industries, and in the process, change our attitudes and behaviors re-

garding their impact on our daily lives. The definition of UAVs is rather extensive due to

the large existing configuration that already exist in the market. In practice, any aerial

vehicle that does not rely on an on-board human operator for flight, either autonomously

or remotely operated, is considered a UAV [13]. The emergence of drones challenges tra-

ditional notions of safety, security, privacy, ownership, liability, and regulation [14].

Although drones were preconceived as targets for military practice, mostly in the U.S [1],

they have been introduced to civilian marked and adopted in a short time (Fig. 1.1). This

situation has already triggered concerns that need further attention.

that will disrupt existing industries. It is expected
that drones will be part of our everyday life, just as
smartphones are today; not a day goes by without a
new product announcement introducing new ways
drones can be used in different contexts.

We view drone technology as an example of an
emergent technology that has had a long evolution-
ary path. Advances in artificial intelligence, image
processing, and robotics have equipped drones with
autonomous functions and have stepped up their
transformative potential. Our analysis of drone
startups provides the insight to illustrate the
co-evolution between entrepreneurial activity
and technological developments in the drone
industry. We explore the intertwined relationship
between technological components evolution and
the emergence of new meanings and applications
(Norman & Verganti, 2014).

We summarize our research findings in a model
visualizing industry and technological emergence.
The model describes the drivers for innovation and
entrepreneurial activity in the initial moments of a
new technological wave and, moreover, presents
the indirect effects of entrepreneurial activity in a
given emerging technology. We describe for innova-
tion managers and entrepreneurs what events
trigger the emergence of a technology and attract
the needed actors to unleash its transformative
potential.

The article is organized as follows. First, we give
a brief overview of the development in the drone
industries in recent years. Then, we describe the
technological and entrepreneurial co-evolution
in this sector, based on industry reports, news,
and market studies as well as interviews with four
actors in the drone industry. This finally leads
to a discussion of entrepreneurial opportunities
and an outlook on the coherence of industrial and
technological evolutions.

2. Roots of the hype: The emergence
of the drone industry

Drones have made headlines quite often in recent
years. In late 2016, Amazon’s first drone delivery
was highlighted to mark “a milestone in the race to
use unmanned vehicles to transform how customers
buy and receive goods” (Levin & Soper, 2016). But,
in some cases, drones have made negative head-
lines (Forrest, 2015), either because they crashed in
a notorious place (like the White House or a hot
spring in Yellowstone National Park) or because they
have been used in restricted spaces like airports or
sports stadiums.

Although the actual notoriety is linked to the
popularization of consumer drones, the technology
behind this type of drone is an outcome of a com-
plex evolutionary process. First, a clarifying note:
the use of the term drone is to describe an un-
manned aerial vehicle (UAV) with a certain degree
of autonomy (Hazel & Aoude, 2015). As the term has
been popularized, it is often assigned to almost any
type of UAV, even those that require constant at-
tention by the remote pilot, like radio-controlled
planes; this is an important difference in the
military context (Villasenor, 2012) and also when
it comes to identifying existing regulations that
have an impact on the drone industry.

Drones were first mentioned in the early 1900s
when they were introduced as targets for military
practice, mostly in the U.S. At that time, they had a
rather limited autonomy, different from modern
target drones. Using unmanned vehicles provided
several advantages for military operations. They
could be used to gather information on reconnais-
sance missions or other activities that involved a
high risk. From that moment onward, the number
of military uses has grown (see Figure 1). The
introduction of new technologies has provided

Figure 1. Timeline of the military and civilian uses of drones

Source: Bumiller & Shanker (2011); Holland Michel & Gettinger (2016); Villasenor (2012)

876 F. Giones, A. Brem

Figure 1.1: Timeline of the military and civilian uses of drones, taken from [1].

The primary criticism with the flying of commercial drones is that small mistakes could

result in crashes that threaten the health, well-being and property of the public. Further-
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more, if they crash into airports or other protected airspaces, it could result in dangerous

scenarios that put lives in danger [14]. The impact can lead to explosions or fires, result-

ing in further damage. Furthermore many drones have rapidly moving parts, in the form

of propellers, which are capable of causing much more substantial physical and mental

trauma than the drone’s mass and velocity alone suggest [15]. An out of control drone

may surprise individuals in its vicinity, in some cases leading to accidents e.g. where a

driver of a motor vehicle, or the pilot of another drone, loses control of their vehicle or

performs a dangerous avoidance maneuver [16]. Even though drones have benefited of

technological development from the twenty-first century, leading them to be small and

inexpensive devices, they are not yet reliable enough to be considered completely safe

devices [17].

In order to improve their reliability, it is required to focus attention on each of the main

components, programming and circumstances under which they operate. All drone parts

and components are vital for a safe flight. Drones in the market may have different

configurations and be equipped with different types of sensors, but all of them have in

common specific components that are essential to take flight and keep the drones in the

air (see Table 1.1 and Fig. 1.2).

Table 1.1: Main components of a Drone

�

ssh CompanionCompu

export ROS_MASTER_URI=http://hal:11311

Target Ubuntu MAC Windows

NuttX based hardware: Pixhawk Series, Crazyflie, 
Intel® Aero Ready to Fly Drone x x x

Qualcomm Snapdragon Flight hardware x

Linux-based hardware: Raspberry Pi 2/3, Parrot 
Bebop x

Simulation: jMAVSim SITL x x x

Simulation: Gazebo SITL x x

Simulation: ROS with Gazebo x

Component Description

Propellers The purpose of the propellers is to generate thrust and torque to 
keep the drone flying, and to maneuver.

Brushless Motors
The motors have to spin faster to create lift. All drones being 
manufactured lately use the brushless motors that are considered 
to be more efficient in terms of performance and operation.

Electronic Speed Controllers It is an electronic circuit used to change the speed of an electric 
motor, its route and also to perform as a dynamic brake.

Autopilot and flight controller  A complete system that enables a drone to fly autonomously and 
keeps your aircraft stable.

Telemetry module Telemetry is what is use to send and receive data between a drone 
and a ground station.

Battery. Power source from all electronic devices.

Drones in practice, generally exhibit at least some degree of autonomy. Functions such

as stabilization of altitude and latitude are delegated to electronic components [18]. As

a result safety mechanisms must be applied in order to minimize risk of failures from

autonomous components [19].
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Figure 1.2: Common drone’s components, taken from [2]
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The autonomous operation generally falls on the so called autopilot, which can provide

fully-autonomous and semi-autonomous operation, based on pre-programmed flight plans

or more complex dynamic automation systems [20]. Nowadays there is available a vast

number of autopilots from different companies and most of them can run one of the two

most common softwares that controls the autopilot.

The two currently most common softwares used are PX4 and Ardupilot, both of them are

open source flight control software for drones and other unmanned vehicles. The impor-

tance of autopilots is such that its use has been standardized among manned aircrafts and

high performance UAVs, and as it can be expected they have several safe mechanisms to

avoid compromising its proper operation, such as redundancy.

Redundancy is a common approach to improve the reliability and availability of a system.

Adding redundancy increases the cost and complexity of a system design but with the

high reliability of modern electrical and mechanical components, many applications do

not need redundancy in order to be successful [21] [22]. However, regarding drone matters

where a failure can implicate serious damages to facilities and people in general the cost

of failure can be high enough to consider redundancy an attractive option.

System reliability can be improved in a desired manner by applying redundancy. There

are various approaches and techniques for implementing redundancy, the following models

represent the more common ones used in industry. The three main models are Standby

Redundancy, N Modular Redundancy, and 1:N Redundancy [23].

The standby redundancy is an arrangement where a secondary identical unit works as a

back up for the primary unit. If only one of all units which perform the required function

is active and the rest of the units is inactive (they are waiting to be active if the main

unit fails), this system is called a standby redundancy system [24][25]. The spare unit

usually do not monitor the system before being active, it tries to recover from the last

control signal that was left from the primary unit. The system cost increases about twice

or less depending on the software development application [23]. In Standby redundancy

there are three types: hot-Standby, cold-Standby and warm-standby.

For hot-standby redundancy, the standby components are always active and suffer from

the same operational stress and have the same failure rate with the already working com-

ponent. While for cold-standby redundancy, the standby components are unpowered and
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shielded from the operational stress, due to this the failure rates of cold-standby com-

ponents are usually supposed to be zero before being activated [26][25]. Compared with

hot-standby redundancy, cold-standby needs less energy consumption and lower cost but

suffers from longer restoration delay when activating the standby components. The warm-

standby redundancy is an intermediate case between hot-standby and cold-standby.

The next model is the N modular redundancy, also sometimes called parallel redundancy

[23]. It is a fault-tolerant form of N-modular redundancy, in which two or more units

monitor a process, they are highly synchronized and their respective output or result is

processed by a majority-voting system to produce a single output, this last one decides

which unit should take over the control of the system when switching between units. If

any one of the spare units fails, the remaining ones can correct and diminish the fault [27]

[28] [29].

Deciding which unit is healthy can be challenging if there is only two units to compare.

Sometimes it is only a matter of just choosing one to trust the most and this can get

complicated. If there is more than two units the problem is simpler, usually the majority

wins or the two that agree win [30] [31]. In N Modular redundancy, there are three main

typologies: Dual modular redundancy, Triple modular redundancy, and Quadruple redun-

dancy [23].

Redundancy 1:N is a design technique used where you have a single backup for multiple

systems and this backup is able to function in the place of any single one of the active

systems. This technique offers redundancy at a much lower cost than the other models by

using one standby unit for several primary units [23].

The redundancy can be use in drones for the duplication of critical components, such as the

autopilot, with the intention of increasing reliability of the system, in the form of a backup

to improve actual system performance [32]. Nowadays, the use of redundancy in civilian

drones is not widespread but this trend is changing due to the normalization of drones [33].

As the use of drones continues to proliferate, its technology still have a long evolutionary

path ahead, along with regulation matters that need further attention. It is expected that

drones will be part of our everyday life, just as smartphones are today, they will impact

industries ranging from entertainment to agriculture, from construction to delivery market.

5



CHAPTER 1. INTRODUCTION

The First chapter presents an introduction to the topic, followed by the project motivation,

objectives, hypothesis and methodology. The Second Chapter presents a brief exploration

about the state of the art. The Third Chapter shows a detailed system design, going

from the components selection to the system operation, focusing special attention on

the redundant system. The Fourth and Fifth Chapter include information regarding the

simulation, tests and the outcomes achieved from the respective phases. Finally the last

Chapter shows the author’s conclusion and suggestions for further work.

1.1 Motivation

Although nowadays drones have fail-proof mechanisms, with automatic routines such as

return home or emergency landing, that are activated after a system failure, these systems

are not completely safe and sometimes flights suffer some kind of error, resulting on the

need for many drones of a redundant autopilot able to lower risk of failure [19][15][16].

Drones with redundancy safe systems are not yet standardized in the civilian market

but it is clearly that this will change in the near future. Governments of different coun-

tries are focusing attention and are planning to make law enforcement regarding them [34].

Adding redundancy to drones autopilot will improve their reliability and lower possibilities

of harming people. Moreover it is important to improve their technology since drones are

becoming increasingly important in the field of science, technology, and society [14].

1.2 Hypothesis

If redundant Autopilot arrangement is implemented on a Drone, reliability of the system

will increase and possibilities of a crashes will be lowered.

1.3 Justification

Safety is one of the most important factors when flying UAVs. Safety requirements es-

tablished for civil aviation authorities, regarding commercial and professional drones op-

erations, are becoming more stringent every day [16] [14]. Mexican government shows an

example regarding UAVs law enforcement, since by the end of year 2018 Secretariat of

Communications and Transportation of Mexico will start normalizing drones [35].
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This comes as a direct consequence of the need for drones to operate in populated areas

and due to new applications focused on the civilian market such as delivery, surveillance,

inspection, among other [34].

Taking these facts into account it is reasonable to add safety mechanisms to increase the

reliability of Drones avoiding possible accident that may cause injuries to the user and

public in general that could be in the surrounding areas where drones operate.

1.4 Objectives

1.4.1 General objective

Development of a double redundant autopilot for drones.

1.4.2 Specific objectives

• Development of a double redundant PX4 Autopilot for drones using ROS platform.

• Establish a concept design.

• Simulation of the double redundant autopilot using Gazebo.

• Development of a ROS node that ensures the communication between two PX4

autopilots.

• Implementation of an algorithm that oversees the correct operation of each individual

autopilot.

• Test and validation of the simulation by implementing a Hardware in the loop stage.

• Thesis dissertation.

1.5 Methodology

The methodology followed on this thesis is based on the so called V model which is a pro-

cess model that was originated from software development and introduced as guideline by

the German Government, Fig. 1.3. Because the V Model requires a permanent validation

and verification of the project, dependability analysis is constantly performed throughout

the project [36]. V model as a standardized and widely applied process model seems to
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be a good starting point.

The projects development is divided into two main parts, namely verification phase on

one side of the ’V’ and validation phase on the other side. Evaluation of the redundant

autopilot is done at verification phase in order to specify the requirements that have to be

accomplished. At the validation phase an evaluation is done to determine if the redundant

autopilot meets the initial expectations and requirements.
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Figure 1.3: CIDESI Systems Engineering’s V-Model, taken from [3]
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Chapter 2

State of the art

The following chapter shows a brief description of novel Autopilots and drones that have

any kind of redundant system, focusing attention on those among the civilian market. It

is important to take into account that the use of redundant autopilots is not a new topic,

since they have been used on military field for many years, nevertheless within the civilian

market they are not widespread yet.

Military aircrafts such as the RAF’s Trident fleet, used a triple redundant autoland system

in the early 1960’s. Ten years later, the Aérospatiale-BAC Concorde took advantage of

3X technology in its flight control system. Presently, triple redundancy is used in several

manned military and commercial aircrafts [4].

2.1 Redundant Autopilots

2.1.1 MicroPilot MP21283 XM

The MP21283X autopilot (see Fig. 2.1), from MicroPilot, has a triple redundant system

to increase the reliability of both fixed-wing and helicopter UAVs. If any one of the three

systems fails, the remaining two take over, offering a double redundancy arrangement. If

one of the other two systems should fail, the third takes over. An additional mechanism

is also included to oversee these three systems. [4]

The MP21283X is comprised of three MicroPilot autopilots, mounted on a redundancy

board. At the start, the autopilot in position one flies the airframe. If this autopilot

should fail, the autopilot in position two takes over, and so on. The redundancy board

provides several input/output (I/O) ports. The board also includes two RS232 serial
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ports designed to communicate with a ground control system via radio modems. As a

result of this design, users never need to work directly with bare circuit boards. Addition-

ally, the autopilots do not have an individual casing, keeping overall weight to a minimum.	

Figure 2.1: MP21283X autopilot, taken from [4]

2.1.2 Veronte Autopilot

Redundant Veronte Autopilot is a triple redundant autopilot (see Fig. 2.2). It includes

three complete Veronte Autopilot modules together with an arbiter for detecting system

failures and selecting the module in charge of the control. It provides a solution for con-

trolling any unmanned vehicle such as Fixed wing, Multirotor and Helicopter.

All four modules are managed by a dissimilar microprocessor. This microprocessor com-

pares data from all modules in the real time and processes it for discarding any autopilot

module showing an undesired performance. Datalink communications are also redundant

in Veronte autopilot, being possible to install 3 equal radios or to combine from compatible

radio modules [5].

12



CHAPTER 2. STATE OF THE ART

One spacial characteristic of this autopilot is that it has compatibility with the most de-

manding aeronautical regulations for onboard electronics.

Figure 2.2: Veronte triple redundant Autopilot, taken from [5]

2.1.3 Cerberus Triple Redundant Autopilot

Cerberus platform is a triple redundant autopilot from InnoFlight company (see Fig. 2.3).

Cerberus enables tree Jupiter JM-1 flight autopilots, also from InnoFlight and theirs built-

in IMUs, Global Position System (GPS), and compasses to work together as a true triple

redundant flight control system.

The Cerberus enhances their internal sensors. As long as two Main Control Units and

sensors from any module are functioning, the Cerberus would continue to provide normal

flight control operations.

Figure 2.3: Cerberus triple redundant autopilot, taken from [6]
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2.1.4 AP-Manager

The AP-Manager (see Fig. 2.4) is a board that allows the user to operate a DRONE safely

by using two independent autopilot systems parallel. The AP-Manager is acting here as

an intelligent bridge between the autopilots and switches to the alive autopilot, whenever

one of the autopilots quits its operation.

The AP-Manager has implemented electronic switches, which routes the servo outputs

from the autopilots to a single servo output rail depending on the desired operation mode

of the AP-Manager. The AP-Manager can be operated in Manual or Automatic mode.

In both cases, the AP-Manager is monitoring the health status of the connected autopi-

lots by checking the alive-signal of each autopilot and the servo outputs of the active This

improves redundancy and therefore safety in case of malfunction in one of the autopilot

systems. The AP-Manager switches to the second autopilot system and the operator is

able to perform a safe landing.

An outstanding feature from the AP-Manager is that the user can mix the autopilots from

different companies.

Figure 2.4: AP-Manager, redundant board for autopilots. Taken from [7]
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2.1.5 Redundant Okto board

Redundant Okto (see Fig. 2.5) is a board that allows a Drone to operates with one or two

autopilots in a redundancy setup. The board duplicates critical elements of the drone, so

that if a problem occurs to one of them, the remaining one takes over allowing the pilot

to bring the aircraft smoothly to the ground and land.

• Motor propulsion units. To ensure redundancy in propulsion, the board allows to

have eight engines.

• Battery. Two batteries are required and must be connected in parallel. In this way,

if one of them had to give up, the second could continue to provide enough current

to allow an emergency landing

• Central unit (Autopilots). A second autopilot is installed as backup and will auto-

matically take over, if the main autopilot should fail.

Figure 2.5: Redundant Okto board, take from [8]

2.1.6 Autopilot A3 PRO

The A3 pro an autopilot that provides reliability and precise flight control (see Fig. 2.6) ,

the A3 series of flight controllers focuses attention on demanding industrial and cinemato-

graphic applications where reliability and customization are essential.
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The new attitude algorithms and the fusion of multiple sensors improve the control accu-

racy of the DJI A3. The robust control algorithm allows the A3 and A3 PRO to adapt to

a wide range of drones without the need for manual adjustment [9]. It has a fault-tolerant

control system, a Hexacóptero or Octocóptero can land safely even in case of failure of the

propulsion system. For example, a hexacopter can even fly with 3 motors.

Figure 2.6: A3 pro Autopilot, taken from [9]

2.2 Redundant Drones

2.2.1 Euroavionics multicopter

Euroavionics multicopter (see Fig. 2.7) is a Drone with completely autonomous flight

control and are capable of meeting the needs of various operators including police, fire,

and infrastructure inspection. This drone has redundancy on its flight control, motors and

engine control.

The multicopter drone is a professional tool which addresses the specific requirements of

the police and fire brigades. Engineered to highest quality standards with built in redun-

dancy, the system allows the police to do crowd-control, acquire post-accident data as well

as perform search missions. Operators such as fire brigades will receive a comprehensive

overview of the situation within minutes from arriving on site [10].
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Figure 2.7: Euroavionics multicopter, taken from [10]

2.2.2 AscTec Trinity Drone

The AscTec Trinity is a triple redundant flight control (see Fig. 2.8), which is standard

in commercial airliners to ensure maximum safety. Errors in flight critical attitude sen-

sors can be identified by automatic data comparison with two redundant units [11]. The

same applies to all communication systems relevant for control. Due to the adaptive flight

control the Drone will stay up in the air if there is a failure in one of the autopilots. The

UAVs automatically compensates for disturbances and will actively support the pilot to

control the system.

Furthermore all electronic hardware devices are at least two times redundant. The drone

AscTec Trinity would compensate troubles immediately. It also has a isolated operating

system for more safety and functional operation of the flight system.

Figure 2.8: AscTec Trinity Drone, take from [11]
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2.2.3 Matrice 600 Pro

Matrice is a professional Drone provided with redundant system. The airframe is equipped

with the latest DJI technologies, including a A3 Pro flight controller, Intelligent Batteries

and Battery Management system.

The autopilot A3 Pro Flight has triple modular redundancy and diagnostic algorithms

that compare sensor data from three sets of Global Navigation Satellite System (GNSS).

A new system for the A3’s modules enable precise control of multi-rotor aircraft, provid-

ing accurate data for stable flight performance. Self-adaptive systems will automatically

adjust flight parameters based on different payloads [12]. Furthermore the A3 Pro can

withstand magnetic interference, providing centimeter level accuracy, suitable for various

industrial applications.

Figure 2.9: Matrice 600 Pro Drone, taken from [12]
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Chapter 3

Project development

The next chapter describes the project development, its detailed operation and organi-

zation. Firstly, it is presented a system definition based on the steps established in the

V model from Chapter 1, followed by the main components selected to constitute the

redundant system, and finally it is presented a detailed design along with a description

of the system general operation where each and every one of the elements that constitute

the drone are described, focusing special attention on those that are associated to the

redundant system.

It is important to highlight that it is expected from the reader to have little knowledge

about ROS at the moment of reading this chapter, since the vast majority of this project

is developed using ROS framework.

3.1 System definition

Next is shown a brief explanation of activities, steps and procedures that form the system

definition, following the V model already shown in Chapter 1.

• Problem necessity.

Development of a redundant autopilot that will increase safety and reliability of the

system, using open source software and hardware to enable the project with high

scalability.
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• System requirements.

The redundant system is based on terms and set of ideas to meet the requirements

and vision established in the next Table 3.1.

Table 3.1: Redundant Autopilot characteristics

�

ssh CompanionCompu

export ROS_MASTER_URI=http://hal:11311

Main characteristics

Redundancy in one autopilot.

Use os ROS as supervisor to monitor the correct operation of both autopilots.

Use of QGroundStation to monitor incoming data from both autopilots.

Use of a open source flight stack for Autopilots.

Mixable hardware possible (different autopilots).

Future firmware updates possible.

Use of MAVROS to establishes communication between ROS and MAVLink protocol.

Aimed to enable a scalable project.

Key Feature

CPU 180 MHz ARM® Cortex® M4 with single-precision FPU

RAM RAM: 256 KB SRAM 

CONNECTIVITY

1x I2C

1x CAN (2x optional)

1x ADC

4x UART (2x with flow control)

1x Console

8x PWM with manual override

6x PWM / GPIO / PWM input

S.BUS / PPM / Spektrum input

S.BUS output

SENSORS
ST Micro L3GD20H 16 bit gyroscope

ST Micro LSM303D 14 bit accelerometer / magnetometer

Invensense MPU 6000 3-axis accelerometer/gyroscope

MEAS MS5611 barometer

• Preliminary design.

The Preliminary conceptual design shows the following components (see Fig. 3.1).

– Companion computer. It is in charge of controlling and supervising the correct

operation of both autopilots. This companion computer runs ROS over ubuntu

16.4, by using ROS the drone is able to receive commands from the Ground

Control Station (GCS).

– Autopilot 1 y 2 (Pixhawk). Pixhawk autopilot is a popular general purpose

flight controller based on the Pixhawk-project FMUv2 open hardware design.

– Wi-fi module. Allows connections between GCS and the companion computer.

– Electric Speed Controller (ESC). Controls and regulates the speed of four rotors

that lift the Drone.

– GPS. Provides drones with Global localization and has installed a compass used

for navigation and orientation that shows direction relative to the geographic

cardinal directions.
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• Software development.

Within this step ROS, GAZEBO and MAVROS API are used to run, test and

write the CODE that will oversees, and administrate the correct operation of each

Autopilots, if one of the autopilots should fail the next one will take over the control

of the DRONE.

• Unit testing.

Unit Test Plans are developed during this design phase. These unit test are executed

to eliminate bugs at code level.

• System verification.

Integration testing is associated with this phase. Integration tests are performed

to test the coexistence and communication of the internal modules within the sys-

tem, test are executed to check the correct communication between ROS and the

autopilots.

• System deployment.

Test the complete application with their functionality, non-functional requirements,

and communication of developed application. Here it is applied a Hardware in the

loop (HIL) phase by connecting the two autopilots to a computer throughout USB

port.

• System validation and operation.

This two phases will not be executed since the project is just the first approach in

this line of investigation.
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Figure 3.1: First system concept
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3.2 Selected elements

All the hardware and software were selected to fit a tight budget, taken from open source

projects and most of all aim to enable scalability.

3.2.1 Flight Controller

The Pixhawk® 1 autopilot (see Fig. 3.2) is a popular general purpose flight controller

based on a open hardware design. Among the softwares that it runs are PX4 and Ardupilot,

both also open source projects.

Figure 3.2: Pixhawk Autopilot

Table 3.2: Pixhawk Autopilot Features

Main characteristics

Redundancy in one autopilot.

Use os ROS as monitor to supervisor correct operation of both autopilots.

Use of a QGroundStation to monitor incoming data from both autopilots.

Use of a open source flight stack for Autopilots.

Mixable hardware possible (different autopilots).

Future firmware updates possible.

Use of MAVROS to establishes communication between ROS and MAVLink protocol.

It aims to enable a scalable project.

Key Feature

CPU 180 MHz ARM® Cortex® M4 with single-precision FPU

RAM RAM: 256 KB SRAM 

CONNECTIVITY

1x I2C

1x CAN (2x optional)

1x ADC

4x UART (2x with flow control)

1x Console

8x PWM with manual override

6x PWM / GPIO / PWM input

S.BUS / PPM / Spektrum input

S.BUS output

SENSORS
ST Micro L3GD20H 16 bit gyroscope

ST Micro LSM303D 14 bit accelerometer / magnetometer

Invensense MPU 6000 3-axis accelerometer/gyroscope

MEAS MS5611 barometer
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3.2.2 PX4 autopilot

PX4 autopilot software runs the whole time in the Pixhawk 1. PX4 is an open source

flight control software that powers any vehicle from flying drones to ground vehicles. It

enables developers create custom drone operating systems with a flexible core. Whether

running a racing drone or a drone fleet, PX4 can be customized and tailored to fit any need.

3.2.3 Companion Computer

Raspberry pi model b+ acts as a companion computer (see Fig. 3.3). The idea behind a

companion computer is to be able to control the PX4 flight stack using software running

outside of the autopilot. This is done through the Mavlink protocol.

Figure 3.3: Rasberry Pi as a Companion computer

3.2.4 Robot Operating System (ROS)

Robot Operating System (ROS) is a general purpose robotics library that can be used

with PX4 for offboard control. It uses the MAVROS node to communicate with PX4

running on hardware or using the Gazebo Simulator. The ROS distribution used in this

project is ROS Kinetic since it is the long term support version for Ubuntu 16.04.
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3.2.5 QGroundControl

QGroundControl provides full flight control and vehicle setup for PX4 or ArduPilot pow-

ered vehicles (see Fig. 3.4). It provides an easy and straightforward way to setup au-

tonomous missions on the Autopilot (see Table 3.3).

Figure 3.4: QGroundControl for planning autonomous flights

Table 3.3: QGroundControl Features

Main characteristics

Full setup/configuration of ArduPilot and PX4 Pro powered vehicles.

Flight support for vehicles running PX4 and ArduPilot (or any other autopilot that communicates 
using the MAVLink protocol).

Mission planning for autonomous flight.

Flight map display showing vehicle position, flight track, waypoints and vehicle instruments.

Video streaming with instrument display overlays.

Support for managing multiple vehicles.

QGC runs on Windows, OS X, Linux platforms, iOS and Android devices.

Full setup/configuration of ArduPilot and PX4 Pro powered vehicles.
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3.3 Detailed design

The drone operates with two autopilots which are connected to a companion computer and

communicate to it through the so called MAVLink protocol. The companion computer’s

function is to keep track of the operation of both autopilots and to take over the control

of the so called “bridge circuit”. The bridge circuit connects at all times one and just

one autopilot to the ESC, by doing so there is no interference between the signals that

both autopilots sends to it since both of them try to send signals to the ESC at the same

time (see section 3.4.6). Recall that the ESC controls and regulates the speed the motors

based on the signal that receives from an Autopilot. The component that commands the

bridge circuit to connect an specific Autopilot to the ESC is as it was already mentioned

the companion computer. If the autopilot currently in use should failed, the companion

computer sends a signal to the bridge circuit to switch to the redundant autopilot, as a

result the signals sent to the motors are never interrupt and the drone keeps in the air

without any problem.

Here it is important to point out that ROS (running on the companion computer) executes

the algorithm used to determinate when an autopilot has failed. ROS gets information

from the autopilots through MAVROS node which in turn gets incoming data from the

USB ports. The Autopilots sends its information through the serial port TELEM 2 using

MAVlink protocol. The Fig. 3.5 depicts how all components interconnect with each other

and next list is a summary of the main elements indispensable for the redundant system.

• Companion computer. Gets autopilots information.

• Pixhawk Autopilots. Controls the trajectory of an aircraft without constant

’hands-on’ control by a human operator being required.

• ROS. It is a flexible framework for writing robot software. It executes the algorithm

used to detect a failure in any of the autopilots.

• MAVROS. Enables MAVLink extendable communication between computers run-

ning ROS and MAVLink enabled autopilots. It is the Official bridge between ROS

and enabled MAVlink autopilots.

• MAVlink protocol. MAVLink is a very lightweight messaging protocol for com-

municating with drones.

• Bridge circuit. Connects one and just one autopilot to the ESC.
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Figure 3.5: Drone Architectural Overview
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3.4 The redundant system

3.4.1 Data streamed flow between the companion computer and

the Autopilots

The idea behind the companion computer is to be able to get data from the PX4 stacks,

coming through the MAVLink protocol, namely those related with the health of the au-

topilots. Here the companion computer mounted onto the drone, communicates with both

autopilots using MAVROS package which in turn communicates with ROS to supervise

the operation of both autopilots. Data stream flow can be seen in next Fig. 3.6.
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Figure 3.6: System data flow
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It is necessary to use and install MAVROS since ROS does not understand MAVLink

protocol coming from the PX4 stack. MAVROS is the“official” supported bridge between

ROS and the MAVLink protocol. In addition MAVProxy it is also required to route the

MAVLink data coming from serial ports to MAVROS node.

3.4.2 Data coming from Autopilots

MAVROS automatically publishes data coming from the autopilots into /Diagnostics

topic. These /Diagnostics topic is designed to collect information from hardware drivers

and robot hardware to users and operators for analysis, troubleshooting, and logging. The

data (see Table 3.4) related with autopilots’ health is subtracted from here.

Table 3.4: Flags used to check Autopilots status.

Main characteristics

Full setup/configuration of ArduPilot and PX4 Pro powered vehicles.

Flight support for vehicles running PX4 and ArduPilot (or any other autopilot that communicates 
using the MAVLink protocol).

Mission planning for autonomous flight.

Flight map display showing vehicle position, flight track, waypoints and vehicle instruments.

Video streaming with instrument display overlays.

Support for managing multiple vehicles.

QGC runs on Windows, OS X, Linux platforms, iOS and Android devices.

Full setup/configuration of ArduPilot and PX4 Pro powered vehicles.

TELEM2 FTDI

1 + 5V (red) NOT CONECTED!

2 Tx (out) 5 FTDI RX (yellow) (in)

3 Rx (in) 4 FTDI TX (orange) (out)

4 CTS (in) 3 FTDI RTS (green) (out)

5 RTS (out) 2 FTDI CTS (brown) (in)

6 GND 1 FTDI GND (black)

Flag Description Possible 
Values

FCU_status Shows status of connection between MAVROS and 
the px4 stack

OK=0

WARN=1


ERROR=2

STALE=3

Heartbeat_Status
The heartbeat is used to determine whether a system 

is connected, and to detect when it has 
disconnected.

Gyroscope Status of gyroscope embedded sensor

Accelerometer Status of accelerometer embedded sensor

Magnetometer Status of magnetometer embedded sensor

/Diagnostics publishes data using diagnostic msgs/DiagnosticArray messages with

the device names, status and specific data points, see Fig. 3.7.

Figure 3.7: Diagnostics message
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3.4.3 Communication setup

Enabling communication between a companion computer and a Pixhawk boards requires

to setup the firmware on both sides and they must are interfaced using the serial port

TELEM 2, this port is the default port used for communicating with companion computers.

The following points shows a brief explanation of the main parameter to configure, it is

required to go and check PX4 Development Guide if the reader wants to get a deeper

understating about this matter.

3.4.3.1 Companion computer

In order to receive MAVLink data, the companion computer needs to run some software

talking to the serial port, the reader can check appendix B to learn how to install this

packages. They are:

• MAVROS to communicate to ROS nodes.

• C/C++/Python code to connect custom code

• MAVProxy to route MAVLink between serial and UDP.

3.4.3.2 Pixhawk Setup

It is required to enable MAVLink on the serial port that will be used to connect to a

companion computer (TELEM 2 is the default port used for companion computers). De-

pending on the firmware version and the hardware model used different parameter must

be set before enabling MAVLink on an specific autopilot’s serial port. Next parameters

are the commonly used for all Pixhawk series.

• MAV 1 CONFIG = TELEM 2 (MAV 1 CONFIG is often used to map the TELEM 2 port)

• MAV 1 MODE = Onboard

• SER TEL2 BAUD = 921600 (921600 or higher recommended for applications like log

streaming or FastRTPS)

When working with the first Pixhawk model it is only necessaty to set parameter SYS COM-

PANION to 921600. QGroundControl is used in order to set and change parameters in

Pixhawk autopilots.
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3.4.3.3 Hardware Setup

The serial port is wired according to the next Table 3.5. All Pixhawk serial ports operate

at 3.3V and are 5V level compatible. To connect the serial port from the autopilots to the

companion computer’s USB ports two Future Technology Devices International (FTDI)

modules are used.

Table 3.5: Wiring to Pixhawk (FTDI Chip USB-to-serial adapter board)

Main characteristics

Full setup/configuration of ArduPilot and PX4 Pro powered vehicles.

Flight support for vehicles running PX4 and ArduPilot (or any other autopilot that communicates 
using the MAVLink protocol).

Mission planning for autonomous flight.

Flight map display showing vehicle position, flight track, waypoints and vehicle instruments.

Video streaming with instrument display overlays.

Support for managing multiple vehicles.

QGC runs on Windows, OS X, Linux platforms, iOS and Android devices.

Full setup/configuration of ArduPilot and PX4 Pro powered vehicles.

TELEM2 FTDI

1 + 5V (red) NOT CONECTED!

2 Tx (out) 5 FTDI RX (yellow) (in)

3 Rx (in) 4 FTDI TX (orange) (out)

4 CTS (in) 3 FTDI RTS (green) (out)

5 RTS (out) 2 FTDI CTS (brown) (in)

6 GND 1 FTDI GND (black)

Section 4.5 shows how to establish connection between the autopilots and the companion

computer once the previous requirements are set.

3.4.4 Behind the Logic

The programs executed by ROS can be divided into three groups for explanatory purpose,

the first two run in the drone at all time (allocated withing the package redundant auto)

and the third one in a Ground station computer (inside the package ground station).

The first group of programs oversees both autopilots and switches to the redundant one in

case of any problem, the second group reports data to a Ground enabled ROS computer

to allow remote supervision, and the third group controls the drone by sending commands

through ROS. Next sections explain the logic followed by the code. The readers should

check the code line by line if they want to have a deep understanding of the logic and to

know how exactly all works.

Programs inside redundant auto package.

Next Fig. 3.8 shows the logic flow and interactions between the nodes created by the

package redundant auto , they are shown in the sequential order they occur, namely
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scanAutopilots, fromDiagnostics and executes SafetyRoutine. Each one of these

nodes perform and specific task. It is important to take into account that there are a lot

more nodes running along with the ones already mentioned, but for explanatory purposes

and an easy understanding there is only explained the three nodes already mentioned.

• scanAutopilots.

This node executes a continues loop in which requests information regarding both

autopilots health (through the getData fromAutopiltos() method). Here the val-

ues that can be returned are either noError, FailureOnAuto1 or FailureOnAuto2.

The while loop will run indefinitely as long as the returned value is noError.

In case of a failure the program continues by calling switchAuto() method. This

function when executed sends a signal to the bridge circuit to immediately switch

to the redundant autopilot which takes over the control of the aircraft.Afterwards a

safety routing is executed. At this point the returned value can be either Failure-

OnAuto1 or FailureOnAuto2, in any case call safetyRouting() method will be

called. This last function executes a safety routing that the healthy autopilot should

execute.

• fromDiagnostics.

This node filters data coming from /diagnostics topic, and returns a message with

the current state of both autopilots (noError, FailureOnAuto1 or FailureOnAuto2).

To do this uses the data shown previously in Table 3.4

• inCaseEmergency.

This node have defined a safety routing that will land the drone in case of a failure

in any of the autopilots. When called it is required to pass the name of the health

autopilot as an argument in order to command the correct autopilot. When executed

it will wait 3 secs in the air and afterwards it starts a safety landing.

It is important to point out that this node holds a service thus when called all process

within ROS will stop and continue after the safety land has already been completed.

In case the user wants to continue flying the drone, it is only required to switch to

”manual mode” from the controller and the safety routing will be ignored.
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scanAutopilots fromDiagnostics safetyRoutines

getData_fromAutopiltos()

msg_Status

call_safetyRoutine(autopilot2)

response

call_safetyRoutine(autopilot1)

response

Bucle
[msg_status =noError]

Alt
[msg_status=FailureOnAuto1]

[msg_status=FailureOnAuto2]

safetyLanding()

safetyLanding()

switchAuto(msg_Status)

Figure 3.8: Redundant Autopilot sequence diagram.
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Programs inside ground station package.

This package works along with package redundant auto. When the main node is started

it calls the action server defined in package redundant auto and then it displays a menu

that allows the user to choose an autopilot and sends commands to the drone .

Figure 3.9: Ground computer Menu

The node“Mein menu node” requests through checkAutopilots() method the status of

both autopilots, afterwards Datato GComputer return a message with the current state of

both autopilots ( returned values are data fromDrone.auto1, data fromDrone.auto2 or

data fromDrone.Gstatus), see Fig. 3.10 .

If data fromDrone.Gstatus=OK is returned the program request the user to select a

autopilot to control de Drone, afterwards a loop starts in which the user will sends com-

mands as long as an exit is not requested from the user side.

If data fromDrone.auto1=FAIL or data fromDrone.auto1=FAIL are returned the pro-

gram allows to sends only commands to the current autopilot being healthy through

startControlling OneAuto() method.
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MainNode gets_autoStatus commander

Actor

executeProgram

checkAutopilots()

msg_status

startControllingdrone(action)

mainMenu()

chooseAuto()

requestAuto

selection

loop

requestAction

action

loop

startControllingdrone(action)

oneAutomenu()

requestAction

action

Alternativa

[msg_status=noError]

[else]

Figure 3.10: Control control sequence diagram
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3.4.5 ROS packages

ROS gets information coming from the autopilots through /diagnostics topic, from this

topic are obtained the flags that were already shown in Table 3.4. The programs follow

the logic already explained in previous section 3.4.4, and are organized in two packages,

one called redundant auto and a second one called ground station.

The package redundant auto runs in the drone and follows the sequence diagram already

shown in Fig. 3.8. It contains the next files.

• read Diagnostics.py

Gets information coming from the autopilots and publishes the filtered data.

defined Node: ‘fromDiagnosticsNode’

subscribers: /diagnostics

publishers: /autopilots status

–message: status msg.msg

• scanAutopilots serClient.py

Checks continuously the the autopilots’ state, in case of failure calls the service

/call safetyRouting serServer.

defined Node: ‘scan Autopilots’

subscribers: /autopilots status

service called: /call safetyRouting serServer

• execute safetyRoutine serServer.py

Holds a service which when called executes a safety routine defined in safety routines.py.

All process within ROS are stopped once this service is called.

defined Node: ‘executes SafetyRoutine’

defined service: /call safetyRouting serServer

–message: emergency msg.srv

• safety routins.py

Only safety routines are defined in this file.

• Send datatoGroundStation actServer.py

Holds an action which when called from the ground computer provides the current

status of both autopilots.

defined Node: ‘Connect GComputer’

subscribers: /autopilots status
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defined action: /Datato GComputer

–message: messagetoPCAction.action

The package ground station runs in a ground enabled ROS computer and executes the

next programs, following the sequence diagram already shown in Fig. 3.10.

• main menu.py

When started calls call action getsAutopilotStatus client.py. It shows a menu to

send commands to the drone.

defined Node: Mein menu node’

• getData fromDrone actClient.py Checks the current status of the autopilots by

making a call to the action /Datato GComputer.

action called: /Datato GComputer

• droneController.py

Shows a menu with the commands available to sent to the drone.

• commander.py

Holds the commands available to sent.

Next Fig. 3.11 depicts the connection between all the nodes. When the drone starts

operation the node /fromDiagnosticsNode checks the status of the autopilots and sends

this information through the topic /autopilots status.

The node /scan Autopilots uses data coming from /autopilots status to detect any

failure, in case one is detected the service /call safetyRouting serServer is called.

This service sends a signal to the bridge circuit and executes a safety routine.

The last node ‘Connect GComputer’ only provides current information about the status

both autopilots.

In case a ground computer is being used an additional node is added to the ROS system,

this node executes a menu in which any user can commands to the drone.

It is necessary to check the code within both packages redundant auto and ground station

if the reader wants to get a better understating of this matters.
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Figure 3.11: ROS computation graph
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3.4.6 Bridge Circuit

The bridge circuit (see Fig. 3.12) switches connection between the autopilots and the

ESC depending on the signal that it receives from the companion computer. The circuit

only consist on an arrangement of 4 high speed solid stated relay with single pole and two

throws.

ESC
4-IN-1 SPEED CONTROL QUAD HOBBYWING

Li
 -P

O
 

Ba
tte

ry
PIXHAWK 1 PIXHAWK 1

S1 S2 S3 S4 S1 S2 S3 S4

S4S3S2S1

VBAT

GND

M M M M

(+
)

(-)

Companion
Computer

GPIO

Figure 3.12: Bridge circuit connection

ESC Connection Overview.

Each PWM Electronic Speed Controller (ESC) minimally has the following wires.

• Power VBAT (usually thick and red).

• Power GND (usually thick and black).

• PWM signal for each motor (usually white or yellow).

• GND (usually black or brown)

The servo plug may also have a +5V wire (usually red or orange). The purpose of this

wire and how it is connected depends on particular ESC and vehicle type.

Many PX4 drones use brushless motors that are driven by the flight controller via an

Electronic Speed Controller (ESC). The ESC converts a signal from the flight controller
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to an appropriate level of power delivered to the motor. PX4 supports ESCs that take a

PWM input, ESCs that use the ESC OneShot standard, UAVCAN ESCs, PCA9685 ESC

(via I2C), and some UART ESCs (from Yuneec).

Proposed ESC.

• ESC 20A Favourite SKY III Quattro (4 in 1). 159/5000 The electronic speed con-

troller (ESC; Electronic Speed Controller) 4 in 1 with BEC is the perfect solution

for medium sized quadricopters.

• The MAX4541–MAX4544 are precision, dual analog switches designed to operate

from a single +2.7V to +12V supply. Low power consumption (5µW) makes these

parts ideal for battery-powered equipment

Proposed SSR.

• The NLAS44599 is an advanced dual independent CMOS double pole double throw

(DPDT) analog switch fabricated with silicon gate CMOS technology.

• The MAX4541–MAX4544 are precision, dual analog switches designed to operate

from a single +2.7V to +12V supply. Low power consumption (5µW) makes these

parts ideal for battery-powered equipment
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Chapter 4

Simulation and test process

Next chapter provides information about the SIL simulation phase, followed by a explana-

tion of the Hardware in the Loop process. The HIL is established to validate the correct

operation of the redundant system.

PX4 supports both SIL simulation, where the flight stack runs on computer (either the

same computer or another computer on the same network) and HIL simulation using a

simulation firmware on a real flight controller board.

The reader can check out appendix B to learn how to install PX4 firmware, gazebo, mavros

and ROS, in addition sections sections 4.4 and 4.5 show how to set up a SIL and HIL phase

respectively.

4.1 HIL vs SIL

SIL runs on a development computer in a simulated environment, and uses firmware

specifically generated for that environment. Other than simulation drivers to provide fake

environmental data from the simulator the system behaves normally.

By contrast, HIL runs normal PX4 firmware, on normal hardware. The simulation data

enters the system at a different point than for SIL. Core modules like commander and

sensors have HIL modes at startup that bypass some of the normal functionality. In sum-

mary, HIL runs PX4 on the actual hardware using standard firmware, but SIL actually

executes more of the standard system code.
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Gazebo

Gazebo is the chosen software to perform the SIL. Gazebo is a powerful 3D simulation en-

vironment for autonomous robots that is particularly suitable for testing object-avoidance

and computer vision, see Table 5.1.

Gazebo is often used with ROS, a toolkit/offboard API for automating vehicle control.

Table 4.1: Gazebo characteristics

�

ssh CompanionCompu

export ROS_MASTER_URI=http://hal:11311

Simulator Description Supported UAVs

Gazebo

A powerful 3D simulation environment that is 
particularly suitable for testing object-avoidance 
and computer vision. It can also be used for multi-
vehicle simulation and is commonly used with ROS, 
a collection of tools for automating vehicle control.


This simulator is highly recommended.

• Quad (Iris and Solo)

•  Hex (Typhoon H480)

•  Generic quad delta VTOL

• Tailsitter 

• Plane

• Rover

• Submarine (coming soon!)

The original approach for the simulation was to have two autopilots connected to just 
one Drone running in Gazebo and to test the redundant algorithm. Unfortunately when 
each PX4 is launched this one creates automatically its own drone and connects to it. 
Due to this the redundant algorithm is tested having two drones and not just one.

�

DATA Description Possible 
Values

FCU_connection Shows status of connection between 
MAVROS and the px4 stack

OK=0 
WARN=1 

ERROR=2 
STALE=3

GPS

Heartbeat_Status
The heartbeat is used to determine whether 
a system is connected, and to detect when 

it has disconnected.

Battery Show data related with battery, current and 
voltage

Time Sync Rate transmission from USB port

System

Gyroscope Status of gyroscope embedded sensor

Accelerometer Status of accelerometer embedded sensor

Magnetometer Status of magnetometer embedded sensor

source   ~/catkin_ws/devel/setup.bash 

cd ~/catkin_ws/src/Firmware

source Tools/setup_gazebo.bash $(pwd) $(pwd)/build/posix_sitl_default

export ROS_PACKAGE_PATH=$ROS_PACKAGE_PATH:$(pwd):$(pwd)/Tools/sitl_gazebo

ssh Drone

rescore

export ROS_MASTER_URI=http://hal:11311

4.2 SIL phase.

4.2.1 How the simulation works.

Gazebo communicates with PX4 using the Simulator MAVLink API. This API defines a

set of MAVLink messages that supply sensor data from the simulated world to PX4 and

return motor and actuator values from the flight code that will be applied to the simulated

vehicle. The Fig. 4.1 below shows the message flow.

PX4  flight stack

Gazebo

Motor and actuator values 
messages 

-HIL_ACTUATOR_CONTROLS

Px4 motor/actuator outputs
 Sensor and other messages 

-HIL_SENSOR 
-HIL_GPS 

-HIL_OPTICAL_FLOW
HIL_STATE_QUATERNION

HIL_RC_INPUTS_RAW

PX4 inputs from simulator.

Figure 4.1: MAVlink API
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4.2.2 Communication between PX4 and Gazebo.

By default, PX4 uses commonly established UDP ports for MAVLink communication

with ground control stations (e.g. QGroundControl), MAVROS and simulator APIs (e.g.

Gazebo). These ports are:

• Port 14540 is used for communication with offboard APIs. Offboard APIs are ex-

pected to listen for connections on this port, ROS is a perfect example for this.

• Port 14550 is used for communication with ground control stations. GCS are ex-

pected to listen for connections on this port. QGroundControl (control stations used

in this project) listens to this port by default.

• Port 14560 is used for communication with simulators. PX4 listens to this port, and

simulators are expected to initiate the communication by broadcasting data to this

port.

4.2.3 SIL Simulation Environment

.

The Fig.4.2 shows the established SIL simulation environment for this project. The dif-

ferent parts of the system connect via UDP, and can be run on either the same computer

or another computer on the same network.

• Two PX4 stacks use a simulation-specific module to listen on UDP ports 14561 and

14562. Gazebo connect to this ports, then exchange information using the Simulator

MAVLink API described in subsection 4.2.2. Both PX4 stacks can run on either the

same computer or different computers on the same network.

• A serial connection can be used to connect Joystick/Gamepad hardware via QGround-

Control.

• ROS runs at all time the algorithm explained in section 3.4.4.

• Both PX4 stacks uses the normal MAVLink module to connect to QGroundControl

(which listen on port 14550) and ROS (which listen on ports 14541 and 1452).
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Figure 4.2: SIL setup

4.2.4 Logic for SIL.

ROS gets information from both autopilots an supervise its operation, to simulate a failure

in one autopilot its daemon process is stopped, by doing so PX4 (one autopilot) loses com-

munication with Gazebo and ROS. The redundant algorithm interprets this as a failure

and immediately executes a safety routing, as it was already mentioned in subsection 3.4.4.

Simulator Description Description

Gazebo

A powerful 3D simulation environment that is 
particularly suitable for testing object-avoidance 
and computer vision. It can also be used for multi-
vehicle simulation and is commonly used with ROS, 
a collection of tools for automating vehicle control.


This simulator is highly recommended.

• Quad (Iris and Solo)

•  Hex (Typhoon H480)

•  Generic quad delta VTOL

• Tailsitter 

• Plane

• Rover

• Submarine (coming soon!)

The original approach for the simulation was to have two autopilots connected to just 
one Drone running in Gazebo and to test the redundant algorithm. Unfortunately when 
each PX4 is launched this one creates automatically its own drone and connects to it. 
Due to this the redundant algorithm is tested having two drones and not just one.

�

It’s important to point out that both autopilots when instanced must have different and

unique IDs, otherwise when the simulation is launched error would pop-up saying that

both autopilots can not exist at the same time in the same name space. Launch files are

used to assign different ID to each autopilots as well as the UDP ports that each autopilot

uses to connect with the different parts of the system. Next Fig. 4.3 depicts how the
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simulation environment looks like.

QGroundControl

ROS algorithm

Two PX4 stacks 
runing

Gazebo 
simultor

Figure 4.3: Simulation environment

Next point are checked in the listed order to validate the correct operation of the redundant

system.

• Data coming from the autopilots.

Here attention is focused on /diagnostics topic to check if it supplies correctly

the flags mentioned in table 3.4. For this task the ROS commands rostopic echo

/diagnostics and rosrun rqt runtime monitor rqt runtime monitor are used

( see Fig. 4.4).
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Figure 4.4: Test for /diagnostics

• Communication with QGroundControl. Both autopilots connects automatically to

QGroundControl and all the parameters supplied by the autopilots are verified here,

namely those related with location provided with the GPS, barometer, accelerome-

ters and gyroscopes (see Fig. 4.5).

• Debugging the Redundant algorithm. The algorithm was compiled several times to

correct different errors in the syntax. Qt creator is the compiler chosen for debugging

the code.

• Safety routings.

When a failure is simulated safety routing is executed in Gazebo, the drone with the

redundant autopilot executes a safety landing when a failure occurs.
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Figure 4.5: Test connection with QGroundControl

• Controlling the drone from Ground Station.

Here the programs of the ground computer are tested. This programs control de

drone when the RC control is not used.

All the previous task were tested in the same computer with all the components in the

same network.

4.3 HIL phase.

Next Fig. 4.6 shows the HIL setup. Each Pixhawk autopilot is connected to the USB

ports of the companion computer. The autopilots use serial communication to send data

to the exterior world, due to this reason two FTDI modules are used to interface the

serial TELM2 port from the autopilots to the USB ports of the companion computer. In

addition an extra computer and a phone are used as Ground station. Let’s remember

that the Ground station is used as an extra means of control when the RC control in not

being used and the phone can be used to monitor data coming from the autopilots. The

companion computer creates a Hostpot to connect with the rest of the devices in the same

network. Fig. 4.7 depicts the network setup.
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FTDI modules

USB

Serial

HIL SetupDetailed view

Figure 4.6: HIL setup

Spatial attention is focused on the MAV SYS ID parameter from each autopilot. As it was

already mentioned each autopilot must have a unique ID, when simulating this parameter

is set using launch files while when working with a real autopilot this parameter is set

using MAV SYS ID parameter. To change the parameter QGroundControl must be used.

WIFI

Hostpot companion computer

Redundant system
IP: 192.168.2.1

QGroundControl
IP: 192.168.2.3

ROS enabled computer for 
controlling Drone

IP: 192.168.2.2

Figure 4.7: Network setup
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4.3.1 HIL environment

The following Fig. 4.8 depicts the connections between all the components in the HIL

phase. ROS gets information from the autopilots through UDP ports, forwards data to

QGroundControl and connects to a Ground Station Computer, as long as all the devices

are in the same network.

PX4 stack on SIL
ID : 1 

MAVROS node

Algorithm  
supervising 
autopilots

USB

PX4 stack on SIL
ID : 2

USB
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Figure 4.8: HIL setup and components connection.
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Next point are checked in the listed order to validate the correct operation of the redundant

system.

• Communication with the Autopilots.

Firstly the connection was tested first using the MAVLink protocol ( see Fig. 4.9):

mavproxy.py --master=/dev/ttyUSB0 --baudrate 921600 --aircraft MyCopter

This last command allows communication with the autopilot (connected in port

USB0) using MAVLink commands. To test the second autopilot it is only needed to

use /dev/ttyUSB1.

Figure 4.9: First test for communication

Secondly it was established communication between MAVROS and the autopilots.

In order to allow communication it is necessary to configure the ports trough which

the companion computer uses to communicate with the autopilots, to learn how to

do it the reader can check appendix B.

After establishing connection between MAVROS and the autopilots, each one of

the flags mentioned in Table. 3.4 are checked one by one to make sure that the

communication with the autopilots works correctly and to make sure that ROS can

supervise autopilots using /diagnostics topic (see Fig. 4.10).

• Communication with QGroundControl.

The companion computer forwards the data coming from the autopilots to QGround-

Control. This communication is checked focusing attention on the data received by

QGroundControl, which is installed in a common phone. QGroundControl and the

companion computer are set in the same network.
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Figure 4.10: Second test for communication

• Redundant system.

The safety routine is tested to make sure it runs when a failure has happened. In

order to simulate a failure next arrangement is established.

• Communication with ground station.

Connection is supervised by controlling the drone from a remote place. Do not

forget that the companion computer and the ground station are always in the same

network.

• Controlling the drone from ground station.

In this step the drone is controlled by sending commands from QGroundControl

installed on a phone.
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4.4 Setting up the SIL

Before running any simulation ROS, MAVROS, MAVLink and the PX4 must be already

install in the computer. The reader can install this programs one by one but PX4 de-

velopment page provides a script to install all this programs by executing a file called

ubuntu sim ros gazebo.sh, appendix B shows how to use this script.

PX4 install all it’s source code in folder called Firmware it’s needed to make sure that

this folder, MAVROS and MAVlink folders are allocated withing ROS workspace (see Fig.

4.11).

Figure 4.11: Firmware, MAVROS and MAVlink folder in SRC workspace folder

4.4.1 Launch files

.

ROS uses the so called launch files. Launch files are very common in ROS to both users

and developers. They provide a convenient way to start up multiple nodes and a master,

as well as other initialization requirements such as setting parameters. In this case they

are used to start a SIL PX4.

PX4 has already refined launch files to start a simulation (see Fig. 4.12). Use roslaunch

command to start any of them, e.g: roslaunch px4 mavros posix sitl.launch
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Figure 4.12: Example default PX4 Lauch files

It is important to take into account that before launching any of these lauch files the user

must source the environment.

Simulator Description Supported drones

Gazebo

A powerful 3D simulation environment that is 
particularly suitable for testing object-avoidance 
and computer vision. It can also be used for multi-
vehicle simulation and is commonly used with ROS, 
a collection of tools for automating vehicle control.


This simulator is highly recommended.

• Quad (Iris and Solo)

•  Hex (Typhoon H480)

•  Generic quad delta VTOL

• Tailsitter 

• Plane

• Rover

• Submarine (coming soon!)

The original approach for the simulation was to have two autopilots connected to just 
one Drone running in Gazebo and to test the redundant algorithm. Unfortunately when 
each PX4 is launched this one creates automatically its own drone and connects to it. 
Due to this the redundant algorithm is tested having two drones and not just one.

�

DATA Description Possible 
Values

FCU_connection Shows status of connection between 
MAVROS and the px4 stack

OK=0 
WARN=1 

ERROR=2 
STALE=3

GPS

Heartbeat_Status
The heartbeat is used to determine whether 
a system is connected, and to detect when 

it has disconnected.

Battery Show data related with battery, current and 
voltage

Time Sync Rate transmission from USB port

System

Gyroscope Status of gyroscope embedded sensor

Accelerometer Status of accelerometer embedded sensor

Magnetometer Status of magnetometer embedded sensor

source   ~/catkin_ws/devel/setup.bash 

cd ~/catkin_ws/src/Firmware

source Tools/setup_gazebo.bash $(pwd) $(pwd)/build/posix_sitl_default

export ROS_PACKAGE_PATH=$ROS_PACKAGE_PATH:$(pwd):$(pwd)/Tools/sitl_gazebo

4.4.2 Launch files created for the project

.

This project simulates two autopilots and to do so, it was created three launch files. All

three have comments for a better understanding of the code.

• my main launch.launch. It configures and starts the Gazebo simulator

• my uav1 mavros sitl.launch. It starts PX4 and spawn a drone.

• my uav2 mavros sitl.launch. It starts a second PX4 and spawn a drone.
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my main launch.launch

Figure 4.13: my main launch.launch launch file

my uav1 mavros sitl.launch and my uav2 mavros sitl.launch

Figure 4.14: my uav1 mavros sitl.launch launch file

The launch file for my uav2 mavros sitl.launch is exactly the same, next parameter changes:
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• <group ns=”uav2” />

• <arg name=”ID” value=”2”/>

• <arg name=”fcu url” default=”udp://:14542@localhost:14582”/>

• <arg name=”mavlink udp port” value=”14562”/>

Not not forget that my uav1 mavros sitl and my uav2 mavros sitl establishes connection

between Gazebo and MAVROS on specifics UDP ports. It is not necessary to configure

the UDP port for QGroundControl since when simulating this last one connects with PX4

automatically.

4.4.3 Extra information

Next information provides a better understating about the launch files.

• Gazebo model.

This is defined as xacro file in Firmware/Tools/sitl gazebo/models /rotors description

/urdf/<model> base.xacro. Currently, the model xacro file is assumed to end with

base.xacro. This model should have an argument called mavlink udp port which de-

fines the UDP port on which gazebo will communicate with PX4 node. The model’s

xacro file will be used to generate an urdf model that contains UDP port that you

select. To define the UDP port, set the mavlink udp port in the launch file for each

vehicle, see here as an example.

• PX4 node.

This is the SITL PX4 app. It communicates with the simulator, Gazebo, through

the same UDP port defined in the Gazebo vehicle model, i.e. mavlink udp port. To

set the UDP port on the PX4 SITL app side, you need to set the SITL UDP PRT

parameter in the startup file to match the mavlink udp port discussed previously,

see here. The path of the startup file in the launch file is generated based on the

vehicle and ID arguments, see here. The MAV SYS ID for each vehicle in the startup

file, should match the ID for that vehicle in the launch file. This will help make sure

you keep the configurations consistent between the launch file and the startup file.

• MAVROS node.

A seperate MAVROS node can be run in the launch file, in order to connect to PX4

SITL app. It is needed to start a MAVLink stream on a unique set of ports in the
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startup file. Those unique set of ports need to match those in the launch file for the

MAVROS node.

4.4.4 Running a simulation with launch files

.

Open three different shell and execute roslaunch command on the three launch files already

mentioned in section 4.4.2. Do not forget that the user must source the environment. After

executing the launch file simulation looks like next Fig. 4.15

Figure 4.15: Running Simulation

4.5 Setting up the HIL

In order to enable communication between an autopilot and a companion computer it is

needed to have installed MAVROS, MAVLink and MAVProxy to route MAVLink between

serial and UDP. Section B describes the steps necessary to install all these programs.

Pixhawk uses by default the TELM2 serial port to communicated with the exterior world.

The companion computer can connect to this port by using its built-in UART or by using

its USB port. Let’s take into account that when using the USB port a FTDI module most

be used to translate serial communication from the TELM2 port into USB protocol (See

Fig. 4.16).
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FTDI modules

USB

Serial

HIL SetupDetailed viewFigure 4.16: FDTI module to translate from serial to USB protocol

Fig. 4.17 depicts a typical connection using the UART port from a Raspberry PI. Unfor-

tunately raspberry pi only has one built-in UART port and for these reason it was decided

to uses two FTDI modules since two autopilots have to be connected to the companion

computer at the same time.

Figure 4.17: Serial connection between Pixhawk and Companion computer
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4.5.1 Hardware setup

Pixhawk series uses commonly the TELM2 port for Companion computer communication,

depending on the hardware version used this port may change, the reader can check PX4

Development Guide for more information about this matter. Next Table 4.2 show the

typical connection used for connecting the FTDI module to the TELM2 port.

Table 4.2: Wiring to Pixhawk (FTDI Chip USB-to-serial adapter board)

Main characteristics

Full setup/configuration of ArduPilot and PX4 Pro powered vehicles.

Flight support for vehicles running PX4 and ArduPilot (or any other autopilot that communicates 
using the MAVLink protocol).

Mission planning for autonomous flight.

Flight map display showing vehicle position, flight track, waypoints and vehicle instruments.

Video streaming with instrument display overlays.

Support for managing multiple vehicles.

QGC runs on Windows, OS X, Linux platforms, iOS and Android devices.

Full setup/configuration of ArduPilot and PX4 Pro powered vehicles.

TELEM2 FTDI

1 + 5V (red) NOT CONECTED!

2 Tx (out) 5 FTDI RX (yellow) (in)

3 Rx (in) 4 FTDI TX (orange) (out)

4 CTS (in) 3 FTDI RTS (green) (out)

5 RTS (out) 2 FTDI CTS (brown) (in)

6 GND 1 FTDI GND (black)

All Pixhawk serial ports operate at 3.3V and are 5V level compatible.

4.5.2 Software setup

4.5.2.1 Pixhawk

Before using the TELEM2 port it must be first configured by enabling a MAVLink instance

on this port, this allows communication with a companion computer. To set up the default

companion computer message stream on TELEM 2, set the following parameters.

• MAV 1 CONFIG = TELEM 2 (MAV 1 CONFIG is often used to map the TELEM

2 port)

• MAV 1 MODE = Onboard

• SER TEL2 BAUD = 921600 (921600 or higher recommended for applications like

log streaming or FastRTPS)

Depending on the hardware version used the parameter that need to configured may

change, for Pixhawk version 1 only the parameter SYS COMPANION to 921600.
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How to set the parameters on PORT2

All the serial drivers/ports are configured in the same way (see Fig. 4.18).

1 Set the configuration parameter for the service/peripheral to the port it will use.

2 Reboot the vehicle.

3 Set the baud rate parameter for the selected port to the desired value.

4 Configure module-specific parameters (i.e. MAVLink streams and data rate confi-

guration).

Figure 4.18: Configuring parameter using QGroundControl

4.5.2.2 Companion computer

The companion computer is expected to have installed ROS kinetic running on ubuntu

16.04, since it is the long term support version for Ubuntu 16.04.

A launch file is used to allow communication between Pixhawk and the companion com-

puter. This launch file configures the UDP port through which MAVROS obtains data

coming from the MAVProxy. Let’s remember MAVProxy obtains data coming from USB

ports in which the autopilots are connected.

The launch file, called stablish autopilots connection.launch (see Fig. 4.19), is allocated

in the launch folder within the MAVROS folder. This file sets next points.
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• There are declared two name spaces, each autopilots sends data to each one of them,

namely uav1 and uav2. It is important to declare them like this, otherwise data

conflict appears.

• Connection is established for port USB0 and USB1 at a baud rate of 921600. Line of

codes for one autopilot: arg name=”fcu url” default=”serial:///dev/ttyUSB0:921600”

• MAVROS forwards data received from Pixhawk to QGroundControl station with

the IP 10.42.0.218 on port 14550.

Line of code: arg name=”gcs url” default=”udp://@10.42.0.218:14550”

To run the launch file it only needed to execute roslaunch command (roslaunch mavros

stablish autopilots connection.launch), do not forget that the environment must be

sourced before running roslaunch (source /catkin ws/devel/setup.bash). Commu-

nication must be already established after executing the launch file. Command rosnode

list can be use to validate communication.

4.5.2.3 Ground Station Computer

Let’s remember that the package redundant auto runs in the companion computer and

package ground station runs in a Ground Station Computer, both computers must be in

the same network and in the same ROS environment. Next instruction defines the step

that must be fulfill in order to have a proper connection between the Ground Station

Computer and the Companion computer.

The companion computer (drone) should have run the ROS master and have defined a

hostname (name by which it can be addressed in the network).

• export ROS HOSTNAME=10.0.0.1 #Companion computer’s name

• export ROS IP=10.0.0.1 #Companion computer’s own IP

• roscore

The same commands must be entered in the Ground Computer.

• ROS MASTER URI=http://10.0.0.1:11311 #Drone’s IP (Companion cumputer)

• export ROS IP=10.0.0.2 #Ground computer’s own IP
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File: /home/parallels/catkin_ws/src…h_autopilots_connection.launch Page 1 of 1

<launch>
<!-- This file stablishes conection between the autopilots and ROS-->

 
<!-- Data stream flows as follows:-->
<!-- AUTOPILTO 1(Serial port) ====> FTDI module ====>Computer USB port (USB0) ====> MAVproxy ====> 

ROS -->
<!-- AUTOPILTO 2(Serial port) ====> FTDI module ====>Computer USB port (USB1) ====> MAVproxy ====> 

ROS -->
 
 

<!-- Stablishes conection with first Autopilot, Name space:uav1-->
<!-- Forwards data to QGroundControl with IP: 10.42.0.218 -->

 <group ns="uav1">
<arg name="fcu_url" default="serial:///dev/ttyUSB0:921600" />
<arg name="gcs_url" default="udp://@10.42.0.218:14550" />
<arg name="tgt_system" default="1" />
<arg name="tgt_component" default="1" />
<arg name="log_output" default="screen" />
<arg name="fcu_protocol" default="v2.0" />
<arg name="respawn_mavros" default="false" />

 
<include file="$(find mavros)/launch/node.launch"> <!-- Creates first ROS node -->

<arg name="pluginlists_yaml" value="$(find mavros)/launch/px4_pluginlists.yaml" />
<arg name="config_yaml" value="$(find mavros)/launch/px4_config.yaml" />

 
<arg name="fcu_url" value="$(arg fcu_url)" />
<arg name="gcs_url" value="$(arg gcs_url)" />
<arg name="tgt_system" value="$(arg tgt_system)" />
<arg name="tgt_component" value="$(arg tgt_component)" />
<arg name="log_output" value="$(arg log_output)" />
<arg name="fcu_protocol" value="$(arg fcu_protocol)" />
<arg name="respawn_mavros" default="$(arg respawn_mavros)" />

</include>
</group>

 
<!-- Stablishes conection with second Autopilot, Name space:uav2-->
<!-- Forwards data to QGroundControl with IP: 10.42.0.218 -->
<group ns="uav2">
<arg name="fcu_url" default="serial:///dev/ttyUSB1:921600" />
<arg name="gcs_url" default="udp://@10.42.0.218:14550" />
<arg name="tgt_system" default="1" />
<arg name="tgt_component" default="1" />
<arg name="log_output" default="screen" />
<arg name="fcu_protocol" default="v2.0" />
<arg name="respawn_mavros" default="false" />

 
<include file="$(find mavros)/launch/node.launch"> <!-- Creates second ROS node -->

<arg name="pluginlists_yaml" value="$(find mavros)/launch/px4_pluginlists.yaml" />
<arg name="config_yaml" value="$(find mavros)/launch/px4_config.yaml" />

 
<arg name="fcu_url" value="$(arg fcu_url)" />
<arg name="gcs_url" value="$(arg gcs_url)" />
<arg name="tgt_system" value="$(arg tgt_system)" />
<arg name="tgt_component" value="$(arg tgt_component)" />
<arg name="log_output" value="$(arg log_output)" />
<arg name="fcu_protocol" value="$(arg fcu_protocol)" />
<arg name="respawn_mavros" default="$(arg respawn_mavros)" />

</include>
</group>

</launch>

Figure 4.19: stablish autopilots connection.launch file to stablish connection
with MAVROS
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Chapter 5

Results

The following chapter show the outcome from the SIL and HIL phases. The results

obtained from the tests are related with the communication between each autopilot and

the companion computer, data transmission from the autopilots to QGroundControl and

to a Ground Control Station, and finally the results obtained from the algorithm that

scans autopilots status.

5.1 Communication with autopilots

Data flow received from the autopilots correspond to the ones expected. They show the

current status of both autopilots. Next figure Fig. 5.1 depicts the output of commands:

rostopic echo /diagnostics and rosrun rqt runtime monitor rqt runtime monitor.

Table 5.1 shows data obtained.

Figure 5.1: Data obtained from autopilots
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Table 5.1: Data coming from each autopilot

Simulator Description Supported drones

Gazebo

A powerful 3D simulation environment that is 
particularly suitable for testing object-avoidance 
and computer vision. It can also be used for multi-
vehicle simulation and is commonly used with ROS, 
a collection of tools for automating vehicle control.


This simulator is highly recommended.

• Quad (Iris and Solo)

•  Hex (Typhoon H480)

•  Generic quad delta VTOL

• Tailsitter 

• Plane

• Rover

• Submarine (coming soon!)

The original approach for the simulation was to have two autopilots connected to just 
one Drone running in Gazebo and to test the redundant algorithm. Unfortunately when 
each PX4 is launched this one creates automatically its own drone and connects to it. 
Due to this the redundant algorithm is tested having two drones and not just one.

�

DATA Description Possible 
Values

FCU_connection Shows status of connection between 
MAVROS and the px4 stack

OK=0 
WARN=1 

ERROR=2 
STALE=3

GPS

Heartbeat_Status
The heartbeat is used to determine whether 
a system is connected, and to detect when 

it has disconnected.

Battery Show data related with battery, current and 
voltage

Time Sync Rate transmission from USB port

System

Gyroscope Status of gyroscope embedded sensor

Accelerometer Status of accelerometer embedded sensor

Magnetometer Status of magnetometer embedded sensor

5.2 Data transmission

5.2.1 QGroundControl

Connection with QGroundControl works correctly showing data coming from both au-

topilots at the same time. Data received is related with:

• GPS

• Altitude

• Acceleration

• Battery

• Vibration

• Temperature

5.2.2 Ground Control Station

When the drone is started, it immediately runs the action server /action getsAutoStatus server

that wait for a call from ground station. Next Fig. 5.2 shows the output obtained which

represents the steps followed by the companion computer on board.
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Figure 5.2: ROS starts action server and wait for a call from ground station.

Afterwards a call from the Ground station is made the next outputs, show in Fig. 5.3,

were obtained. They show that the connection works properly. Let’s remember that the

ground station is in the same network along with the companion computer.

b) Call from Ground Station

a) Response from companion computer

Figure 5.3: Call from Ground station and response from Companion computer

After a connection with the companion computer and ground station is established, next

67



CHAPTER 5. RESULTS

outputs are obtain. They are shown in Fig. 5.4.

Figure 5.4: Menu from Ground station

The following commands were tested.

• Take off

• Altitude

• Auto mission

• Set stabilized mode

• Arm drone

• Disarm drone

• Land

When an error is simulated and connection with the drone is made the next menu pops

up (see Fig. 5.5).

Figure 5.5: Warning obtained when one autopilot has an error and connection
between Ground station and companion Computer is made.
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5.3 Algorithm

The algorithm was tested firstly in the SIL and validated in the HIL phase.

5.3.1 SIL

The algorithm was tested by stopping the daemon process from each autopilot within

the simulation, by doing so the algorithm interprets this as a failure in the system and

immediately executes the corresponding safety routing.

Immediately after starting up the Drone it runs the services that continuously scans the

autopilots status. Next Fig. 5.6 depicts a shell with the steps followed by the service.

Figure 5.6: Drone starts service in Case Emergency and waits for a failure.

When detecting an error PX4 changes to HOLD mode and after 3 seconds starts a safety

landing. Next Fig. 5.7 shows the response of the algorithm when an error has been

detected in one autopilot.

Figure 5.7: Simulating and detecting error in one Autopilot
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5.3.2 HIL

In order to test the system in the HIL phase it was used one autopilot in good condition

and other one with malfunction in several sensors (see Fig. 5.8), namely the gyroscope

and the accelerometer. The algorithm as usual scans both autopilots with the exception

that does not supervise the complete set of flags in the autopilot which has sensor failure,

it only scans all the flags when it is instructed to do so, by entering a key command given

by the user. The algorithm scan the full set of flags in the healthy autopilot. This makes

possible to check and supervise the response of the algorithm when it detects a failure.

The outcome from this test proved that the redundancy system works properly with a lag

of 0.020 sec. It is expected that further works will improve the time of response of the

algorithm.

Healthy autopilot

Autopilot with failure 
in accelerometer and 

gyroscope.
The Algorithm is slightly modified to not scan 
the full set of flags of the autopilot with 
malfunction. It only scans all the flags when 
the user indicates it.

Figure 5.8: Test for HIL phase
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Chapter 6

Conclusion

This work is based on the statement that redundancy increases the reliability of a drone.

The hypothesis (shown in section 1.2 ) was achieved by having implemented and designed a

hot-standby redundancy arrangement, this arrangement shortens the downtime, which in

turn increases the availability of the system. In addition the statement it is supported by

the already existing reliability theory. Adding a redundant autopilot to a drone permits to

increase system safety and reliability. The safety offered by redundant autopilots is such

that it is commonly used in several manned aircrafts and high performance unmanned

systems.

The general objective (shown in section 1.4) was achieved as the redundant system hereby

presented makes use of PX4 flight stack, which works as main software to control the

autopilots hardware. Furthermore, ROS works as arbiter which manages two Pixhawk

autopilots.

The next list shows the tasks carried out which fulfill the specific objectives shown in the

chapter one (see section 1.4).

• Development and concept design of a redundant system which makes use of ROS

and PX4 stack.

• Development of the algorithm that oversees the operation of the autopilots.

• Simulation of the system by using Gazebo.

• Deployment of a SIL stage followed by its validation implementing a HIL stage.

• Project’s documentation.
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6.1 Extra comments

The redundant system presented in this project uses ROS as arbiter which manages two

Pixhawk autopilots. This redundant system not only increases safety and reliability but

also adds high flexibility to a drone, by using ”ROS” high scalability is achieved, as is

possible to use the already existing and available packages, collection of tools and libraries

among the ROS community. A drone using the redundant autopilot hereby presented can

be enabled with characteristics such as:

• Object avoidance.

• Tracking.

• Mapping.

• Complex autonomous flights.

• Image recognition and more.

The redundant system also permits to independently manage both autopilots’ teleme-

try and enables the possibility to install two independent communication links and GPS

modules. This redundant autopilot can face the current situation in which drones are

increasingly requiring a larger grade of safety, because of the need to operate in populated

areas and due to the criticality of new applications focused on the civilian market.

6.2 Further work

Finally this chapter concludes by point out topics in which further work can focus atten-

tion.

• The reliability theory.

The project makes use of a hot-standby redundancy arrangement and although it is

based on the reliability theory there is still a lot work to do regarding mathematical

matters to give this project a well establish and solid foundation.

• Modular redundancy.

The modular redundancy arrangement it is known for having a better performance

and a lower downtime that the standby redundancy. Furthermore, the reliability
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factor has a better improvement in the modular redundancy than in the standby

redundancy here used.

• Real time acquisition data from autopilots.

Here Real Time Publish Subscribe (RTPS) can be used to improve data aquisition

from autopilots. The PX4-FastRTPS Bridge adds a RTPS interface to PX4, enabling

the exchange of uORB messages between PX4 components and (offboard) Fast RTPS

applications.

• Making redundant autopilot compatible with Ardupilot.

Nowadays PX4 and Ardupilot are the most popular a common used flight stacks,

among the civilian market, by making the code compatible with Ardupilot stack the

redundant system will be compatible with most of all the hardware available in the

market.

• Extending code to acquire data from the complete Pixhawk series.

Each autopilot from Pixhawk series have different flags thats shows its current status.

It’s necessary to add all this flags to the code since currently the flags used in the

code are those related only with the first Pixhawk series, namely Pixhawk 1.
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[24] J. Balák and P. Ždánsky, “Modelling of Transition of System with Standby Redun-

dancy into Failed State,” Procedia Engineering, vol. 192, pp. 10–15, 2017.

[25] Y. Liu, Y. Shi, X. Bai, and P. Zhan, “Reliability estimation of a N-M-cold-standby

redundancy system in a multicomponent stress–strength model with generalized half-

logistic distribution,” Physica A: Statistical Mechanics and its Applications, vol. 490,

pp. 231–249, 2018.

[26] W. Wang, Z. Wu, J. Xiong, and Y. Xu, “Redundancy optimization of cold-standby

systems under periodic inspection and maintenance,” Reliability Engineering and Sys-

tem Safety, vol. 180, no. August, pp. 394–402, 2018.

[27] A. H. El-maleh and F. Chikh, “Microelectronics Reliability A generalized modular

redundancy scheme for enhancing fault tolerance of combinational circuits,” Micro-

electronics Reliability, vol. 54, no. 1, pp. 316–326, 2014.

[28] K. A. Hoque, O. Ait Mohamed, and Y. Savaria, “Dependability modeling and opti-

mization of triple modular redundancy partitioning for SRAM-based FPGAs,” Re-

liability Engineering and System Safety, vol. 182, no. October 2018, pp. 107–119,

2019.

[29] D. Siemaszko and S. Pittet, “Impact of modularity and redundancy in optimising

the reliability of power systems that include a large number of power converters,”

Microelectronics Reliability, vol. 51, no. 9-11, pp. 1484–1488, 2011.

[30] S. U. S. E. L. D. S. Laboratory and J. Wakerly, Reliability of microcomputer systems

using triple modular redundancy. Defense Technical Information Center, 1975.

[31] S. C. Anjankar, M. T. Kolte, A. Pund, P. Kolte, A. Kumar, P. Mankar, and K. Amb-

hore, “FPGA Based Multiple Fault Tolerant and Recoverable Technique Using Triple

Modular Redundancy (FRTMR),” Procedia Computer Science, vol. 79, pp. 827–834,

2016.

[32] T. Nakagawa, Maintenance Theory of Reliability. Sieger Köder Geschenkhefte,
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Figure A.1: Chronogram of activities

83



APPENDIX B. INSTALLING THE DEVELOPMENT TOOLS

Appendix B

Installing the development tools

PX4 code can be developed on Linux or Mac OS. It is recommend to use Ubuntu Linux

LTS edition as it enables building all PX4 targets, and using most simulators and ROS

(see Table B.1).

Table B.1: OS for development�

ssh CompanionCompu

export ROS_MASTER_URI=http://hal:11311

Target Ubuntu MAC Windows

NuttX based hardware: Pixhawk Series, Crazyflie, 
Intel® Aero Ready to Fly Drone x x x

Qualcomm Snapdragon Flight hardware x

Linux-based hardware: Raspberry Pi 2/3, Parrot 
Bebop x

Simulation: jMAVSim SITL x x x

Simulation: Gazebo SITL x x

Simulation: ROS with Gazebo x

Linux allows you to build for all PX4 targets (NuttX based hardware, Qualcomm Snap-

dragon Flight hardware, Linux-based hardware, Simulation, ROS). The following instruc-

tions explain how to set up a development environment on Ubuntu LTS using convenience

bash scripts.

The scripts ubuntu sim ros gazebo.sh install the Qt Creator IDE, Ninja Build System,

Common Dependencies, FastRTPS, MAVROS, MAVLink, and also download the PX4

source to your computer (/src/Firmware).
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B.1 Installing the development toolchain

• Download the script ubuntu sim ros gazebo.sh from the PX4 Development page.

• In a new shell enter command: sudo usermod -a -G dialout $USER. Logout and

login again (the change is only made after a new login).

• Execute de Script.

It’s necessary to grant the script with permission before execute it. Use command

chmod +x in a shell to do so. The script will take several minutes to install

all the tools. After the installation is complete the ROS folder /catkin ws and

/src/Firmware will added to the home directory (see Fig. B.1).

Figure B.1: Folders /catkin ws and /src/Firmware created in the Home direc-
tory.

• Copy and paste the /src/Firmware into folder /catkin ws/src. The folder /catkin ws/src

should look like Fig. B.2. The Folder /src/Firmware holds the PX4 firmware used

for the simulation and the one running on real hardware. The folder /catkin ws/src

is the common work space used for ROS.

• Compile PX4 Firmware before launching any simulation.In a shell enter:

cd /catkin ws/src/Firmware

make px4 sitl gazebo

• Source your environment. Otherwise ROS got recognize the variables used to launch

PX4 simulated stack. In a shell enter:
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Figure B.2: Folder /catkin ws/src

source Tools/setup gazebo.bash $(pwd) $(pwd)/build/px4 sitl default

export ROS PACKAGE PATH=$ROS PACKAGE PATH:$(pwd):$(pwd)/Tools/sitl gazebo

• Now the simulation is ready to be launch. PX4 has already refined configuration

examples for a few simulation. In order to star any simulation use the common ROS

command roslauch. e.g (see Fig. B.3):

roslaunch px4 mavros posix sitl.launch

Figure B.3: Simulation launched
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B.2 Extra information

The launch files are the ones in charge of executing a defined SIL configuration. They can

be found in /catkin ws/src/Firmware/launch. There next files are allocated:

• mavros posix sitl.launch

Configures Gazebo, spawns one drone, one px4 autopilots and a connection with

MAVROS.

• multi uav mavros sitl.launch

Configures Gazebo, spawns two drones, connected to two different px4 autopilots

and allows connection with MAVROS.

• posix sitl.launch

Configures Gazebo, spawns one drone connected to one autopilot.

• px4.launch

Base launch file for every single one PX4 autopilots running in a simulation.

• single vehicle spawn.launch

Base launch file for spawning drones withing Gazebo.
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